1
|
Inanc B, Fang Q, Andrews JF, Zeng X, Clark J, Li J, Dey NB, Ibrahim M, Sykora P, Yu Z, Braganza A, Verheij M, Jonkers J, Yates NA, Vens C, Sobol RW. TRIP12 governs DNA Polymerase β involvement in DNA damage response and repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588474. [PMID: 38645048 PMCID: PMC11030427 DOI: 10.1101/2024.04.08.588474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The multitude of DNA lesion types, and the nuclear dynamic context in which they occur, present a challenge for genome integrity maintenance as this requires the engagement of different DNA repair pathways. Specific 'repair controllers' that facilitate DNA repair pathway crosstalk between double strand break (DSB) repair and base excision repair (BER), and regulate BER protein trafficking at lesion sites, have yet to be identified. We find that DNA polymerase β (Polβ), crucial for BER, is ubiquitylated in a BER complex-dependent manner by TRIP12, an E3 ligase that partners with UBR5 and restrains DSB repair signaling. Here we find that, TRIP12, but not UBR5, controls cellular levels and chromatin loading of Polβ. Required for Polβ foci formation, TRIP12 regulates Polβ involvement after DNA damage. Notably, excessive TRIP12-mediated shuttling of Polβ affects DSB formation and radiation sensitivity, underscoring its precedence for BER. We conclude that the herein discovered trafficking function at the nexus of DNA repair signaling pathways, towards Polβ-directed BER, optimizes DNA repair pathway choice at complex lesion sites.
Collapse
|
2
|
Seo BA, Kim D, Hwang H, Kim MS, Ma SX, Kwon SH, Kweon SH, Wang H, Yoo JM, Choi S, Kwon SH, Kang SU, Kam TI, Kim K, Karuppagounder SS, Kang BG, Lee S, Park H, Kim S, Yan W, Li YS, Kuo SH, Redding-Ochoa J, Pletnikova O, Troncoso JC, Lee G, Mao X, Dawson VL, Dawson TM, Ko HS. TRIP12 ubiquitination of glucocerebrosidase contributes to neurodegeneration in Parkinson's disease. Neuron 2021; 109:3758-3774.e11. [PMID: 34644545 DOI: 10.1016/j.neuron.2021.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 06/09/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022]
Abstract
Impairment in glucocerebrosidase (GCase) is strongly associated with the development of Parkinson's disease (PD), yet the regulators responsible for its impairment remain elusive. In this paper, we identify the E3 ligase Thyroid Hormone Receptor Interacting Protein 12 (TRIP12) as a key regulator of GCase. TRIP12 interacts with and ubiquitinates GCase at lysine 293 to control its degradation via ubiquitin proteasomal degradation. Ubiquitinated GCase by TRIP12 leads to its functional impairment through premature degradation and subsequent accumulation of α-synuclein. TRIP12 overexpression causes mitochondrial dysfunction, which is ameliorated by GCase overexpression. Further, conditional TRIP12 knockout in vitro and knockdown in vivo promotes the expression of GCase, which blocks α-synuclein preformed fibrils (α-syn PFFs)-provoked dopaminergic neurodegeneration. Moreover, TRIP12 accumulates in human PD brain and α-synuclein-based mouse models. The identification of TRIP12 as a regulator of GCase provides a new perspective on the molecular mechanisms underlying dysfunctional GCase-driven neurodegeneration in PD.
Collapse
Affiliation(s)
- Bo Am Seo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology, Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, Republic of Korea.
| | - Heehong Hwang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Seong Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sin Ho Kweon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Je Min Yoo
- Department of Chemistry, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seulah Choi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sang Ho Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Kwangsoo Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bong Gu Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saebom Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biology, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Wei Yan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong-Shi Li
- Department of Neurology, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA
| | - Javier Redding-Ochoa
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabsang Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
| |
Collapse
|
3
|
Kang HY, Lee JW, Papaccio F, Bellei B, Picardo M. Alterations of the pigmentation system in the aging process. Pigment Cell Melanoma Res 2021; 34:800-813. [PMID: 34048137 DOI: 10.1111/pcmr.12994] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023]
Abstract
Human skin aging is a natural phenomenon that results from continuous exposure to intrinsic (time, genetic factors, hormones) as well as extrinsic factors (UV exposure, pollution, tobacco). In areas that are frequently exposed to the sun, photoaging blends with the process of intrinsic aging, resulting in an increased senescent cells number and consequently accelerating the aging process. The severity of photodamage depends on constitutional factors, including skin phototype (skin color, tanning capacity), intensity, and duration of sunlight/UV exposure. Aging affects nearly every aspect of cutaneous biology, including pigmentation. Clinically, the phenotype of age pigmented skin has a mottled, uneven color, primarily due to age spots, with or without hypopigmentation. Uneven pigmentation might be attributed to the hyperactivation of melanocytes, altered distribution of pigment, and turnover. In addition to direct damage to pigment-producing cells, photodamage alters the physiological crosstalk between keratinocytes, fibroblasts, endothelial cells, and melanocytes responsible for natural pigmentation homeostasis. Interestingly, age-independent diffuse expression of senescence-associated markers in the dermal and epidermal compartment is also associated with vitiligo, suggesting that premature senescence plays an important role in the pathology.
Collapse
Affiliation(s)
- Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Jin Wook Lee
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Dermatology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Federica Papaccio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Barbara Bellei
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Lee KK, Rajagopalan D, Bhatia SS, Tirado-Magallanes R, Chng WJ, Jha S. The oncogenic E3 ligase TRIP12 suppresses epithelial-mesenchymal transition (EMT) and mesenchymal traits through ZEB1/2. Cell Death Discov 2021; 7:95. [PMID: 33963176 PMCID: PMC8105346 DOI: 10.1038/s41420-021-00479-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/20/2021] [Accepted: 03/24/2021] [Indexed: 01/02/2023] Open
Abstract
Thyroid hormone receptor interactor 12 (TRIP12) is an E3 ligase most notably involved in the proteolytic degradation of the tumor suppressor p14ARF. Through this process, it is proposed that TRIP12 plays an oncogenic role in tumor initiation and growth. However, its role in other cancer processes is unknown. In this study, using publicly available cancer patient datasets, we found TRIP12 to be associated with distant metastasis-free survival in breast cancer, suggesting an inhibitory role in metastasis. Following TRIP12 depletion, an epithelial-mesenchymal transition (EMT) shift occurred with concomitant changes in EMT cell adhesion markers identified through RNA-seq. In line with EMT changes, TRIP12-depleted cells gained mesenchymal traits such as loss of cell polarity, dislodgement from bulk cells at a higher frequency, and increased cellular motility. Furthermore, ectopic TRIP12 expression sensitized cells to anoikis. Mechanistically, TRIP12 suppresses EMT through inhibiting ZEB1/2 gene expression, and ZEB1/2 depletion rescues EMT markers and mesenchymal behavior. Overall, our study delineates TRIP12's role in inhibition of EMT and implies a potential suppressive role in breast cancer metastasis.
Collapse
Affiliation(s)
- Kwok Kin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Deepa Rajagopalan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shreshtha Sailesh Bhatia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Roberto Tirado-Magallanes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Dayer G, Masoom ML, Togtema M, Zehbe I. Virus-Host Protein-Protein Interactions between Human Papillomavirus 16 E6 A1 and D2/D3 Sub-Lineages: Variances and Similarities. Int J Mol Sci 2020; 21:E7980. [PMID: 33121134 PMCID: PMC7663357 DOI: 10.3390/ijms21217980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
High-risk strains of human papillomavirus are causative agents for cervical and other mucosal cancers, with type 16 being the most frequent. Compared to the European Prototype (EP; A1), the Asian-American (AA; D2/D3) sub-lineage seems to have increased abilities to promote carcinogenesis. Here, we studied protein-protein interactions (PPIs) between host proteins and sub-lineages of the key transforming E6 protein. We transduced human keratinocyte with EP or AA E6 genes and co-immunoprecipitated E6 proteins along with interacting cellular proteins to detect virus-host binding partners. AAE6 and EPE6 may have unique PPIs with host cellular proteins, conferring gain or loss of function and resulting in varied abilities to promote carcinogenesis. Using liquid chromatography-mass spectrometry and stringent interactor selection criteria based on the number of peptides, we identified 25 candidates: 6 unique to AAE6 and EPE6, along with 13 E6 targets common to both. A novel approach based on pathway selection discovered 171 target proteins: 90 unique AAE6 and 61 unique EPE6 along with 20 common E6 targets. Interpretations were made using databases, such as UniProt, BioGRID, and Reactome. Detected E6 targets were differentially implicated in important hallmarks of cancer: deregulating Notch signaling, energetics and hypoxia, DNA replication and repair, and immune response.
Collapse
Affiliation(s)
- Guillem Dayer
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Mehran L. Masoom
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Melissa Togtema
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Ingeborg Zehbe
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
6
|
Transcriptome analysis offers a comprehensive illustration of the genetic background of pediatric acute myeloid leukemia. Blood Adv 2020; 3:3157-3169. [PMID: 31648321 DOI: 10.1182/bloodadvances.2019000404] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the genetic understanding of acute myeloid leukemia (AML) have improved clinical outcomes in pediatric patients. However, ∼40% of patients with pediatric AML relapse, resulting in a relatively low overall survival rate of ∼70%. The objective of this study was to reveal the comprehensive genetic background of pediatric AML. We performed transcriptome analysis (RNA sequencing [RNA-seq]) in 139 of the 369 patients with de novo pediatric AML who were enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 trial and investigated correlations between genetic aberrations and clinical information. Using RNA-seq, we identified 54 in-frame gene fusions and 1 RUNX1 out-of-frame fusion in 53 of 139 patients. Moreover, we found at least 258 gene fusions in 369 patients (70%) through reverse transcription polymerase chain reaction and RNA-seq. Five gene rearrangements were newly identified, namely, NPM1-CCDC28A, TRIP12-NPM1, MLLT10-DNAJC1, TBL1XR1-RARB, and RUNX1-FNBP1. In addition, we found rare gene rearrangements, namely, MYB-GATA1, NPM1-MLF1, ETV6-NCOA2, ETV6-MECOM, ETV6-CTNNB1, RUNX1-PRDM16, RUNX1-CBFA2T2, and RUNX1-CBFA2T3. Among the remaining 111 patients, KMT2A-PTD, biallelic CEBPA, and NPM1 gene mutations were found in 11, 23, and 17 patients, respectively. These mutations were completely mutually exclusive with any gene fusions. RNA-seq unmasked the complexity of gene rearrangements and mutations in pediatric AML. We identified potentially disease-causing alterations in nearly all patients with AML, including novel gene fusions. Our results indicated that a subset of patients with pediatric AML represent a distinct entity that may be discriminated from their adult counterparts. Based on these results, risk stratification should be reconsidered.
Collapse
|
7
|
Fontana R, Ranieri M, La Mantia G, Vivo M. Dual Role of the Alternative Reading Frame ARF Protein in Cancer. Biomolecules 2019; 9:E87. [PMID: 30836703 PMCID: PMC6468759 DOI: 10.3390/biom9030087] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
The CDKN2a/ARF locus expresses two partially overlapping transcripts that encode two distinct proteins, namely p14ARF (p19Arf in mouse) and p16INK4a, which present no sequence identity. Initial data obtained in mice showed that both proteins are potent tumor suppressors. In line with a tumor-suppressive role, ARF-deficient mice develop lymphomas, sarcomas, and adenocarcinomas, with a median survival rate of one year of age. In humans, the importance of ARF inactivation in cancer is less clear whereas a more obvious role has been documented for p16INK4a. Indeed, many alterations in human tumors result in the elimination of the entire locus, while the majority of point mutations affect p16INK4a. Nevertheless, specific mutations of p14ARF have been described in different types of human cancers such as colorectal and gastric carcinomas, melanoma and glioblastoma. The activity of the tumor suppressor ARF has been shown to rely on both p53-dependent and independent functions. However, novel data collected in the last years has challenged the traditional and established role of this protein as a tumor suppressor. In particular, tumors retaining ARF expression evolve to metastatic and invasive phenotypes and in humans are associated with a poor prognosis. In this review, the recent evidence and the molecular mechanisms of a novel role played by ARF will be presented and discussed, both in pathological and physiological contexts.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michela Ranieri
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Girolama La Mantia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Maria Vivo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
8
|
Exome sequencing reveals aberrant signalling pathways as hallmark of treatment-naive anal squamous cell carcinoma. Oncotarget 2017; 9:464-476. [PMID: 29416628 PMCID: PMC5787481 DOI: 10.18632/oncotarget.23066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Anal squamous cell carcinomas (ASCC) are rare tumours in humans. The etiological role of HPV infection is now well established but little is known about the molecular landscape and signalling pathways involved in the pathogenesis of this cancer. Here we report the results from a whole exome sequencing of a homogeneous group of 20 treatment-naive ASCC. A total of 2422 somatic single nucleotide variations (SNV) were found, with an overall moderate rate of somatic mutations per tumour (median: 105 relevant SNV per tumour) but a high mutational load in 3 tumours. The mutational signatures associated with age and APOBEC were observed in 100% and 60% of tumours respectively. The most frequently mutated genes were PIK3CA (25%) followed by FBXW7 (15%), FAT1 (15%), and TRIP12 (15%), the two last ones having never been described in ASCC. The main copy number alterations were gains of chromosome 3q (affecting PIK3CA) and losses of chromosome 11q (affecting ATM). The combined analysis of somatic mutations and copy number alterations show that recurrent alterations of the PI3K/AKT/mTOR pathway are frequent (60%) in these tumours, as well as potentially targetable alterations of other signalling pathways that have never been described in ASCC such as chromatin remodelling (45%) and ubiquitin mediated proteolysis (35%). These results highlight the possible implication of these aberrant signalling pathways in anal carcinogenesis and suggest promising new therapeutic approaches in ASCC. The high somatic mutation burden found in some tumours, suggesting an elevated neoantigen load could also predict sensitivity of ASCC to immunotherapy.
Collapse
|
9
|
Liu X, Yang X, Li Y, Zhao S, Li C, Ma P, Mao B. Trip12 is an E3 ubiquitin ligase for USP7/HAUSP involved in the DNA damage response. FEBS Lett 2016; 590:4213-4222. [DOI: 10.1002/1873-3468.12471] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaoliang Liu
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
- Kunming College of Life Science; University of Chinese Academy of Sciences; China
| | - Xiangcai Yang
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
- Kunming College of Life Science; University of Chinese Academy of Sciences; China
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
- Kunming College of Life Science; University of Chinese Academy of Sciences; China
| | - Shuhua Zhao
- Yunnan Population and Family Planning Research Institute; Kunming China
| | - Chaocui Li
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
| |
Collapse
|
10
|
Wang L, Zhang P, Molkentine DP, Chen C, Molkentine JM, Piao H, Raju U, Zhang J, Valdecanas DR, Tailor RC, Thames HD, Buchholz TA, Chen J, Ma L, Mason KA, Ang KK, Meyn RE, Skinner HD. TRIP12 as a mediator of human papillomavirus/p16-related radiation enhancement effects. Oncogene 2016; 36:820-828. [PMID: 27425591 DOI: 10.1038/onc.2016.250] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 05/16/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) have better responses to radiotherapy and higher overall survival rates than do patients with HPV-negative HNSCC, but the mechanisms underlying this phenomenon are unknown. p16 is used as a surrogate marker for HPV infection. Our goal was to examine the role of p16 in HPV-related favorable treatment outcomes and to investigate the mechanisms by which p16 may regulate radiosensitivity. HNSCC cells and xenografts (HPV/p16-positive and -negative) were used. p16-overexpressing and small hairpin RNA-knockdown cells were generated, and the effect of p16 on radiosensitivity was determined by clonogenic cell survival and tumor growth delay assays. DNA double-strand breaks (DSBs) were assessed by immunofluorescence analysis of 53BP1 foci; DSB levels were determined by neutral comet assay; western blotting was used to evaluate protein changes; changes in protein half-life were tested with a cycloheximide assay; gene expression was examined by real-time polymerase chain reaction; and data from The Cancer Genome Atlas HNSCC project were analyzed. p16 overexpression led to downregulation of TRIP12, which in turn led to increased RNF168 levels, repressed DNA damage repair (DDR), increased 53BP1 foci and enhanced radioresponsiveness. Inhibition of TRIP12 expression further led to radiosensitization, and overexpression of TRIP12 was associated with poor survival in patients with HPV-positive HNSCC. These findings reveal that p16 participates in radiosensitization through influencing DDR and support the rationale of blocking TRIP12 to improve radiotherapy outcomes.
Collapse
Affiliation(s)
- L Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D P Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J M Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Piao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - U Raju
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D R Valdecanas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R C Tailor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H D Thames
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - T A Buchholz
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K A Mason
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K-K Ang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R E Meyn
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H D Skinner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Gao P, Jin Z, Cheng Y, Cao X. RNA-Seq analysis identifies aberrant RNA splicing of TRIP12 in acute myeloid leukemia patients at remission. Tumour Biol 2014; 35:9585-90. [PMID: 24961348 DOI: 10.1007/s13277-014-2228-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/11/2014] [Indexed: 11/27/2022] Open
Abstract
Aberrant splicing events play important roles in the pathogenesis of acute myeloid leukemia (AML). To investigate the aberrant splicing events in AML during treatment, we carried out RNA sequencing in peripheral mononuclear cell samples from a patient with complete remission. In addition to the sequencing samples, selected splicing events were confirmed and validated with real-time quantitative RT-PCR in another seven pairs of samples. A total of 4.05 and 3.39 GB clean data of the AML and remission sample were generated, respectively, and 2,223 differentially expressed genes (DEGs) were identified. Integrated with gene expression profiling on T cells from AML patients compared with healthy donors, 82 DEGs were also differentially expressed in AML CD4 T cells and CD8 T cells. Twenty-three alternative splicing events were considered to be confidential, and they were involved in many biological processes, such as RNA processing, cellular macromolecule catabolic process, and DNA binding process. An exon3-skipping event in TRIP12 was detected in patients at remission and further validated in another three independent samples. TRIP12 is an ubiquitin ligase of ARF, which suppresses aberrant cell growth by activating p53 responses. The exon3-skipping isoform of TRIP12 increased significantly after treatment. Our results may provide new understanding of AML, and the confirmed alternative splicing event of TRIP12 may be used as potential target for future investigations.
Collapse
Affiliation(s)
- Panke Gao
- Department of Hematology, The Third Hospital Affiliated to Suzhou University, First People's Hospital of Changzhou, Changzhou, 213003, Jiangsu, China
| | | | | | | |
Collapse
|
12
|
Li G, Yi S, Yang F, Zhou Y, Ji Q, Cai J, Mei Y. Identification of mutant genes with high-frequency, high-risk, and high-expression in lung adenocarcinoma. Thorac Cancer 2014; 5:211-8. [PMID: 26767003 DOI: 10.1111/1759-7714.12080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/28/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To identify mutant genes with high-frequency-risk-expression between lung adenocarcinoma and normal samples. METHODS The ribonucleic acid RNA-Seq data GSE34914 and GSE37765 were downloaded from the Gene Expression Omnibus database, including 12 lung adenocarcinoma samples and six controls. All RNA-Seq reads were processed and the gene-expression level was calculated. Single nucleotide variation (SNV) was analyzed and the locations of mutant sites were recorded. In addition, the frequency and risk-level of mutant genes were calculated. Gene Ontology (GO) functional analysis was performed. The reported cancer genes were searched in tumor suppressor genes, Cancer Genes, and the Catalogue of Somatic Mutations in Cancer (COSMIC) database. RESULTS The SNV annotations of somatic mutation sites showed that 70% of mutation sites in the exon region occurred in the coding sequence (CDS). Thyroid hormone receptor interactor (TRIP)12 was identified with the highest frequency. A total of 118 mutant genes with high frequency and high-risk were selected and significantly enriched into several GO terms. No base mutation of cyclin C (CCNC) or RAB11A was recorded. At fragments per kilobase per million reads (FPKM) ≥ 56.5, reported tumor suppressor genes catenin (cadherin-associated protein), delta (CTNND)1, dual specificity phosphatase (DUSP)6, malate dehydrogenase (MDH)1 and RNA binding motif protein (RBM)5, were identified. Notably, signal transducer and activator of transcription 2 (STAT2) was the only transcription factor (TF) with high-risk mutation and its expression was detected. CONCLUSION For the mutant genes with high-frequency-risk-expression, CTNND1, DUSP6, MDH1 and RBM5 were identified. TRIP12 might be a potential cancer-related gene, and expression of TF STAT2 with high-risk was detected. These mutant gene candidates might promote the development of lung adenocarcinoma and provide new diagnostic potential targets for treatment.
Collapse
Affiliation(s)
- Guiyuan Li
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine Shanghai, China
| | - Shengming Yi
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine Shanghai, China
| | - Fan Yang
- Department of Clinical Laboratory Medicine, Tongji Hospital, Tongji University School of Medicine Shanghai, China
| | - Yongxin Zhou
- Department of Thoracic Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine Shanghai, China
| | - Qiang Ji
- Department of Thoracic Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine Shanghai, China
| | - Jianzhi Cai
- Department of Thoracic Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine Shanghai, China
| | - Yunqing Mei
- Department of Thoracic Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine Shanghai, China
| |
Collapse
|
13
|
Hein R, Flesch-Janys D, Dahmen N, Beckmann L, Lindström S, Schoof N, Czene K, Mittelstraß K, Illig T, Seibold P, Behrens S, Humphreys K, Li J, Liu J, Olson JE, Wang X, Hankinson SE, Truong T, Menegaux F, Dos Santos Silva I, Johnson N, Chen ST, Yu JC, Ziogas A, Kataja V, Kosma VM, Mannermaa A, Anton-Culver H, Shen CY, Brauch H, Peto J, Guénel P, Kraft P, Couch FJ, Easton DF, Hall P, Chang-Claude J. A genome-wide association study to identify genetic susceptibility loci that modify ductal and lobular postmenopausal breast cancer risk associated with menopausal hormone therapy use: a two-stage design with replication. Breast Cancer Res Treat 2013; 138:529-542. [PMID: 23423446 DOI: 10.1007/s10549-013-2443-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/31/2013] [Indexed: 11/26/2022]
Abstract
Menopausal hormone therapy (MHT) is associated with an elevated risk of breast cancer in postmenopausal women. To identify genetic loci that modify breast cancer risk related to MHT use in postmenopausal women, we conducted a two-stage genome-wide association study (GWAS) with replication. In stage I, we performed a case-only GWAS in 731 invasive breast cancer cases from the German case-control study Mammary Carcinoma Risk Factor Investigation (MARIE). The 1,200 single nucleotide polymorphisms (SNPs) showing the lowest P values for interaction with current MHT use (within 6 months prior to breast cancer diagnosis), were carried forward to stage II, involving pooled case-control analyses including additional MARIE subjects (1,375 cases, 1,974 controls) as well as 795 cases and 764 controls of a Swedish case-control study. A joint P value was calculated for a combined analysis of stages I and II. Replication of the most significant interaction of the combined stage I and II was performed using 5,795 cases and 5,390 controls from nine studies of the Breast Cancer Association Consortium (BCAC). The combined stage I and II yielded five SNPs on chromosomes 2, 7, and 18 with joint P values <6 × 10(-6) for effect modification of current MHT use. The most significant interaction was observed for rs6707272 (P = 3 × 10(-7)) on chromosome 2 but was not replicated in the BCAC studies (P = 0.21). The potentially modifying SNPs are in strong linkage disequilibrium with SNPs in TRIP12 and DNER on chromosome 2 and SETBP1 on chromosome 18, previously linked to carcinogenesis. However, none of the interaction effects reached genome-wide significance. The inability to replicate the top SNP × MHT interaction may be due to limited power of the replication phase. Our study, however, suggests that there are unlikely to be SNPs that interact strongly enough with MHT use to be clinically significant in European women.
Collapse
Affiliation(s)
- Rebecca Hein
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; PMV Research Group at the Department of Child and Adolescent Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Dieter Flesch-Janys
- Department of Cancer Epidemiology, Clinical Cancer Registry, University Cancer Center and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | | | - Lars Beckmann
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Foundation for Quality and Efficiency in Health Care (IQWIG), Cologne, Germany
| | - Sara Lindström
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard, School Of Public Health, Boston, MA 02138, USA; Department of Biostatistics, Harvard School Of Public Health, Boston, MA 02138, USA
| | - Nils Schoof
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kirstin Mittelstraß
- Research Unit of Molecular Epidemiology, Helmholtz Center Munich, Munich, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Center Munich, Munich, Germany; Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Petra Seibold
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Sabine Behrens
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jingmei Li
- Human,Genetics, Genome Institute of Singapore, 60 Biopolis St, Singapore 138672, Singapore
| | - Jianjun Liu
- Human,Genetics, Genome Institute of Singapore, 60 Biopolis St, Singapore 138672, Singapore
| | - Janet E Olson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Susan E Hankinson
- Department of Epidemiology, Harvard, School Of Public Health, Boston, MA 02138, USA
| | - Thérèse Truong
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France; University Paris-Sud, UMRS 1018, Villejuif, France
| | - Florence Menegaux
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France; University Paris-Sud, UMRS 1018, Villejuif, France
| | - Isabel Dos Santos Silva
- Department of Non-Communicable, Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Shou-Tung Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Argyrios Ziogas
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA
| | - Vesa Kataja
- School of Medicine, Institute of Clinical Medicine, Oncology, Biocenter Kuopio, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland; Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland; Biocenter Kuopio, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland; Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland; Biocenter Kuopio, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland; Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan Biobank, Taipei, Taiwan
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute, of Clinical Pharmacology, Stuttgart, University of Tübingen, Tübingen, Germany
| | - Julian Peto
- Department of Non-Communicable, Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Pascal Guénel
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France; University Paris-Sud, UMRS 1018, Villejuif, France
| | - Peter Kraft
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard School Of Public Health, Boston, MA 02138, USA; Department of Biostatistics, Harvard School Of Public Health, Boston, MA 02138, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Departments of Public Health and Primary Care and Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Chang-Claude
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Muniz VP, Barnes JM, Paliwal S, Zhang X, Tang X, Chen S, Zamba KD, Cullen JJ, Meyerholz DK, Meyers S, Davis JN, Grossman SR, Henry MD, Quelle DE. The ARF tumor suppressor inhibits tumor cell colonization independent of p53 in a novel mouse model of pancreatic ductal adenocarcinoma metastasis. Mol Cancer Res 2011; 9:867-77. [PMID: 21636682 DOI: 10.1158/1541-7786.mcr-10-0475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incurable, highly metastatic disease that is largely resistant to existing treatments. A better understanding of the genetic basis of PDAC metastasis should facilitate development of improved therapies. To that end, we developed a novel mouse xenograft model of PDAC metastasis to expedite testing of candidate genes associated with the disease. Human PDAC cell lines BxPC-3, MiaPaCa-2, and Panc-1 stably expressing luciferase were generated and introduced by intracardiac injections into immunodeficient mice to model hematogenous dissemination of cancer cells. Tumor development was monitored by bioluminescence imaging. Bioluminescent MiaPaCa-2 cells most effectively recapitulated PDAC tumor development and metastatic distribution in vivo. Tumors formed in nearly 90% of mice and in multiple tissues, including normal sites of PDAC metastasis. Effects of p14ARF, a known suppressor of PDAC, were tested to validate the model. In vitro, p14ARF acted through a CtBP2-dependent, p53-independent pathway to inhibit MiaPaCa-2-invasive phenotypes, which correlated with reduced tumor cell colonization in vivo. These findings establish a new bioluminescent mouse tumor model for rapidly assessing the biological significance of suspected PDAC metastasis genes. This system may also provide a valuable platform for testing innovative therapies.
Collapse
Affiliation(s)
- Viviane Palhares Muniz
- Molecular and Cellular Biology Graduate Program, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|