1
|
Luo Z, Shehzad A. Advances in Naked Metal Clusters for Catalysis. Chemphyschem 2024; 25:e202300715. [PMID: 38450926 DOI: 10.1002/cphc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
3
|
Synthesis and Modification of Nanoparticles with Ionic Liquids: a Review. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Tunable Aryl Alkyl Ionic Liquid Supported Synthesis of Platinum Nanoparticles and Their Catalytic Activity in the Hydrogen Evolution Reaction and in Hydrosilylation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010405. [PMID: 36615598 PMCID: PMC9822459 DOI: 10.3390/molecules28010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
Tunable aryl alkyl ionic liquids (TAAILs) are ionic liquids (ILs) with a 1-aryl-3-alkylimidazolium cation having differently substituted aryl groups. Herein, nine TAAILs with the bis(trifluoromethylsulfonyl)imide anion are utilized in combination with and without ethylene glycol (EG) as reaction media for the rapid microwave synthesis of platinum nanoparticles (Pt-NPs). TAAILs allow the synthesis of small NPs and are efficient solvents for microwave absorption. Transmission electron microscopy (TEM) shows that small primary NPs with sizes of 2 nm to 5 nm are obtained in TAAILs and EG/TAAIL mixtures. The Pt-NPs feature excellent activity as electrocatalysts in the hydrogen evolution reaction (HER) under acidic conditions, with an overpotential at a current density of 10 mA cm-2 as low as 32 mV vs the reversible hydrogen electrode (RHE), which is significantly lower than the standard Pt/C 20% with 42 mV. Pt-NPs obtained in TAAILs also achieved quantitative conversion in the hydrosilylation reaction of phenylacetylene with triethylsilane after just 5 min at 200 °C.
Collapse
|
5
|
Chen S, Huang X, Schild D, Wang D, Kübel C, Behrens S. Pd-In intermetallic nanoparticles with high catalytic selectivity for liquid-phase semi-hydrogenation of diphenylacetylene. NANOSCALE 2022; 14:17661-17669. [PMID: 36415933 DOI: 10.1039/d2nr03674f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intermetallic nanoparticles (NPs) are highly interesting materials in catalysis due to their geometrically ordered structures and altered electronic properties, but the synthesis of defined intermetallic NPs remains a challenge. Here, we report a novel and facile approach for the synthesis of intermetallic Pd-In NPs in ionic liquids (ILs) at moderate temperatures. Depending on the molar ratio of the metal precursors and the reaction temperature, single-phase Pd3In, PdIn and Pd3In7 NPs were obtained, which was confirmed, e.g. by powder X-ray diffraction, electron microscopy, and optical emission spectroscopy with inductively coupled plasma. The Pd-In NPs stabilized in ILs were used as catalysts in the liquid-phase semi-hydrogenation of diphenylacetylene (DPA). Highly ordered PdIn NPs with a CsCl type structure revealed both high activity and selectivity to cis-stilbene even at full DPA conversion. Intermetallic compounds such as PdIn can be used to isolate contiguous Pd atoms with another base metal into single Pd sites, thereby increasing the catalytic selectivity of Pd while stabilizing the individual sites in the intermetallic structures. This work may provide new pathways for the synthesis of single-phase intermetallic NPs and future insights into a more rational design of bimetallic catalysts with specific catalytic properties.
Collapse
Affiliation(s)
- Si Chen
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Xiaohui Huang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287, Darmstadt, Germany
| | - Dieter Schild
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Di Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christian Kübel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287, Darmstadt, Germany
- Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Silke Behrens
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
6
|
Magnetic deep eutectic solvent-based microextraction for determination of organophosphorus flame retardants in aqueous samples: One step closer to green chemistry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Stamer KS, Pigaleva MA, Pestrikova AA, Nikolaev AY, Naumkin AV, Abramchuk SS, Sadykova VS, Kuvarina AE, Talanova VN, Gallyamov MO. Water Saturated with Pressurized CO 2 as a Tool to Create Various 3D Morphologies of Composites Based on Chitosan and Copper Nanoparticles. Molecules 2022; 27:7261. [PMID: 36364089 PMCID: PMC9658215 DOI: 10.3390/molecules27217261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022] Open
Abstract
Methods for creating various 3D morphologies of composites based on chitosan and copper nanoparticles stabilized by it in carbonic acid solutions formed under high pressure of saturating CO2 were developed. This work includes a comprehensive analysis of the regularities of copper nanoparticles stabilization and reduction with chitosan, studied by IR and UV-vis spectroscopies, XPS, TEM and rheology. Chitosan can partially reduce Cu2+ ions in aqueous solutions to small-sized, spherical copper nanoparticles with a low degree of polydispersity; the process is accompanied by the formation of an elastic polymer hydrogel. The resulting composites demonstrate antimicrobial activity against both fungi and bacteria. Exposing the hydrogels to the mixture of He or H2 gases and CO2 fluid under high pressure makes it possible to increase the porosity of hydrogels significantly, as well as decrease their pore size. Composite capsules show sufficient resistance to various conditions and reusable catalytic activity in the reduction of nitrobenzene to aniline reaction. The relative simplicity of the proposed method and at the same time its profound advantages (such as environmental friendliness, extra purity) indicate an interesting role of this study for various applications of materials based on chitosan and metals.
Collapse
Affiliation(s)
- Katerina S. Stamer
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Marina A. Pigaleva
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Anastasiya A. Pestrikova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Alexander Y. Nikolaev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Alexander V. Naumkin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Sergei S. Abramchuk
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
| | - Vera S. Sadykova
- FSBI Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Anastasia E. Kuvarina
- FSBI Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Valeriya N. Talanova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| | - Marat O. Gallyamov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119334 Moscow, Russia
| |
Collapse
|
8
|
Ullah K, Khan S, Khan M, Rahman ZU, Al-Ghamdi YO, Mahmood A, Hussain S, Khan SB, Khan SA. A bioresource catalyst system of alginate-starch-activated carbon microsphere templated Cu nanoparticles: Potentials in nitroarenes hydrogenation and dyes discoloration. Int J Biol Macromol 2022; 222:887-901. [PMID: 36179868 DOI: 10.1016/j.ijbiomac.2022.09.226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022]
Abstract
The evolution and development of solid-matrix are considered a backbone for supporting and stabilizing of metal nanoparticles (NPs) and are the soul of the catalytic system. In the current study, the alginate-starch microsphere (Alg-St) was cross-linked using CaCl2 as a cross-linker. In addition, the Alg-St microsphere was blended with different percentages of activated carbon (AC). The microspheres adsorbed Cu+2 was reduced to zero-valent copper NPs through NaBH4 and used as a dip-catalyst. The supported Cu NPs cum NaBH4 system was used as dip-catalyst for the hydrogenation of 4-nitrophenol (4NP), 2-nitroanilline (2NA), and degradation of methylene blue (MB) and Congo red (CR) dyes. Among the different kinetics models, the experimental data were well-fitted in the zero-order kinetic model. Moreover pH, and recyclability were studied for 4NP, where the best activity was achieved at pH 7.0 for 4NP. No leaching was observed after 3rd cycle in the catalyst.
Collapse
Affiliation(s)
- Kaleem Ullah
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Salman Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Musa Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Youssef O Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Azhar Mahmood
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Shah Hussain
- Department of Chemistry, Government Postgraduate College, Nowshera 24100, Khyber-Pakhtunkhwa, Pakistan
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan.
| |
Collapse
|
9
|
Wu Z, Stuhrmann G, Dehnen S. Crystalline chalcogenidometalate-based compounds from uncommon reaction media. Chem Commun (Camb) 2022; 58:11609-11624. [PMID: 36134514 DOI: 10.1039/d2cc04061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chalcogenides are one of the most versatile inorganic materials families, further subdivided into a large variety of specific groups of compounds, ranging from neat binary or multinary solids and nanoparticles of the same formal compositions, both in crystalline or non-crystalline form, to complicated open-framework structures and cluster compounds, also including organ(ometall)ic derivates of the latter. The large variety regarding both the compositions and the structures is associated with an enormous variety of properties, ranging from simple or high-tech pigments through a multitude of opto-electronic devices and electrolytes to materials for ion separation or high-sophisticated catalysts. Naturally, this also goes hand in hand with a corrosponding breadth of synthesis strategies. Traditionally, chalcogenides have been accessed via high-temperature methods, which continuously have been replaced by lower-temperature approaches for economical and ecological reasons. Moreover, more recent methods also showed that new types of chalcogenide materials can be obtained under such milder conditions that are not accessible via traditional routes. To shed light onto one of the numerous families of chalcogenides, this feature article summarizes current achievements in the generation of multinary chalcogenidometallate-based clusters and networks via non-classical routes, using ionic liquids, surfactants, or hydrazine as reaction media at moderately elevated termperature.
Collapse
Affiliation(s)
- Zhou Wu
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Gina Stuhrmann
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Stefanie Dehnen
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany.
| |
Collapse
|
10
|
Farooqi ZH, Begum R, Naseem K, Wu W, Irfan A. Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2020.1807797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Khalida Naseem
- Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
11
|
Parida D, Bakkali-Hassani C, Lebraud E, Schatz C, Grelier S, Taton D, Vignolle J. Tuning the activity and selectivity of polymerised ionic liquid-stabilised ruthenium nanoparticles through anion exchange reactions. NANOSCALE 2022; 14:4635-4643. [PMID: 35262129 DOI: 10.1039/d1nr07628k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of highly active and selective heterogeneous-based catalysts with tailorable properties is not only a fundamental challenge, but is also crucial in the context of energy savings and sustainable chemistry. Here, we show that ruthenium nanoparticles (RuNPs) stabilised with simple polymerised ionic liquids (PILs) based on N-vinyl imidazolium led to highly active and robust nano-catalysts in hydrogenation reactions, both in water and organic media. Of particular interest, their activity and selectivity could simply be manipulated through counter-anion exchange reactions. Hence, as a proof of concept, the activity of RuNPs could be reversibly turned on and off in the hydrogenation of toluene, while in the case of styrene, the hydrogenation could be selectively switched from ethylbenzene to ethylcyclohexane upon anion metathesis. According to X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS) analyses, these effects could originate not only from the relative hydrophobicity and solvation of the PIL corona but also from the nature and strength of the PIL-Ru interactions.
Collapse
Affiliation(s)
- Dambarudhar Parida
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
- Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, CH-9014, Switzerland
| | - Camille Bakkali-Hassani
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
| | - Eric Lebraud
- University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
| | - Stéphane Grelier
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
| | - Joan Vignolle
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS, University of Bordeaux, Bordeaux INP, F-33607 Pessac Cedex, France.
| |
Collapse
|
12
|
Chatterjee R, Bhukta S, Dandela R. Ionic
liquid‐assisted
synthesis of
2‐amino‐3‐cyano‐4
H
‐chromenes: A sustainable overview. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rana Chatterjee
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology‐Indian Oil Odisha Campus Bhubaneswar India
| | - Swadhapriya Bhukta
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology‐Indian Oil Odisha Campus Bhubaneswar India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology‐Indian Oil Odisha Campus Bhubaneswar India
| |
Collapse
|
13
|
YOSHII K. Electrodeposition of Metals and Preparation of Metal Nanoparticles in Nonaqueous Electrolytes and Their Application to Energy Devices. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kazuki YOSHII
- Research Institute of Electrochemical Energy (RIECEN), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
14
|
Importance of structures and interactions in ionic liquid-nanomaterial composite systems as a novel approach for their utilization in safe lithium metal batteries: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
García-Guzmán JJ, López-Iglesias D, Cubillana-Aguilera L, Bellido-Milla D, Palacios-Santander JM, Marin M, Grigorescu SD, Lete C, Lupu S. Silver nanostructures - poly(3,4-ethylenedioxythiophene) sensing material prepared by sinusoidal voltage procedure for detection of antioxidants. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Faizan M, Ahmed R, Ali HM. A critical review on thermophysical and electrochemical properties of Ionanofluids (nanoparticles dispersed in ionic liquids) and their applications. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Chernyshev VM, Khazipov OV, Eremin DB, Denisova EA, Ananikov VP. Formation and stabilization of nanosized Pd particles in catalytic systems: Ionic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213860] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Jang H, Lee JR, Kim SJ, Jeong H, Jung S, Lee JH, Park JC, Kim TW. Concerns and breakthroughs of combining ionic liquids with microwave irradiation for the synthesis of Ru nanoparticles via decarbonylation. J Colloid Interface Sci 2021; 599:828-836. [PMID: 33989935 DOI: 10.1016/j.jcis.2021.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Combination of microwave irradiation (MWI) and ionic liquids (IL) is widely used for the synthesis of nanoparticles (NP) via decarbonylation of zero-valent metal carbonyl precursors. However, we carefully raise a question as to whether this combination is always beneficial. Upon MWI, highly-absorbing materials such as ILs would be subject to local intense heating, likely resulting in the occurrence of localized chemical decomposition. The decomposition is expected to influence the growth mechanism of NPs due to changes in the electrostatic and steric effects. If the assumption is valid, it should be possible to decompose IL and destabilize the NPs by modifying the amplitude of the incident microwaves. In other words, it should also be possible to control the particle aggregation by circumventing the decomposition of the IL. EXPERIMENTS A series of comparative studies were conducted using a model system (i.e. [BMIm][BF4] and Ru3(CO)12). Variables were systematically controlled. After MWI, the decrease in colloidal stability of NPs was identified. FINDINGS In the formation of Ru NPs via decarbonylation, the association between incident microwave intensity, chemical decomposition of IL, and initiation of particle aggregation has been demonstrated. Conditions that can accelerate or alleviate the decomposition and the aggregation are also corroborated.
Collapse
Affiliation(s)
- Hansaem Jang
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea
| | - Jeon Ryang Lee
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea; Interdisciplinary Program for Photonic Engineering, Chonnam National University (CNU), Gwangju 61186, South Korea
| | - Su Jin Kim
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea
| | - Hyejeong Jeong
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea
| | - Sungkwan Jung
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea
| | - Jeong-Hyeon Lee
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea
| | - Jae-Cheol Park
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea
| | - Tae-Won Kim
- Smart Energy and Nano Photonics R&D Group, Korea Institute of Industrial Technology (KITECH), Gwangju 61012, South Korea.
| |
Collapse
|
19
|
Abstract
Ferrofluids (FFs) constitute a type of tunable magnetic material, formed by magnetic nanoparticles suspended in a liquid carrier. The astonishing magnetic properties of these materials and their liquid nature have led to their extended use in different applications, including fields such as magnetochemistry, optics, and biomedicine, among others. Recently, FFs have been incorporated as extractant materials in magnetic-driven analytical sample preparation procedures, thus, permitting the development of different applications. FF-based extraction takes advantage of both the magnetic susceptibility of the nanoparticles and the properties of the liquid carrier, which are responsible for a wide variety of interactions with analytes and ultimately are a key factor in achieving better extraction performance. This review article classifies existing FFs in terms of the solvent used as a carrier (organic solvents, water, ionic liquids, deep eutectic solvents, and supramolecular solvents) while overviewing the most relevant analytical applications in the last decade.
Collapse
|
20
|
Frizzo CP, Vieira JCB, Krüger N, Paz AV, Zanatta N, Villetti MA. Heating Profile of Long Alkyl Chain Ionic Liquid Doped Solvents Under Ultrasound Irradiation. J SOLUTION CHEM 2021. [DOI: 10.1007/s10953-021-01054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Dietrich C, Chen S, Uzunidis G, Hähsler M, Träutlein Y, Behrens S. Bimetallic Pd/Sn-based Nanoparticles and their Catalytic Properties in the Semihydrogenation of Diphenylacetylene. ChemistryOpen 2021; 10:296-304. [PMID: 33751864 PMCID: PMC7944562 DOI: 10.1002/open.202000298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/09/2021] [Indexed: 11/23/2022] Open
Abstract
Multimetallic nanoparticles often enhance the catalytic performance of their monometallic counterparts by increasing reaction rates, catalyst selectivity, and/or stability. A prerequisite for understanding structure- and composition-associated properties, however, is the careful design of multimetallic nanoparticles with various structures and compositions. Here, bimetallic Pd/Sn-based nanoparticles are prepared with a tunable composition and structure exploiting ionic liquids (ILs) as reaction medium (i. e., methyltrioctylammonium bis(trifluoromethylsulfonyl)imide). The nanoparticles are obtained in a one-pot synthetic procedure by reducing the metal salt precursors with triethylborohydride in the IL. The results show that the reaction parameters, in particular the nature and ratio of the Pd2+ /Sn2+ precursors as well as the reaction temperature, influence NP formation and composition. X-ray diffraction with Rietveld analysis and transmission electron microscopy are employed to determine NP size and phase composition. Under optimized reaction conditions Pd2 Sn or PdSn nanocrystals are formed as single-phase products after introducing an additional annealing step at 200 °C. Nanocrystals with intermetallic composition reveal enhanced catalytic properties in the semihydrogenation of diphenylacetylene which was used as a model reaction.
Collapse
Affiliation(s)
- Christine Dietrich
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Si Chen
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Georgios Uzunidis
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Martin Hähsler
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Yannick Träutlein
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
| | - Silke Behrens
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 1 D76344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
22
|
Wolf S, Egeberg A, Treptow J, Feldmann C. Ge-Fe Carbonyl Cluster Compounds: Ionic Liquids-Based Synthesis, Structures, and Properties. ChemistryOpen 2021; 10:171-180. [PMID: 33565722 PMCID: PMC7874258 DOI: 10.1002/open.202000254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Indexed: 11/09/2022] Open
Abstract
Nine Ge-Fe carbonyl cluster compounds are prepared via ionic liquids-based synthesis. This includes the novel compounds [EMIm][Fe(CO)3 I(GeI3 )], [EHIm][Fe(CO)3 I(GeI3 )], [BMIm][GeI2 {Fe(CO)4 }2 (μ-I)][AlCl4 ]2 , [GeI2 {Fe(CO)4 }2 (μ-I)][Fe(AlBr4 )3 ], [BMIm]2 [(FeI2 )0.75 {Fe(CO)2 I(GeI3 )2 }2 ], and [EHIm][Fe(CO)4 (GeI2 )2 Fe(CO)3 GeI3 ] as well as the previously reported compounds (Fe(CO)4 (GeI3 )2 , FeI4 {GeI3 Fe(CO)3 }2 , and Ge12 {Fe(CO)3 }8 (μ-I)4 (EMIm: 1-ethyl-3-methylimidazolium, EHIm: 1-ethylimidazolium, BMIm: 1-butyl-3-methylimidazolium). With this series of compounds, a comparison of synthesis conditions and structural features is possible and, for instance, allows correlating the composition and structure of the respective Ge-Fe carbonyl cluster compounds with the type and acidity of the ionic liquid. With [EMIm][{GeI3 }2 Fe(CO)3 I], moreover, we can exemplarily show the thermal decomposition as a single-source precursor in the ionic liquid, resulting in bimetallic Ge-Fe nanoparticles with small size and narrow size distribution (7.0±1.4 nm).
Collapse
Affiliation(s)
- Silke Wolf
- Institut für Anorganische ChemieKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Alexander Egeberg
- Institut für Anorganische ChemieKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Jens Treptow
- Institut für Anorganische ChemieKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Claus Feldmann
- Institut für Anorganische ChemieKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| |
Collapse
|
23
|
Farooqi ZH, Akram MW, Begum R, Wu W, Irfan A. Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123535. [PMID: 33254738 PMCID: PMC7382355 DOI: 10.1016/j.jhazmat.2020.123535] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Hexavalent Chromium [Cr(VI)] is a highly carcinogenic and toxic material. It is one of the major environmental contaminants in aquatic system. Its removal from aqueous medium is a subject of current research. Various technologies like adsorption, membrane filtration, solvent extraction, coagulation, biological treatment, ion exchange and chemical reduction for removal of Cr(VI) from waste water have been developed. But chemical reduction of Cr(VI) to Cr(III) has attracted a lot of interest in the past few years because, the reduction product [Cr(III)] is one of the essential nutrients for organisms. Various nanoparticles based systems have been designed for conversion of Cr(VI) into Cr(III) which have not been critically reviewed in literature. This review present recent research progress of classification, designing and characterization of various inorganic nanoparticles reported as catalysts/reductants for rapid conversion of Cr(VI) into Cr(III) in aqueous medium. Kinetics and mechanism of nanoparticles enhanced/catalyzed reduction of Cr(VI) and factors affecting the reduction process have been discussed critically. Personal future insights have been also predicted for further development in this area.
Collapse
Affiliation(s)
- Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Muhammad Waseem Akram
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
24
|
Esser L, Macchieraldo R, Elfgen R, Sieland M, Smarsly BM, Kirchner B. TiCl 4 Dissolved in Ionic Liquid Mixtures from ab Initio Molecular Dynamics Simulations. Molecules 2020; 26:molecules26010079. [PMID: 33375378 PMCID: PMC7795733 DOI: 10.3390/molecules26010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
Abstract
To gain a deeper understanding of the TiCl4 solvation effects in multi-component ionic liquids, we performed ab initio molecular dynamics simulations of 1-butyl-3-methylimidazolium [C4C1Im]+, tetrafluoroborate [BF4]−, chloride [Cl]− both with and without water and titanium tetrachloride TiCl4. Complex interactions between cations and anions are observed in all investigated systems. By further addition of water and TiCl4 this complex interaction network is extended. Observations of the radial distribution functions and number integrals show that water and TiCl4 not only compete with each other to interact mainly with [Cl]−, which strongly influences the cation-[BF4]− interaction, but also interact with each other, which leads to the fact that in certain systems the cation-anion interaction is enhanced. Further investigations of the Voronoi polyhedra analysis have demonstrated that water has a greater impact on the nanosegregated system than TiCl4 which is also due to the fact of the shear amount of water relative to all other components and its higher mobility compared to TiCl4. Overall, the polar network of the IL mixture collapses by including water and TiCl4. In the case of [Cl]− chloride enters the water continuum, while [BF4]− remains largely unaffected, which deeply affects the interaction of the ionic liquid (IL) network.
Collapse
Affiliation(s)
- Lars Esser
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, D-53115 Bonn, Germany; (L.E.); (R.M.); (R.E.)
| | - Roberto Macchieraldo
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, D-53115 Bonn, Germany; (L.E.); (R.M.); (R.E.)
| | - Roman Elfgen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, D-53115 Bonn, Germany; (L.E.); (R.M.); (R.E.)
| | - Melanie Sieland
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany; (M.S.); (B.M.S.)
| | - Bernd Michael Smarsly
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany; (M.S.); (B.M.S.)
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, D-53115 Bonn, Germany; (L.E.); (R.M.); (R.E.)
- Correspondence:
| |
Collapse
|
25
|
Temperature dependence on the size control of palladium nanoparticles by chemical reduction in nonionic surfactant/ionic liquid hybrid systems. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Tan D, Kirbus B, Eng LM, Ruck M. Nanostructured Borate Halides for Optical Second Harmonic Generation at Surfaces. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deming Tan
- Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Benjamin Kirbus
- Institute of Applied Physics Technische Universität Dresden 01062 Dresden Germany
| | - Lukas M. Eng
- Institute of Applied Physics Technische Universität Dresden 01062 Dresden Germany
- ct.qmat Complexity and Topology in Quantum Matter Cluster of Excellence EXC 2147 Dresden/Würzburg Germany
| | - Michael Ruck
- Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
- ct.qmat Complexity and Topology in Quantum Matter Cluster of Excellence EXC 2147 Dresden/Würzburg Germany
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Str. 40 01187 Dresden Germany
| |
Collapse
|
27
|
Tan D, Chen P, Wang G, Chen G, Pietsch T, Brunner E, Doert T, Ruck M. One-pot resource-efficient synthesis of SnSb powders for composite anodes in sodium-ion batteries. RSC Adv 2020; 10:22250-22256. [PMID: 35516593 PMCID: PMC9054498 DOI: 10.1039/d0ra03679j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/01/2020] [Indexed: 12/03/2022] Open
Abstract
SnSb alloy, which can be used as an anode in a sodium-ion cell, was synthesized following a resource-efficient route at low temperature. This one-pot approach greatly reduces the energy consumption and maximizes the efficient use of raw materials. The reaction of elemental tin and antimony in the ionic liquid (IL) trihexyltetradecylphosphonium chloride ([P66614]Cl) at 200 °C led to a microcrystalline powder of single-phase SnSb within 10 h with very high yield (95%). Liquid-state nuclear magnetic resonance spectroscopy revealed that the IL remains essentially stable during the reaction. It was recovered almost quantitatively by distilling off the organic solvent used for product separation. Composites of SnSb powder and carbon nanotubes (CNTs) were fabricated by a simple ball milling process. Electrochemical measurements demonstrate that the Na‖SnSb/CNTs cell retains close to 100% of its initial capacity after 50 cycles at a current of 50 mA g-1, which is much better than the Na‖SnSb cell. The greatly increased capacity retainability can be attributed to the conductive network formed by CNTs inside the SnSb/CNTs electrode, providing 3D effective and fast electronic pathways during sodium intercalation and de-intercalation.
Collapse
Affiliation(s)
- Deming Tan
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Peng Chen
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Gang Wang
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden 01062 Dresden Germany
| | - Guangbo Chen
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden 01062 Dresden Germany
| | - Tobias Pietsch
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Eike Brunner
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Thomas Doert
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Michael Ruck
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Str. 40 01187 Dresden Germany
| |
Collapse
|
28
|
Yih Hui B, Mohamad Zain NN, Mohamad S, Varanusupakul P, Osman H, Raoov M. Poly(cyclodextrin-ionic liquid) based ferrofluid: A new class of magnetic colloid for dispersive liquid phase microextraction of polycyclic aromatic hydrocarbons from food samples prior to GC-FID analysis. Food Chem 2020; 314:126214. [DOI: 10.1016/j.foodchem.2020.126214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/04/2019] [Accepted: 01/12/2020] [Indexed: 12/30/2022]
|
29
|
Schmitz A, Meyer H, Meischein M, Garzón Manjón A, Schmolke L, Giesen B, Schlüsener C, Simon P, Grin Y, Fischer RA, Scheu C, Ludwig A, Janiak C. Synthesis of plasmonic Fe/Al nanoparticles in ionic liquids. RSC Adv 2020; 10:12891-12899. [PMID: 35492117 PMCID: PMC9051251 DOI: 10.1039/d0ra01111h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Bottom-up and top-down approaches are described for the challenging synthesis of Fe/Al nanoparticles (NPs) in ionic liquids (ILs) under mild conditions. The crystalline phase and morphology of the metal nanoparticles synthesized in three different ionic liquids were identified by powder X-ray diffractometry (PXRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and fast Fourier transform (FFT) of high-resolution TEM images. Characterization was completed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) for the analysis of the element composition of the whole sample consisting of the NPs and the amorphous background. The bottom-up approaches resulted in crystalline FeAl NPs on an amorphous background. The top-down approach revealed small NPs and could be identified as Fe4Al13 NPs which in the IL [OPy][NTf2] yield two absorption bands in the green-blue to green spectral region at 475 and 520 nm which give rise to a complementary red color, akin to appropriate Au NPs.
Collapse
Affiliation(s)
- Alexa Schmitz
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany +49-211-81-12287 +49-211-81-12286
| | - Hajo Meyer
- Materials Discovery and Interfaces, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum Universitätsstr. 150 D-44801 Bochum Germany
| | - Michael Meischein
- Materials Discovery and Interfaces, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum Universitätsstr. 150 D-44801 Bochum Germany
| | - Alba Garzón Manjón
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-40237 Düsseldorf Germany
| | - Laura Schmolke
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany +49-211-81-12287 +49-211-81-12286
| | - Beatriz Giesen
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany +49-211-81-12287 +49-211-81-12286
| | - Carsten Schlüsener
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany +49-211-81-12287 +49-211-81-12286
| | - Paul Simon
- Max-Planck-Institut für Chemische Physik fester Stoffe Nöthnitzer Straße 40 D-01187 Dresden Germany
| | - Yuri Grin
- Max-Planck-Institut für Chemische Physik fester Stoffe Nöthnitzer Straße 40 D-01187 Dresden Germany
| | - Roland A Fischer
- Department of Chemistry, Technische Universität München D-85748 Garching Germany
| | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 D-40237 Düsseldorf Germany
| | - Alfred Ludwig
- Materials Discovery and Interfaces, Institut für Werkstoffe, Fakultät für Maschinenbau, Ruhr-Universität Bochum Universitätsstr. 150 D-44801 Bochum Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany +49-211-81-12287 +49-211-81-12286
| |
Collapse
|
30
|
Monti GA, Correa NM, Falcone RD, Silbestri GF, Moyano F. Water-soluble gold nanoparticles: recyclable catalysts for the reduction of aromatic nitro compounds in water. RSC Adv 2020; 10:15065-15071. [PMID: 35495421 PMCID: PMC9052294 DOI: 10.1039/d0ra02131h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 12/03/2022] Open
Abstract
A structure/catalytic activity study of water-soluble gold nanoparticles, stabilized by zwitterionic ligands derived from imidazolium salts, in the reduction of aromatic nitro compounds in pure water at different temperature, as well as their recyclability, was performed. Our studies indicate that the nanoparticles synthesized by an easy, fast and reproducible process, need a short characteristic induction time to restructure the surfaces and make them active. The differences observed in the catalytic activity of the nanoparticles, determined by using the typical Langmuir–Hinshelwood model, are strongly based on the degree of coverage and spatial arrangement of the imidazolium salts on them. Finally, we demonstrate that gold nanoparticles stabilized by non-traditional ligands can be an excellent choice for nitro compound degradation. A structure/catalytic activity study of water-soluble gold nanoparticles, stabilized by zwitterionic ligands derived from imidazolium salts, in the reduction of aromatic nitro compounds in pure water, as well as their recyclability, was performed.![]()
Collapse
Affiliation(s)
- Gustavo A. Monti
- Instituto para el desarrollo agroindustrial y de la salud
- IDAS
- (CONICET – UNRC)
- Argentina
- Departamento de Química
| | - N. Mariano Correa
- Instituto para el desarrollo agroindustrial y de la salud
- IDAS
- (CONICET – UNRC)
- Argentina
- Departamento de Química
| | - R. Darío Falcone
- Instituto para el desarrollo agroindustrial y de la salud
- IDAS
- (CONICET – UNRC)
- Argentina
- Departamento de Química
| | - Gustavo F. Silbestri
- Instituto de Química del Sur (INQUISUR)
- Departamento de Química
- Universidad Nacional del Sur (UNS)
- CONICET
- Bahía Blanca
| | - Fernando Moyano
- Instituto para el desarrollo agroindustrial y de la salud
- IDAS
- (CONICET – UNRC)
- Argentina
- Departamento de Química
| |
Collapse
|
31
|
Klauke K, Schmitz A, Swertz AC, Beele BB, Giesen B, Schlüsener C, Janiak C, Mohr F. Acylselenoureato bis(chelates) of lead: synthesis, structural characterization and microwave-assisted formation of PbSe nano- and microstructures. NEW J CHEM 2020. [DOI: 10.1039/d0nj01433h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three lead(ii) bis(acylselenoureato) complexes were prepared by reaction of the respective acylselenourea compounds with Pb(OAc)2. One of these lead complexes was converted into PbSe nano- and microstructures by microwave-assisted synthesis.
Collapse
Affiliation(s)
- Karsten Klauke
- Fakultät für Mathematik und Naturwissenschaften
- Anorganische Chemie, Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
- Institut für Anorganische Chemie und Strukturchemie
| | - Alexa Schmitz
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Ann-Christin Swertz
- Fakultät für Mathematik und Naturwissenschaften
- Anorganische Chemie, Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | - Björn B. Beele
- Fakultät für Mathematik und Naturwissenschaften
- Anorganische Chemie, Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | - Beatriz Giesen
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Carsten Schlüsener
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- 40204 Düsseldorf
- Germany
| | - Fabian Mohr
- Fakultät für Mathematik und Naturwissenschaften
- Anorganische Chemie, Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| |
Collapse
|
32
|
Patil HR, Murthy Z. Ionic liquid assisted vanadium pentoxide synthesis through sol-gel method: Catalyst support for broad molecular weight distribution polyethylene synthesis. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
33
|
Surfactant-Free Synthesis of Reduced Graphene Oxide Supported Well-Defined Polyhedral Pd-Pt Nanocrystals for Oxygen Reduction Reaction. Catalysts 2019. [DOI: 10.3390/catal9090756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Well-defined polyhedral Pd-Pt nanocrystals anchored on the reduced graphene oxide (rGO) are successfully synthesized via a facile and efficient surfactant-free solvothermal route. The formation mechanism is carefully illustrated via tuning the surface state of rGO substrate and the Pd/Pt ratio in Pd-Pt nanocrystals. rGO substrates with continuous smooth surface, which can offer continuous 2D larger π electrons, play important roles in the formation of the well-defined polyhedral Pd-Pt nanocrystals. Suitable Pd/Pt ratio, which determines the affinity between the rGO substrate and polyhedral Pd-Pt nanocrystals, is another important factor for the formation of polyhedral Pd-Pt nanocrystals. Due to the well-defined surface of Pd-Pt nanocrystals, rich corners and edges from polyhedral structure, as well as more exposed (111) facets, the low-Pt polyhedral Pd-Pt nanocrystals anchored on rGO, used as electrocatalysts, exhibit high electrocatalytic activity for oxygen reduction reaction with excellent methanol tolerance.
Collapse
|
34
|
Gregori BJ, Schwarzhuber F, Pöllath S, Zweck J, Fritsch L, Schoch R, Bauer M, Jacobi von Wangelin A. Stereoselective Alkyne Hydrogenation by using a Simple Iron Catalyst. CHEMSUSCHEM 2019; 12:3864-3870. [PMID: 31265757 DOI: 10.1002/cssc.201900926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The stereoselective hydrogenation of alkynes constitutes one of the key approaches for the construction of stereodefined alkenes. The majority of conventional methods utilize noble and toxic metal catalysts. This study concerns a simple catalyst comprised of the commercial chemicals iron(II) acetylacetonate and diisobutylaluminum hydride, which enables the Z-selective semihydrogenation of alkynes under near ambient conditions (1-3 bar H2 , 30 °C, 5 mol % [Fe]). Neither an elaborate catalyst preparation nor addition of ligands is required. Mechanistic studies (kinetic poisoning, X-ray absorption spectroscopy, TEM) strongly indicate the operation of small iron clusters and particle catalysts.
Collapse
Affiliation(s)
- Bernhard J Gregori
- Dept. of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146, Hamburg, Germany
| | - Felix Schwarzhuber
- Dept. of Physics, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Simon Pöllath
- Dept. of Physics, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Josef Zweck
- Dept. of Physics, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lorena Fritsch
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Roland Schoch
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Matthias Bauer
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | | |
Collapse
|
35
|
Schmolke L, Lerch S, Bülow M, Siebels M, Schmitz A, Thomas J, Dehm G, Held C, Strassner T, Janiak C. Aggregation control of Ru and Ir nanoparticles by tunable aryl alkyl imidazolium ionic liquids. NANOSCALE 2019; 11:4073-4082. [PMID: 30778483 DOI: 10.1039/c8nr10286d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-nanoparticles (M-NPs) were synthesized in a wet-chemical synthesis route in tunable aryl alkyl ionic liquids (TAAILs) based on the 1-aryl-3-alkyl-substituted imidazolium motif from Ru3(CO)12 and Ir4(CO)12 by microwave-heating induced thermal decomposition. The size and size dispersion of the NPs were determined by transmission electron microscopy (TEM) to an average diameter of 2.2(±0.1) to 3.9(±0.3) nm for Ru-NPs and to an average diameter of 1.4(±0.1) to 2.4(±0.1) nm for Ir-NPs. The TAAILs used contain the same bis(trifluoromethylsulfonyl)imide anion but differ in the substituents on the 1-aryl ring, e.g. 2-methyl-, 4-methoxy- and 2,4-dimethyl groups and in the 3-alkyl chain lengths (C4H9, C5H11, C8H17, C9H19, C11H23). All used TAAILs are suitable for the stabilization of Ru- and Ir-NPs over months in the IL dispersion. Different from all other investigations on M-NP/IL systems which we are aware of the particle separation properties of the TAAILs vary strongly as a function of the aryl substituent. Good NP separation can be achieved with the 4-methoxyphenyl- and 2,4-dimethylphenyl-substituted ILs, irrespective of the 3-alkyl chain lengths. Significant aggregation can be observed for 2-methylphenyl-substituted ILs. The good NP separation can be correlated with a negative electrostatic potential at the 4-methoxyphenyl or 4-methylphenyl substituent that is in the para-position of the aryl ring, whereas the 2-(ortho-)methylphenyl group assumes no negative potential. ε-ePC-SAFT calculations were used to validate that the interactions between ILs and the washing agents (required for TEM analyses) do not cause the observed aggregation/separation behaviour of the M-NPs. Ru-NPs were investigated as catalysts for the solvent-free hydrogenation of benzene to cyclohexane under mild conditions (70 °C, 10 bar) with activities up to 760 (mol cyclohexane) (mol Ru)-1 h-1 and over 95% conversion in ten consecutive runs for Ru-NPs. No significant loss of catalytic activity could be observed.
Collapse
Affiliation(s)
- Laura Schmolke
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Swantje Lerch
- Professur für Physikalische Organische Chemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Mark Bülow
- Laboratory of Thermodynamics, Technische Universität Dortmund, Emil-Figge-Str 70, 44227 Dortmund, Germany.
| | - Marvin Siebels
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Alexa Schmitz
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Jörg Thomas
- Department Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Gerhard Dehm
- Department Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Christoph Held
- Laboratory of Thermodynamics, Technische Universität Dortmund, Emil-Figge-Str 70, 44227 Dortmund, Germany.
| | - Thomas Strassner
- Professur für Physikalische Organische Chemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| |
Collapse
|
36
|
Verma C, Ebenso EE, Quraishi M. Transition metal nanoparticles in ionic liquids: Synthesis and stabilization. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Ballentine MD, Embry EG, Garcia MA, Hill LJ. Deposition of metal particles onto semiconductor nanorods using an ionic liquid. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:718-724. [PMID: 30931213 PMCID: PMC6423590 DOI: 10.3762/bjnano.10.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 05/10/2023]
Abstract
The current study investigates whether metal deposition onto an existing nanorod can be carried out using an ionic liquid, and the effect this has on catalytic performance. Platinum, gold, and silver nanoparticles were deposited onto CdSe@CdS (core@shell) nanorods from metal salts in an ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) without additional surfactants or reducing agents. Photocatalytic dye degradation experiments showed that catalysts with platinum particles deposited using the ionic liquid out-performed similar materials synthesized using organic solvents and ligands. We concluded that metal particles can be deposited onto well-defined semiconductor nanorods using ionic liquids and metal salts without the need for additional reagents, and the deposited particles did not cause significant aggregation even when these materials were taken into organic media. It is possible that a broad range of metal/semiconductor heterostructured particles can be prepared using the methods reported here.
Collapse
Affiliation(s)
- Michael D Ballentine
- 1906 College Heights Blvd., Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Elizabeth G Embry
- 1906 College Heights Blvd., Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Marco A Garcia
- 1906 College Heights Blvd., Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Lawrence J Hill
- 1906 College Heights Blvd., Western Kentucky University, Bowling Green, KY, 42101, USA
| |
Collapse
|
38
|
Schmolke L, Gregori BJ, Giesen B, Schmitz A, Barthel J, Staiger L, Fischer RA, Jacobi von Wangelin A, Janiak C. Bimetallic Co/Al nanoparticles in an ionic liquid: synthesis and application in alkyne hydrogenation. NEW J CHEM 2019. [DOI: 10.1039/c9nj03622a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CoAl- and Co3Al-NPs are effective catalysts for alkyne-to-alkane hydrogenation with DIBAL-H as a co-catalyst under mild conditions (2 bar H2, 30 °C).
Collapse
Affiliation(s)
- Laura Schmolke
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Bernhard J. Gregori
- Institut für Anorganische und Angewandte Chemie
- Universität Hamburg
- 20146 Hamburg
- Germany
| | - Beatriz Giesen
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Alexa Schmitz
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Juri Barthel
- Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen (ER-C 2)
- D-52425 Jülich
- Germany
| | - Lena Staiger
- Department of Chemistry
- Technische Universität München
- D-85748 Garching
- Germany
| | - Roland A. Fischer
- Department of Chemistry
- Technische Universität München
- D-85748 Garching
- Germany
| | | | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| |
Collapse
|
39
|
Xu L, Yang J. Size and shape-controlled synthesis of Ru nanocrystals. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractMastery over the size/shape of nanocrystals (NCs) enables control of their properties and enhancement of their usefulness for a given application. Within the past decades, the development of wet-chemistry methods leads to the blossom of research in noble metal nanomaterials with tunable sizes and shapes. We herein would prefer to devote this chapter to introduce the solution-based methods for size and shape-controlled synthesis of ruthenium (Ru) NCs, which can be summarized into five categories: (i) Synthesis of spherical Ru NCs; (ii) synthesis of one-dimensional (1D) Ru NCs, e.g. wires and rods; (iii) synthesis of two-dimensional (2D) Ru NCs, e.g. nanoplates; (iv) synthesis of Ru NCs with hollow interiors and (v) synthesis of Ru NCs with other morphologies, e.g. chains, dendrites and branches. We aim at highlighting the synthetic approaches and growth mechanisms of these types of Ru NCs. We also introduce the detailed characterization tools for analysis of Ru NCs with different sizes/shapes. With respect to the creation of great opportunities and tremendous challenges due to the accumulation in noble metal nanomaterials, we briefly make some perspectives for the future development of Ru NCs so as to provide the readers a systematic and coherent picture of this promising field. We hope this reviewing effort can provide for technical bases for effectively designing and producing Ru NCs with enhanced physical/chemical properties.Graphical Abstract:The solution-based methods for size and shape-controlled synthesis of ruthenium nanocrystals as well as the mechanisms behind them are extensively reviewed.
Collapse
|
40
|
Groh MF, Müller U, Isaeva A, Ruck M. The Intermetalloid Clusters [Ni2Bi12]4+and [Rh2Bi12]4+- Ionothermal Synthesis, Crystal Structures, and Chemical Bonding. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Matthias F. Groh
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
- Department of Chemistry; University of Cambridge; Lensfield Road CB2 1EW Cambridge United Kingdom
| | - Ulrike Müller
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
| | - Anna Isaeva
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
| | - Michael Ruck
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
- Max Planck Institute for Chemical Physics of Solids; Nöthnitzer Str. 40 01187 Dresden Germany
| |
Collapse
|
41
|
Lisichkin GV, Olenin AY. Metal sols in ionic liquids: synthesis, properties, and application. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2163-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Díaz C, Ferraudi G, Lappin AG, Oliver A, Isaacs M. Synthesis and characterization of low-melting ferrocenyl salts: a study of thermal and photochemical redox reactions. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1504036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Carlos Díaz
- Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias, Universidad de Las Américas, Sede Providencia, Santiago, Chile
| | - Guillermo Ferraudi
- Notre Dame Radiation Research Laboratory, University of Notre Dame, South Bend, IN, USA
| | - A. Graham Lappin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Allen Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Mauricio Isaacs
- Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago, Chile
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
43
|
Din MI, Rani A. Selection of Optimum Strategies for the Fabrication of Plant-Mediated Metal Nanoparticles: Emerging Problems in Sustainability. Crit Rev Anal Chem 2018; 48:406-415. [PMID: 29561631 DOI: 10.1080/10408347.2018.1444464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The green fabrication of nanoparticles (NPs) by using plants as reducing and capping agents involves energy efficient, less toxic, safer and simpler pathways. These pathways have been related to the rational use of numerous substances in fabrication of NPs and synthetic strategies, which have been mainly discussed in this article. The subject matter of this review is to discuss how a chemist can follow the green chemistry principles in terms of selection of substances and protocols used for NPs fabrication. Furthermore, it describes how a researcher can modify the physical properties of NPs by varying the reaction conditions. In short, this review article provides a scheme for the synthesis of NPs from selection of suitable plant to characterization of formed NPs by employing green chemistry.
Collapse
Affiliation(s)
| | - Aneela Rani
- a Institute of Chemistry, University of the Punjab , Lahore , Pakistan
| |
Collapse
|
44
|
Morcos B, Lecante P, Morel R, Haumesser PH, Santini CC. Magnetic, Structural, and Chemical Properties of Cobalt Nanoparticles Synthesized in Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7086-7095. [PMID: 29804454 DOI: 10.1021/acs.langmuir.8b00271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cobalt nanoparticles (CoNPs) exhibit quite unique magnetic, catalytic, and optical properties. In this work, imidazolium-based ionic liquids (ILs) are successfully used to elaborate magnetically responsive suspensions of quite monodisperse CoNPs with diameters below 5 nm. The as-synthesized CoNPs adopt the noncompact and metastable structure of ϵ-Co that progressively evolves at room temperature toward the stable hexagonal close-packed allotrope of Co. Accordingly, magnetization curves are consistent with zero-valent Co. As expected in this size range, the CoNPs are superparamagnetic at room temperature. Their blocking temperature is found to depend on the size of the IL cation. The CoNPs produced in an IL with a large cation exhibit a very high anisotropy, attributed to an enhanced dipolar coupling of the NPs, even though a larger interparticle distance is observed in this IL. Finally, the presence of surface hydrides on the CoNPs is assessed and paves the way toward the synthesis for Co-based bimetallic NPs.
Collapse
Affiliation(s)
- Bishoy Morcos
- Univ. Grenoble Alpes , F-38000 Grenoble , France
- CEA, LETI , MINATEC Campus , F-38054 Grenoble , France
- Univ. Lyon, CNRS-UMR 5265 , 43 Bd du 11 Novembre 1918 , F-69616 Villeurbanne Cedex , France
| | - Pierre Lecante
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES, CNRS , 29 rue Jeanne Marvig , F-31055 Toulouse , France
| | - Robert Morel
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), INAC, SPINTEC , F-38000 Grenoble , France
| | - Paul-Henri Haumesser
- Univ. Grenoble Alpes , F-38000 Grenoble , France
- CEA, LETI , MINATEC Campus , F-38054 Grenoble , France
| | - Catherine C Santini
- Univ. Lyon, CNRS-UMR 5265 , 43 Bd du 11 Novembre 1918 , F-69616 Villeurbanne Cedex , France
| |
Collapse
|
45
|
Ding S, Tian C, Zhu X, Wang H, Wang H, Abney CW, Zhang N, Dai S. Engineering nanoporous organic frameworks to stabilize naked Au clusters: a charge modulation approach. Chem Commun (Camb) 2018; 54:5058-5061. [PMID: 29726871 DOI: 10.1039/c8cc02966k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A simple charge modulation approach has been developed to stabilize naked Au clusters on a nanoporous conjugated organic network. Through engineering pore walls with regulated charges, the controllable growth of Au nanoclusters has been realized. The resulting supported catalyst exhibits excellent performance in the aerobic oxidation of alcohols.
Collapse
Affiliation(s)
- Shunmin Ding
- College of Chemistry, Nanchang University, Nanchang, China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ionic liquid assisted synthesis of palladium nanoclusters for highly efficient formaldehyde oxidation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Okoli CU, Kuttiyiel KA, Cole J, McCutchen J, Tawfik H, Adzic RR, Mahajan D. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts. ULTRASONICS SONOCHEMISTRY 2018; 41:427-434. [PMID: 29137771 DOI: 10.1016/j.ultsonch.2017.09.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 05/18/2023]
Abstract
Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. Herein, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show that carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. The metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.
Collapse
Affiliation(s)
- Celest U Okoli
- Advanced Energy Research & Technology Center, Stony Brook University, Stony Brook, NY 11794, United States; Materials Science & Chemical Engineering Department, Stony Brook University, Stony Brook, NY 11794, United States
| | - Kurian A Kuttiyiel
- Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Jesse Cole
- Materials Science & Chemical Engineering Department, Stony Brook University, Stony Brook, NY 11794, United States
| | - J McCutchen
- Materials Science & Chemical Engineering Department, Stony Brook University, Stony Brook, NY 11794, United States
| | - Hazem Tawfik
- Institute for Research and Technology Transfer, Farmingdale State College, Farmingdale, NY 11735, United States
| | - Radoslav R Adzic
- Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Devinder Mahajan
- Advanced Energy Research & Technology Center, Stony Brook University, Stony Brook, NY 11794, United States; Materials Science & Chemical Engineering Department, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
48
|
Piacenza E, Presentato A, Turner RJ. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures. Crit Rev Biotechnol 2018; 38:1137-1156. [PMID: 29480081 DOI: 10.1080/07388551.2018.1440525] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical-physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical-physical mechanisms may be involved in the natural stability of Bio-Me-nanomaterials. As a result, macromolecules such as DNA, polyphosphates and proteins may electrostatically interact with Bio-Me-nanomaterials in suspension through their charged moieties, showing the same properties of counterions in Ch-Me-nanostructure suspensions. Since several biomolecules (e.g. neutral lipids, nonionic biosurfactants, polysaccharides, and secondary metabolites) produced by metal(loid)-grown organisms can develop similar steric hindrance as compared to nonionic amphiphilic surfactants and block co-polymers generally used to sterically stabilize Ch-Me-nanomaterials. These biomolecules, most likely, are involved in the development of steric stabilization, because of their bulky structures. Finally, charged lipids and polysaccharides, ionic biosurfactants or proteins with amphiphilic properties can exert a dual effect (i.e. electrostatic and steric repulsion interactions) in the contest of Bio-Me-nanomaterials, leading to the high degree of stability observed.
Collapse
Affiliation(s)
- Elena Piacenza
- a Microbial Biochemistry Laboratory, Department of Biological Sciences , University of Calgary , Calgary , Canada
| | - Alessandro Presentato
- b Environmental Microbiology Laboratory, Department of Biotechnology , University of Verona , Verona , Italy
| | - Raymond J Turner
- a Microbial Biochemistry Laboratory, Department of Biological Sciences , University of Calgary , Calgary , Canada
| |
Collapse
|
49
|
Affiliation(s)
- Christian Schöttle
- Karlsruhe Institute of Technology (KIT); Institute of Inorganic Chemistry; Engesserstraße 15 76131 Karlsruhe Germany
| | - Fabian Gyger
- Karlsruhe Institute of Technology (KIT); Institute of Inorganic Chemistry; Engesserstraße 15 76131 Karlsruhe Germany
| | - Claus Feldmann
- Karlsruhe Institute of Technology (KIT); Institute of Inorganic Chemistry; Engesserstraße 15 76131 Karlsruhe Germany
| |
Collapse
|
50
|
Kiani S, Taherkhani F. Free energy, configurational and nonextensivity of Tsallis entropy with the size and temperature in colloidal silver nanoparticles in [EMim][PF6] ionic liquid. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|