1
|
Diaz-Rodriguez RM, Gálico DA, Chartrand D, Murugesu M. Ligand Effects on the Emission Characteristics of Molecular Eu(II) Luminescence Thermometers. J Am Chem Soc 2024; 146:34118-34129. [PMID: 39610301 DOI: 10.1021/jacs.4c13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Discrete molecular organometallic europium(II) complexes are promising functional materials due to their ability to behave as highly sensitive band-shift luminescence thermometers. Furthering our understanding of the design principles salient to the emission behavior of such systems is important for developing them in this emerging application. To this end, a series of pseudo-C4v-symmetric organometallic europium(II) complexes bearing systematically varying ligand sets were synthesized and characterized to probe the influence of subtle structural modification on their optical properties. Opto-structural correlation analyses via variable-temperature single-crystal X-ray diffraction and photoluminescence spectroscopy reveal a remarkable variability in properties among structurally similar complexes and a convoluted dependence of the emission characteristics on the stereoelectronic properties of the ligands. A few factors of particular influence are nevertheless identified, including the distance between the europium(II) ion and the basal plane of the square-pyramidal coordination polyhedron, the presence of pendant electron density that might further interact with the excited-state 5d orbitals, and, qualitatively, the metal-ligand flexibility of the construct. These results help to elucidate principles that govern the luminescence properties of organometallic europium(II) complexes with an eye to enabling the rational design of high-performance luminescence thermometers of this genre.
Collapse
Affiliation(s)
- Roberto M Diaz-Rodriguez
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Daniel Chartrand
- Department of Chemistry, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Summers TJ, Zhang D, Sobrinho JA, de Bettencourt-Dias A, Rousseau R, Glezakou VA, Cantu DC. Pairing a Global Optimization Algorithm with EXAFS to Characterize Lanthanide Structure in Solution. J Chem Inf Model 2024; 64:8926-8936. [PMID: 39575913 DOI: 10.1021/acs.jcim.4c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Ensemble-average sampling of structures from ab initio molecular dynamics (AIMD) simulations can be used to predict theoretical extended X-ray absorption fine structure (EXAFS) signals that closely match experimental spectra. However, AIMD simulations are time-consuming and resource-intensive, particularly for solvated lanthanide ions, which often form multiple nonrigid geometries with high coordination numbers. To accelerate the characterization of lanthanide structures in solution, we employed the Northwest Potential Energy Surface Search Engine (NWPEsSe), an adaptive-learning global optimization algorithm, to efficiently screen first-shell structures. As case studies, we examine two systems: Eu(NO3)3 dissolved in acetonitrile with a terpyridine ligand (terpyNO2), and Nd(NO3)3 dissolved in acetonitrile. The theoretical spectra for structures identified by NWPEsSe were compared to both experimental and AIMD-derived EXAFS spectra. The NWPEsSe algorithm successfully identified the proper solvation structure for both Eu(NO3)3(terpyNO2) and Nd(NO3)(acetonitrile)3, with the calculated EXAFS signals closely matching the experimental spectra for the Eu-ligand complex and showing good similarity for the Nd salt; the better agreement with the ligand-containing structure is attributed to a less dynamic coordination environment due to the rigid ligand. The key advantage of the global optimization algorithm lies in its ability to sample the coordination environment across the potential energy surface and reduce the time required to identify structures from generally a month to within a week. Additionally, this approach is versatile and can be adapted to characterize main-group metal complexes.
Collapse
Affiliation(s)
- Thomas J Summers
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Difan Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Josiane A Sobrinho
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| | | | - Roger Rousseau
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
3
|
Melegari M, Neri M, Falco A, Tegoni M, Maffini M, Fornari F, Mucchino C, Artizzu F, Serpe A, Marchiò L. Tailoring the Use of 8-Hydroxyquinolines for the Facile Separation of Iron, Dysprosium and Neodymium. CHEMSUSCHEM 2024; 17:e202400286. [PMID: 38786929 DOI: 10.1002/cssc.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Permanent magnets (PMs) containing rare earth elements (REEs) can generate energy in a sustainable manner. With an anticipated tenfold increase in REEs demand by 2050, one of the crucial strategies to meet the demand is developing of efficient recycling methods. NdFeB PMs are the most widely employed, however, the similar chemical properties of Nd (20-30 % wt.) and Dy (0-10 % wt.) make their recycling challenging, but possible using appropriate ligands. In this work, we investigated commercially available 8-hydroxyquinolines (HQs) as potential Fe/Nd/Dy complexing agents enabling metal separation by selective precipitation playing on specific structure/property (solubility) relationship. Specifically, test ethanolic solutions of nitrate salts, prepared to mimic the main components of a PM leachate, were treated with functionalized HQs. We demonstrated that Fe3+ can be separated as insoluble [Fe(QCl,I)3] from soluble [REE(QCl,I)4]- complexes (QCl,I -: 5-Cl-7-I-8-hydoxyquinolinate). Following that, QCl - (5-Cl-8-hydroxyquinolinate) formed insoluble [Nd3(QCl)9] and soluble (Bu4N)[Dy(QCl)4]. The process ultimately gave a solution phase containing Dy with only traces of Nd. In a preliminary attempt to assess the potentiality of a low environmental impact process, REEs were recovered as oxalates, while the ligands as well as Bu4N+ ions, were regenerated and internally reused, thus contributing to the sustainability of a possible metal recovery process.
Collapse
Affiliation(s)
- Matteo Melegari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Martina Neri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Alex Falco
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Monica Maffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Fabio Fornari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Claudio Mucchino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Flavia Artizzu
- Department of Sustainable Development and Ecological Transition, University of Eastern Piedmont "A. Avogadro", Piazza S. Eusebio 5, 13100, Vercelli, Italy
| | - Angela Serpe
- Department of Civil and Environmental Engineering and Architecture (DICAAR), and Research Unit of INSTM, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
- Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR), Piazza d'Armi, 09123, Cagliari, Italy
| | - Luciano Marchiò
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| |
Collapse
|
4
|
León JJ, Oetiker N, Torres N, Bruna N, Oskolkov E, Lei P, Kuzmin AN, Chen K, Andreadis S, Pfeifer BA, Swihart MT, Prasad PN, Pérez-Donoso J. Microbial green synthesis of luminescent terbium sulfide nanoparticles using E. Coli: a rare earth element detoxification mechanism. Microb Cell Fact 2024; 23:248. [PMID: 39267051 PMCID: PMC11391766 DOI: 10.1186/s12934-024-02519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Rare-earth sulfide nanoparticles (NPs) could harness the optical and magnetic features of rare-earth ions for applications in nanotechnology. However, reports of their synthesis are scarce and typically require high temperatures and long synthesis times. RESULTS Here we present a biosynthesis of terbium sulfide (TbS) NPs using microorganisms, identifying conditions that allow Escherichia coli to extracellularly produce TbS NPs in aqueous media at 37 °C by controlling cellular sulfur metabolism to produce a high concentration of sulfide ions. Electron microscopy revealed ultrasmall spherical NPs with a mean diameter of 4.1 ± 1.3 nm. Electron diffraction indicated a high degree of crystallinity, while elemental mapping confirmed colocalization of terbium and sulfur. The NPs exhibit characteristic absorbance and luminescence of terbium, with downshifting quantum yield (QY) reaching 28.3% and an emission lifetime of ~ 2 ms. CONCLUSIONS This high QY and long emission lifetime is unusual in a neat rare-earth compound; it is typically associated with rare-earth ions doped into another crystalline lattice to avoid non-radiative cross relaxation. This suggests a reduced role of nonradiative processes in these terbium-based NPs. This is, to our knowledge, the first report revealing the advantage of biosynthesis over chemical synthesis for Rare Earth Element (REE) based NPs, opening routes to new REE-based nanocrystals.
Collapse
Affiliation(s)
- Juan José León
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Nía Oetiker
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Nicolás Torres
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Evgenii Oskolkov
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Andrey N Kuzmin
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Stelios Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Paras N Prasad
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - José Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
5
|
Ruggieri S, Mizzoni S, Nardon C, Cavalli E, Sissa C, Anselmi M, Cozzi PG, Gualandi A, Sanadar M, Melchior A, Zinna F, Willis OG, Di Bari L, Piccinelli F. Circularly Polarized Luminescence from New Heteroleptic Eu(III) and Tb(III) Complexes. Inorg Chem 2023. [PMID: 37262334 DOI: 10.1021/acs.inorgchem.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The complexes [Eu(bpcd)(tta)], [Eu(bpcd)(Coum)], and [Tb(bpcd)(Coum)] [tta = 2-thenoyltrifluoroacetyl-acetonate, Coum = 3-acetyl-4-hydroxy-coumarin, and bpcd = N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N'-diacetate] have been synthesized and characterized from photophysical and thermodynamic points of view. The optical and chiroptical properties of these complexes, such as the total luminescence, decay curves of the Ln(III) luminescence, electronic circular dichroism, and circularly polarized luminescence, have been investigated. Interestingly, the number of coordinated solvent (methanol) molecules is sensitive to the nature of the metal ion. This number, estimated by spectroscopy, is >1 for Eu(III)-based complexes and <1 for Tb(III)-based complexes. A possible explanation for this behavior is provided via the study of the minimum energy structure obtained by density functional theory (DFT) calculations on the model complexes of the diamagnetic Y(III) and La(III) counterparts [Y(bpcd)(tta)], [Y(bpcd)(Coum)], and [La(bpcd)(Coum)]. By time-dependent DFT calculations, estimation of donor-acceptor (D-A) distances and of the energy position of the S1 and T1 ligand excited states involved in the antenna effect was possible. These data are useful for rationalizing the different sensitization efficiencies (ηsens) of the antennae toward Eu(III) and Tb(III). The tta ligand is an optimal antenna for sensitizing Eu(III) luminescence, while the Coum ligand sensitizes better Tb(III) luminescence {ϕovl = 55%; ηsens ≥ 55% for the [Tb(bpcd)(Coum)] complex}. Finally, for the [Eu(bpcd)(tta)] complex, a sizable value of glum (0.26) and a good quantum yield (26%) were measured.
Collapse
Affiliation(s)
- Silvia Ruggieri
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Silvia Mizzoni
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Chiara Nardon
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Enrico Cavalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parco Area delle Scienze, 17/a, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parco Area delle Scienze, 17/a, 43124 Parma, Italy
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Pier Giorgio Cozzi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Gualandi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Martina Sanadar
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, Università di Udine, via Cotonificio 108, 33100 Udine, Italy
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, Università di Udine, via Cotonificio 108, 33100 Udine, Italy
| | - Francesco Zinna
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Oliver G Willis
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
6
|
Gutorova SV, Matveev PI, Trigub AL, Lemport PS, Kalmykov SN. Evidence for the Perchlorate Anion Coordination in the Structure of Uranyl Cation Complex with N,O-Donor Ligands in a Solution: RMC-EXAFS Study. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522070203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Falco A, Neri M, Melegari M, Baraldi L, Bonfant G, Tegoni M, Serpe A, Marchiò L. Semirigid Ligands Enhance Different Coordination Behavior of Nd and Dy Relevant to Their Separation and Recovery in a Non-aqueous Environment. Inorg Chem 2022; 61:16110-16121. [PMID: 36177719 PMCID: PMC9554911 DOI: 10.1021/acs.inorgchem.2c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Rare-earth elements are widely used in high-end technologies, the production of permanent magnets (PMs) being one of the sectors with the greatest current demand and likely greater future demand. The combination of Nd and Dy in NdFeB PMs enhances their magnetic properties but makes their recycling more challenging. Due to the similar chemical properties of Nd and Dy, their separation is expensive and currently limited to the small scale. It is therefore crucially important to devise efficient and selective methods that can recover and then reuse those critical metals. To address these issues, a series of heptadentate Trensal-based ligands were used for the complexation of Dy3+ and Nd3+ ions, with the goal of indicating the role of coordination and solubility equilibria in the selective precipitation of Ln3+-metal complexes from multimetal non-water solutions. Specifically, for a 1:1 Nd/Dy mixture, a selective and fast precipitation of the Dy complex occurred in acetone with the Trensalp-OMe ligand at room temperature, with a concomitant enrichment of Nd in the solution phase. In acetone, complexes of Nd and Dy with Trensalp-OMe were characterized by very similar formation constants of 7.0(2) and 7.3(2), respectively. From the structural analysis of an array of Dy and Nd complexes with TrensalR ligands, we showed that Dy invariably provided complexes with coordination number (cn) of 7, whereas the larger Nd experienced an expansion of the coordination sphere by recruiting additional solvent molecules and giving a cn of >7. The significant structural differences have been identified as the main premises upon which a suitable separation strategy can be devised with these kind of ligands, as well as other preorganized polydentate ligands that can exploit the small differences in Ln3+ coordination requirements.
Collapse
Affiliation(s)
- Alex Falco
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Martina Neri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Melegari
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Laura Baraldi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Giulia Bonfant
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Angela Serpe
- Department
of Civil and Environmental Engineering and Architecture (DICAAR) and
Research Unit of INSTM, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Environmental
Geology and Geoengineering Institute of the National Research Council
(IGAG-CNR), Piazza d’Armi, 09123 Cagliari, Italy
| | - Luciano Marchiò
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
8
|
Carneiro Neto AN, Moura RT, Carlos LD, Malta OL, Sanadar M, Melchior A, Kraka E, Ruggieri S, Bettinelli M, Piccinelli F. Dynamics of the Energy Transfer Process in Eu(III) Complexes Containing Polydentate Ligands Based on Pyridine, Quinoline, and Isoquinoline as Chromophoric Antennae. Inorg Chem 2022; 61:16333-16346. [PMID: 36201622 PMCID: PMC9580001 DOI: 10.1021/acs.inorgchem.2c02330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In this work, we investigated from a theoretical point
of view
the dynamics of the energy transfer process from the ligand to Eu(III)
ion for 12 isomeric species originating from six different complexes
differing by nature of the ligand and the total charge. The cationic
complexes present the general formula [Eu(L)(H2O)2]+ (where L = bpcd2– = N,N′-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate;
bQcd2– = N,N′-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate; and bisoQcd2– = N,N′-bis(2-isoquinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate), while the neutral complexes present
the Eu(L)(H2O)2 formula (where L = PyC3A3– = N-picolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate; QC3A3– = N-quinolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate;
and isoQC3A3– = N-isoquinolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate).
Time-dependent density functional theory (TD-DFT) calculations provided
the energy of the ligand excited donor states, distances between donor
and acceptor orbitals involved in the energy transfer mechanism (RL), spin-orbit coupling matrix elements, and
excited-state reorganization energies. The intramolecular energy transfer
(IET) rates for both singlet-triplet intersystem crossing and ligand-to-metal
(and vice versa) involving a multitude of ligand and Eu(III) levels
and the theoretical overall quantum yields (ϕovl)
were calculated (the latter for the first time without the introduction
of experimental parameters). This was achieved using a blend of DFT,
Judd–Ofelt theory, IET theory, and rate equation modeling.
Thanks to this study, for each isomeric species, the most efficient
IET process feeding the Eu(III) excited state, its related physical
mechanism (exchange interaction), and the reasons for a better or
worse overall energy transfer efficiency (ηsens)
in the different complexes were determined. The spectroscopically
measured ϕovl values are in good agreement with the
ones obtained theoretically in this work. Photophysical properties of 12 Eu(III)
complexes with pyridine,
quinoline, and isoquinoline ligands in aqueous solutions were elucidated
and predicted through a theoretical protocol using a blend of DFT,
Judd−Ofelt theory, intramolecular energy transfer theory, and
coupled rate equation modeling calculations. The theoretical procedure
is general and can be extended to any lanthanide-based complexes.
Collapse
Affiliation(s)
- Albano N Carneiro Neto
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193Aveiro, Portugal
| | - Renaldo T Moura
- Department of Chemistry and Physics, Federal University of Paraíba, 58397-000Areia, Brazil.,Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Luís D Carlos
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193Aveiro, Portugal
| | - Oscar L Malta
- Department of Fundamental Chemistry, Federal University of Pernambuco, 50740-560Recife, Brazil
| | - Martina Sanadar
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, University of Udine, 33100Udine, Italy
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, University of Udine, 33100Udine, Italy
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Silvia Ruggieri
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| | - Marco Bettinelli
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| |
Collapse
|
9
|
Lueckheide MJ, Ertem MZ, Michon MA, Chmielniak P, Robinson JR. Peroxide-Selective Reduction of O 2 at Redox-Inactive Rare-Earth(III) Triflates Generates an Ambiphilic Peroxide. J Am Chem Soc 2022; 144:17295-17306. [PMID: 36083877 DOI: 10.1021/jacs.2c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal peroxides are key species involved in a range of critical biological and synthetic processes. Rare-earth (group III and the lanthanides; Sc, Y, La-Lu) peroxides have been implicated as reactive intermediates in catalysis; however, reactivity studies of isolated, structurally characterized rare-earth peroxides have been limited. Herein, we report the peroxide-selective (93-99% O22-) reduction of dioxygen (O2) at redox-inactive rare-earth triflates in methanol using a mild metallocene reductant, decamethylferrocene (Fc*). The first molecular praseodymium peroxide ([PrIII2(O22-)(18C6)2(EG)2][OTf]4; 18C6 = 18-crown-6, EG = ethylene glycol, -OTf = -O3SCF3; 2-Pr) was isolated and characterized by single-crystal X-ray diffraction, Raman spectroscopy, and NMR spectroscopy. 2-Pr displays high thermal stability (120 °C, 50 mTorr), is protonated by mild organic acids [pKa1(MeOH) = 5.09 ± 0.23], and engages in electrophilic (e.g., oxygen atom transfer) and nucleophilic (e.g., phosphate-ester cleavage) reactivity. Our mechanistic studies reveal that the rate of oxygen reduction is dictated by metal-ion accessibility, rather than Lewis acidity, and suggest new opportunities for differentiated reactivity of redox-inactive metal ions by leveraging weak metal-ligand binding events preceding electron transfer.
Collapse
Affiliation(s)
- Matthew J Lueckheide
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael A Michon
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Pawel Chmielniak
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
10
|
Melchior A, Sanadar M, Cappai R, Tolazzi M. Entropy and Enthalpy Effects on Metal Complex Formation in Non-Aqueous Solvents: The Case of Silver(I) and Monoamines. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1253. [PMID: 36141139 PMCID: PMC9498076 DOI: 10.3390/e24091253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Access to the enthalpy and entropy of the formation of metal complexes in solution is essential for understanding the factors determining their thermodynamic stability and speciation. As a case study, in this report we systematically examine the complexation of silver(I) in acetonitrile (AN) with the following monoamines: n-propylamine (n-pr), n-butylamine (n-but), hexylamine (hexyl), diethylamine (di-et), dipropylamine (di-pr), dibutylamine (di-but), triethylamine (tri-et) and tripropylamine (tri-pr). The study shows that the complex stabilities are quite independent of the length of the substitution chain on the N atom and demonstrates that, in general, the overall enthalpy terms associated with the complex formation are strongly exothermic, whereas the entropy values oppose the complex formations. In addition, we examined the similarity of the formation constants of AgL complexes of the primary monoamines in AN, dimethylsulfoxide (DMSO) and water, which were unexpected on the basis of the difference between the donor properties of solvents.
Collapse
Affiliation(s)
- Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Chimica, via del Cotonificio 108, 33100 Udine, Italy
| | - Martina Sanadar
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Chimica, via del Cotonificio 108, 33100 Udine, Italy
| | - Rosita Cappai
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Chimica, via del Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|
11
|
Holzapfel M, Baldau T, Kerpa S, Guadalupi G, Qi B, Liu Y, Parak WJ, Maison W. Solution Structure and Relaxivity of Ln‐DOTXAZA Derivatives. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malte Holzapfel
- Fraunhofer Institute for Applied Polymer Research: Fraunhofer-Institut fur Angewandte Polymerforschung IAP Center for Applied Nanoscience GERMANY
| | - Torben Baldau
- Universität Hamburg: Universitat Hamburg Department of Chemistry GERMANY
| | - Svenja Kerpa
- Universität Hamburg: Universitat Hamburg Department of Chemistry GERMANY
| | | | - Bing Qi
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Yang Liu
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Wolfgang J. Parak
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Wolfgang Maison
- University of Hamburg Chemistry Bundesstr. 45 20146 Hamburg GERMANY
| |
Collapse
|
12
|
Effect of polar molecular organic solvents on non-aqueous solvent extraction of rare-earth elements. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Sun M, Xu L, Yang X, Wang S, Lei L, Xiao C. Complexation Behaviors of a Tridentate Phenanthroline Carboxamide Ligand with Trivalent f-Block Elements in Different Anion Systems: A Thermodynamic and Crystallographic Perspective. Inorg Chem 2022; 61:2824-2834. [PMID: 35104133 DOI: 10.1021/acs.inorgchem.1c03270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The counteranion has a strong influence on the complexation behavior of tridentate phenanthroline carboxamide ligands with actinides and lanthanides, but the thermodynamic and underlying interaction mechanism at the molecular level is still not clear. In this work, a tridentate ligand, N-ethyl-N-tolyl-2-amide-1,10-phenanthroline (Et-Tol-PTA), was synthesized, and the effects of different anions (Cl-, NO3-, and ClO4-) on the complexation behavior of Et-Tol-PTA with typical lanthanides were thoroughly studied by using 1H nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) spectrophotometry, and single-crystal X-ray diffraction. The NMR spectroscopic titration of Lu(III) showed that there were three species (1:1, 2:1, and 3:1 ligand-metal complexes) formed in Cl- solution systems while two species (2:1 and 1:1) were formed in NO3- and ClO4- solution systems. When Et-Tol-PTA was titrated with La(III), two species (2:1 and 1:1) were formed in NO3- systems and only one species (1:1) was formed in Cl- and ClO4- systems. In addition, the stability constant was determined via UV-vis spectroscopic titration, which showed that the complexation strength between Et-Tol-PTA and Eu(III) decreased in the following order: ClO4- > NO3- > Cl-. This indicated that Et-Tol-PTA had the strongest complexation ability with Eu(III) in the ClO4- system. The structures of Et-Tol-PTA complexed with EuCl3, Eu(NO3)3, and Eu(ClO4)3 were further elucidated by single-crystal X-ray diffraction and agreed well with the results of UV-vis titration experiments. The results of this work revealed that the mechanisms of complexation of lanthanides with the asymmetric ligand Et-Tol-PTA were strongly affected by different anionic environments in solution and in the solid state. These findings may lead to the improvement of the separation of trivalent actinides and lanthanides in nuclear waste.
Collapse
Affiliation(s)
- Mingze Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
14
|
Piccinelli F, Nardon C, Bettinelli M, Melchior A, Tolazzi M, Zinna F, Di Bari L. Lanthanide‐Based Complexes Containing a Chiral
trans
‐1,2‐Diaminocyclohexane (DACH) Backbone: Spectroscopic Properties and Potential Applications. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fabio Piccinelli
- Luminescent Materials Laboratory DB, University of Verona, and INSTM, UdR Verona Strada Le Grazie 15 37134 Verona Italy
| | - Chiara Nardon
- Luminescent Materials Laboratory DB, University of Verona, and INSTM, UdR Verona Strada Le Grazie 15 37134 Verona Italy
| | - Marco Bettinelli
- Luminescent Materials Laboratory DB, University of Verona, and INSTM, UdR Verona Strada Le Grazie 15 37134 Verona Italy
| | - Andrea Melchior
- Dipartimento Politecnico di ingegneria e architettura Laboratorio di Tecnologie Chimiche University of Udine Via Cotonificio 108 33100 Udine Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di ingegneria e architettura Laboratorio di Tecnologie Chimiche University of Udine Via Cotonificio 108 33100 Udine Italy
| | - Francesco Zinna
- Department of Chemistry and Industrial Chemistry Via Moruzzi 13 56124 Pisa Italy
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial Chemistry Via Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
15
|
Lyu Y, Morillas-Becerril L, Mancin F, Scrimin P. Hydrolytic cleavage of nerve agent simulants by gold nanozymes. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125644. [PMID: 33773245 DOI: 10.1016/j.jhazmat.2021.125644] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Although banned by the Chemical Weapons Convention, organophosphorus nerve agents are still available and have been used in regional wars, terroristic attacks or for other crtaiminal purposes. Their degradation is of primary importance for the severe toxicity of these compounds. Here we report that gold nanoparticles passivated with thiolated molecules bearing 1,3,7-triazacyclononane and 1,3,7,10-tetraazacyclododecane ligands efficiently hydrolyze nerve agents simulants p-nitrophenyl diphenyl phosphate and methylparaoxon as transition metal complexes at 25 °C and pH 8 with half-lives of the order of a few minutes. Mechanistically, these catalysts show an enzyme-like behavior, hence they constitute an example of nanozymes. The catalytic site appears to involve a single metal ion and its recognition of the substrates is driven mostly by hydrophobic interactions. The ease of preparation and the mild conditions at which they operate, make these nanozymes appealing catalysts for the detoxification after contamination with organophosphorus nerve agents, particularly those poorly soluble in water.
Collapse
Affiliation(s)
- Yanchao Lyu
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
16
|
Busato M, Lapi A, D’Angelo P, Melchior A. Coordination of the Co 2+ and Ni 2+ Ions in Tf 2N - Based Ionic Liquids: A Combined X-ray Absorption and Molecular Dynamics Study. J Phys Chem B 2021; 125:6639-6648. [PMID: 34109780 PMCID: PMC8279557 DOI: 10.1021/acs.jpcb.1c03395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/30/2021] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulations and X-ray absorption spectroscopy (XAS) have been combined to study the coordination of the Co2+ and Ni2+ ions in ionic liquids (ILs) based on the bis(trifluoromethylsulfonyl)imide ([Tf2N]-) anion and having different organic cations, namely, 1-butyl-3-methylimidazolium ([C4mim]+), 1,8-bis(3-methylimidazolium-1-yl)octane ([C8(mim)2]2+), N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium ([choline]+), and butyltrimethylammonium ([BTMA]+). Co and Ni K-edge XAS data have been collected on 0.1 mol L-1 Co(Tf2N)2 and Ni(Tf2N)2 solutions and on the metallic salts. MD simulations have been carried out to obtain structural information on the metal ion coordination. The analysis of the extended X-ray absorption fine structure (EXAFS) spectra of the solutions has been carried out based on the atomistic description provided by MD, and the studied ILs have been found to be able to dissolve both the Co(Tf2N)2 and Ni(Tf2N)2 salts giving rise to a different structural arrangement around the metal ions as compared to the solid state. The combined EXAFS and MD results showed that the Co2+ and Ni2+ ions are surrounded by a first solvation shell formed by six [Tf2N]- anions, each coordinating in a monodentate fashion by means of the oxygen atoms. The nature of the IL organic cation has little or no influence on the overall spatial arrangement of the [Tf2N]- anions, so that stable octahedral complexes of the type [M(Tf2N)6]4- (M = Co, Ni) have been observed in all the investigated ILs.
Collapse
Affiliation(s)
- Matteo Busato
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
- DPIA,
Laboratorio di Scienze e Tecnologie Chimiche, Università di Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Andrea Lapi
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Andrea Melchior
- DPIA,
Laboratorio di Scienze e Tecnologie Chimiche, Università di Udine, Via del Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|
17
|
De Rosa C, Melchior A, Sanadar M, Tolazzi M, Duerkop A, Piccinelli F. Isoquinoline-based Eu(iii) luminescent probes for citrate sensing in complex matrix. Dalton Trans 2021; 50:4700-4712. [PMID: 33729252 DOI: 10.1039/d1dt00511a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A neutral Eu(iii) complex containing the S,S enantiomer of isoQC3A3- ligand (isoQC3A3- = N-isoquinolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) was synthesized and characterized. The complex was spectroscopically investigated and the results compared with those obtained for the similar bis-anionic ligand bisoQcd2- (bisoQcd2- = N,N'-bis(2-isoquinolinmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate). Both Eu(iii)-complexes show similar binding constants upon titration with the main analytes contained in interstitial extracellular fluid (i.e. hydrogen carbonate, serum albumin and citrate). However, the analyte affinity is accompanied by different enhancements of the Eu(iii) intrinsic quantum yield (QY). Structures and hydration numbers of the complexes are determined by luminescence decay measurements and DFT calculations. The QYs as well as the binding constants of the individual adducts of the complexes with hydrogen carbonate, bovine serum albumin (BSA) and citrate are determined. The study of the Eu(iii) emission upon the systematic variation of one analyte in a complex mixture has been carried out to predict the performance of the luminescent sensor in conditions close to the real extracellular environment. Both Eu(iii) complexes can detect citrate at extracellular concentrations up to 500 μM, even at millimolar concentrations of the other interfering species. In the case of the Eu(bisoQcd)OTf complex, an increase of 23% of the Eu(iii) luminescence intensity at 615 nm upon addition of 0.3 mM of citrate was recorded. This feature makes the latter complex a viable probe for luminescence analysis of citrate in a complex matrix.
Collapse
Affiliation(s)
- Chiara De Rosa
- Luminescent Materials Laboratory, DB, Università di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Hay MA, Boskovic C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry 2021; 27:3608-3637. [PMID: 32965741 DOI: 10.1002/chem.202003761] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/05/2022]
Abstract
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
19
|
Yatsenko AV, Gloriozov IP, Zhokhova NI, Paseshnichenko KA, Aslanov LA, Ustynyuk YA. Structure of lanthanide nitrates in solution and in the solid state: DFT modelling of hydration effects. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Hahn P, Ullmann S, Kahnt A, Abel B, Kersting B. Synthesis, structures and luminescence properties of dinuclear Nd, Eu, Tb, and Yb complexes supported by a pendant picolyl-imine calix[4]arene ligand. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Sumyanova T, Borisova N, Ivanov A, Usacheva T, Kabirov D, Batov D. Complexation Reactions between N,N '-Diethyl-N,N '-Difluorophenyl-2,2'-Bipyridyl-6,6-Dicarboxamides with Europium in Ethanol: Spectrophotometric and Isothermal Titration Calorimetry Studies. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420130269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Yang X, Xu L, Hao Y, Meng R, Zhang X, Lei L, Xiao C. Effect of Counteranions on the Extraction and Complexation of Trivalent Lanthanides with Tetradentate Phenanthroline-Derived Phosphonate Ligands. Inorg Chem 2020; 59:17453-17463. [DOI: 10.1021/acs.inorgchem.0c02728] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxun Hao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruixue Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Molecular modeling and density functional theory calculation of the coordination behavior of 4,5-Dichloroimidazole with Cu(II) ion. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Ullmann S, Hahn P, Mini P, Tuck KL, Kahnt A, Abel B, Gutierrez Suburu ME, Strassert CA, Kersting B. Mixed-ligand lanthanide complexes supported by ditopic bis(imino-methyl)-phenol/calix[4]arene macrocycles: synthesis, structures, and luminescence properties of [Ln 2(L 2)(MeOH) 2] (Ln = La, Eu, Tb, Yb). Dalton Trans 2020; 49:11179-11191. [PMID: 32748924 DOI: 10.1039/d0dt02303e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The lanthanide binding ability of a macrocyclic ligand H6L2 comprising two bis(iminomethyl)phenol and two calix[4]arene units has been studied. H6L2 is a ditopic ligand which provides dinuclear neutral complexes of composition [Ln2(L2)(MeOH)2] (Ln = La (1), Eu (2), Tb (3), and Yb (4)) in very good yield. X-ray crystal structure analyses for 2 and 3 show that (L2)6- accommodates two seven coordinated lanthanide ions in a distorted monocapped trigonal prismatic/octahedral coordination environment. UV-vis spectroscopic titrations performed with La3+, Eu3+, Tb3+ and Yb3+ ions in mixed MeOH/CH2Cl2 solution (I = 0.01 M NBu4PF6) reveal that a 2 : 1 (metal : ligand) stoichiometry is present in solution, with log K11 and K21 values ranging from 5.25 to 6.64. The ratio α = K11/K21 of the stepwise formation constants for the mononuclear (L2 + M = ML2, log K11) and the dinuclear complexes (ML2 + M = M2L2, log K21) was found to be invariably smaller than unity indicating that the binding of the first Ln3+ ion augments the binding of the second Ln3+ ion. The present complexes are less luminescent than other seven-coordinated Eu and Tb complexes, which can be traced to vibrational relaxation of excited EuIII and TbIII states by the coligated MeOH and H2O molecules and/or low-lying ligand-to-metal charge-transfer (LMCT) states.
Collapse
Affiliation(s)
- Steve Ullmann
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zubenko AD, Fedorova OA. Aromatic and heteroaromatic azacrown compounds: advantages and disadvantages of rigid macrocyclic ligands. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current approaches to the synthesis of aromatic and heteroaromatic azamacrocycles and their derivatives are summarized and systematized. The relationship between the structure of azacrown compounds and their complexation behaviour towards metal cations is analyzed. The diversity of practical applications of azamacrocyclic derivatives in medicine, biology and analytical and organic chemistry, as well as for the design of molecular devices is demonstrated.
The bibliography includes 307 references.
Collapse
|
26
|
Luigi Zanonato P, Di Bernardo P, Melchior A, Busato M, Tolazzi M. Lanthanides(III) and Silver(I) complex formation with triamines in DMSO: The effect of ligand cyclization. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Arrico L, De Rosa C, Di Bari L, Melchior A, Piccinelli F. Effect of the Counterion on Circularly Polarized Luminescence of Europium(III) and Samarium(III) Complexes. Inorg Chem 2020; 59:5050-5062. [PMID: 32186182 PMCID: PMC7997384 DOI: 10.1021/acs.inorgchem.0c00280] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Each enantiopure
europium(III) and samarium(III) nitrate and triflate
complex of the ligand L, with L = N,N′-bis(2-pyridylmethylidene)-1,2-(R,R + S,S)-cyclohexanediamine ([LnL(tta)2]·NO3 and [LnL(tta)2(H2O)]·CF3SO3, where tta = 2-thenoyltrifluoroacetylacetonate)
has been synthesized and characterized from a spectroscopic point
of view, using a chiroptical technique such as electronic circular
dichroism (ECD) and circularly polarized luminescence (CPL). In all
cases, both ligands are capable of sensitizing the luminescence of
both metal ions upon absorption of light around 280 and 350 nm. Despite
small differences in the total luminescence (TL) and ECD spectra,
the CPL activity of the complexes is strongly influenced by a concurrent
effect of the solvent and counterion. This particularly applies to
europium(III) complexes where the CPL spectra in acetonitrile can
be described as a weighed linear combination of the CPL spectra in
dichloromethane and methanol, which show nearly opposite signatures
when their ligand stereochemistries are the same. This phenomenon
could be related to the presence of equilibria interconverting solvated,
anion-coordinated complexes and isomers differing by the relative
orientation of the tta ligands. The difference between some bond lengths
(M–N bonds, in particular) in the different species could be
at the basis of such an unusual CPL activity. Triflate ([EuL(tta)2(H2O)]·CF3SO3) and nitrate ([EuL(tta)2]·NO3) complexes, with L = N,N′-bis(2-pyridylmethylidene)-1,2-(R,R or S,S)-cyclohexanediamine, where tta = 2-thenoyltrifluoroacetylacetonate,
show nearly opposite circularly polarized luminescence (CPL) signatures
when dissolved in dichloromethane (DCM) or methanol (MeOH), even though
their ligand stereochemistries remain unchanged. The presence (in
DCM) and absence (in MeOH) of the counterion in the inner coordination
sphere determine a strong change of the CPL activity of the relative
europium(III) complex.
Collapse
Affiliation(s)
- Lorenzo Arrico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Chiara De Rosa
- Luminescent Materials Laboratory, DB, Università di Verona, and INSTM, University of Verona Research Unit, Strada Le Grazie 15, 37134 Verona, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Andrea Melchior
- Laboratorio di Tecnologie Chimiche, Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, via Cotonificio 108, 33100 Udine, Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory, DB, Università di Verona, and INSTM, University of Verona Research Unit, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
28
|
Kegl T, Košak A, Lobnik A, Novak Z, Kralj AK, Ban I. Adsorption of rare earth metals from wastewater by nanomaterials: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121632. [PMID: 31753662 DOI: 10.1016/j.jhazmat.2019.121632] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 05/27/2023]
Abstract
Rare earth elements are widely used in chemical engineering, the nuclear industry, metallurgy, medicine, electronics, and computer technology because of their unique properties. To fulfil ever increasing demands for these elements, recycling of rare-earth-element-containing products as well as their recovery from wastewater is quite important. In order to recover rare earth elements from wastewater, their adsorption from low-concentration aqueous solutions, by using nanomaterials, is investigated due to technological simplicity and high efficiency. This paper is a review of the state-of-the-art adsorption technologies of rare earth elements from diluted aqueous solutions by using various nanomaterials. Furthermore, desorption and reusability of rare earth metals and nanomaterials are discussed. On the basis of this review it can be concluded that laboratory testing indicates promising adsorption capacities, which depend significantly on nanomaterial type and adsorption conditions. The adsorption process, which mostly follows the Langmuir, Freundlich, Sips, and Temkin isotherms, is typically endothermic and spontaneous. Furthermore, pseudo-second order, pseudo-first order, and intra-particle diffusion models are the best models to describe the kinetics of adsorption. The dominant adsorption mechanisms are surface complexation and ion exchange. More investigation, however, will be required in order to synthesize appropriate, environmentally friendly, and efficient nanomaterials for adsorption of rare earth elements from real wastewater.
Collapse
Affiliation(s)
- Tina Kegl
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia.
| | - Aljoša Košak
- Institute for Environmental Protection and Sensors, Beloruska 7, 2000 Maribor, Slovenia; University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Aleksandra Lobnik
- Institute for Environmental Protection and Sensors, Beloruska 7, 2000 Maribor, Slovenia; University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Zoran Novak
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Anita Kovač Kralj
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| | - Irena Ban
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|
29
|
Migliorati V, Lapi A, D'Angelo P. Unraveling the solvation geometries of the lanthanum(iii) bistriflimide salt in ionic liquid/acetonitrile mixtures. Phys Chem Chem Phys 2020; 22:20434-20443. [PMID: 32915187 DOI: 10.1039/d0cp03977b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
La(Tf2N)3 in C8(mim)2(Tf2N)2/acetonitrile mixtures forms 10-fold coordination complexes composed of both acetonitrile molecules and Tf2N− anions.
Collapse
Affiliation(s)
| | - Andrea Lapi
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
30
|
Chan EJ, Harrowfield JM, Skelton BW, Sobolev AN, White AH. Structure and Stereochemistry of Adducts of Tris(dipivaloylmethanato)europium(III), Eu(dpm)3, with Some Dipolar Aprotic Unidentate O-Donors. Aust J Chem 2020. [DOI: 10.1071/ch19135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Single crystal X-ray structural characterisations are reported for adducts of the form [(L-O)Eu(O,O′-dpm)3] obtained by the crystallisation of tris(dipivaloylmethanato)europium(iii) (dpm=[HC(C(tBu).CO)2]−) from an array of dipolar aprotic oxygen-donor solvents L (L=N-methylpyrrolidinone (nmp), trimethylphosphate, (MeO)3PO, (tmp), hexamethylphosphoramide (hmpa), dimethylacetamide (dma), dimethyl sulfoxide (dmso), and the bidentate octamethylpyrophosphoramide (ompa). In all adducts, the resulting arrays contain seven-coordinate metal atoms, which adopt two different isomeric forms of the mono-capped trigonal prismatic stereochemistry, the L=dma and dmso adducts corresponding to one type, nmp and tmp the other. The adduct formed with ompa behaves as a pair of discrete metal environments bridged by the O-ompa-O′ ligand, thus; [(dpm-O,O′)3Eu(O-ompa-O′)Eu(O,O′-dpm)3], and is found in two forms, one in which both Eu environments is of the tmp type, the other of the dmso/dma type. In the hmpa adduct, the asymmetric unit of the structure is a disordered composite of both types. In none of the adducts is there any further solvation beyond coordination of a single L.
Collapse
|
31
|
Kegl T, Ban I, Lobnik A, Košak A. Synthesis and characterization of novel γ-Fe 2O 3-NH 4OH@SiO 2(APTMS) nanoparticles for dysprosium adsorption. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120764. [PMID: 31203116 DOI: 10.1016/j.jhazmat.2019.120764] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
This paper deals with synthesis and characterization of novel γ-Fe2O3-NH4OH@SiO2(APTMS) nanoparticles formed from magnetic γ-Fe2O3 core, stabilized electrostatically in basic media NH4OH, doped with SiO2 shell and functionalized with 3-aminopropyltrimethoxysilane. The gradually synthesized nanoparticles are characterized in order to analyze their structural, morphology, thermogravimetry, surface area and charge, and magnetic properties. The novel synthesized γ-Fe2O3-NH4OH@SiO2(APTMS) nanoparticles are suitable to adsorb dysprosium ions (Dy3+), as one of the most critical rare earth elements, from aqueous solution. The Dy3+ adsorption from aqueous solution follows a pseudo-second order kinetic model and the adsorption equilibrium data fits well to the Temkin isotherm. Thermodynamic studies imply that the adsorption process is endothermic and spontaneous in nature. The maximum adsorption efficiency for Dy3+ from aqueous solution with 2·10-6M concentration of Dy3+ is over 90% at pH 7.
Collapse
Affiliation(s)
- Tina Kegl
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory of Inorganic Chemistry, Smetanova 17, SI-2000, Maribor, Slovenia.
| | - Irena Ban
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory of Inorganic Chemistry, Smetanova 17, SI-2000, Maribor, Slovenia
| | - Aleksandra Lobnik
- Institute for Environmental Protection and Sensors, Beloruska 7, SI-2000, Maribor, Slovenia; University of Maribor, Faculty of Mechanical Engineering, Center of Sensor Technology, Smetanova 17, SI-2000, Maribor, Slovenia
| | - Aljoša Košak
- Institute for Environmental Protection and Sensors, Beloruska 7, SI-2000, Maribor, Slovenia; University of Maribor, Faculty of Mechanical Engineering, Center of Sensor Technology, Smetanova 17, SI-2000, Maribor, Slovenia
| |
Collapse
|
32
|
Thermodynamics of complex formation in dimethylsulfoxide: The case of Co(II) complexes with nitrogen donor ligands and their O2 adducts. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Baudet K, Kale V, Mirzakhani M, Babel L, Naseri S, Besnard C, Nozary H, Piguet C. Neutral Heteroleptic Lanthanide Complexes for Unravelling Host–Guest Assemblies in Organic Solvents: The Law of Mass Action Revisited. Inorg Chem 2019; 59:62-75. [DOI: 10.1021/acs.inorgchem.9b00755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karine Baudet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Vishal Kale
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Mohsen Mirzakhani
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Lucille Babel
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Soroush Naseri
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
34
|
Yang Y, Zhang Z, Yang L, Liu J, Xu C, Luo S, Rao L. Complexation of U(VI) with BiPDA, DmBiPDA, and PhenDA: Comparison on Structures and Binding Strengths in Aqueous and DMSO/20%(v)H2O Solutions. Inorg Chem 2019; 58:6064-6074. [DOI: 10.1021/acs.inorgchem.9b00319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanqiu Yang
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhicheng Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Yang
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - Jun Liu
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - Chao Xu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Shunzhong Luo
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - Linfeng Rao
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Xu L, Pu N, Li Y, Wei P, Sun T, Xiao C, Chen J, Xu C. Selective Separation and Complexation of Trivalent Actinide and Lanthanide by a Tetradentate Soft–Hard Donor Ligand: Solvent Extraction, Spectroscopy, and DFT Calculations. Inorg Chem 2019; 58:4420-4430. [DOI: 10.1021/acs.inorgchem.8b03592] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Xu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Ning Pu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Youzhen Li
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Pingping Wei
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Taoxiang Sun
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chao Xu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Piccinelli F, De Rosa C, Melchior A, Faura G, Tolazzi M, Bettinelli M. Eu(iii) and Tb(iii) complexes of 6-fold coordinating ligands showing high affinity for the hydrogen carbonate ion: a spectroscopic and thermodynamic study. Dalton Trans 2019; 48:1202-1216. [PMID: 30460363 DOI: 10.1039/c8dt03621g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the present contribution, four classes of Ln(iii) complexes (Ln = Eu and Tb) have been synthesized and characterized in aqueous solution. They differ by charge, Ln(bpcd)+ [bpcd2- = N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate] and Ln(bQcd)+ (bQcd2- = N,N'-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate) being positively charged and Ln(PyC3A) (PyC3A3- = N-picolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) and Ln(QC3A) (QC3A3- = N-quinolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) being neutral. Combined DFT, spectrophotometric and potentiometric studies reveal the presence, under physiological conditions (pH 7.4), of a couple of equally and highly stable isomers differing by the stereochemistry of the ligands (trans-N,N and trans-O,O for bpcd2- and bQcd2-; trans-O,O and trans-N,O for PyC3A3- and QC3A3-). Their high log β values (9.97 < log β < 15.68), the presence of an efficient antenna effect and the strong increase of the Ln(iii) luminescence intensity as a function of the hydrogen carbonate concentration in physiological solution, render these complexes as very promising optical probes for a selective detection of HCO3-in cellulo or in extracellular fluid. This particularly applies to the cationic Eu(bpcd)+, Tb(bpcd)+ and Eu(bQcd)+ complexes, which are capable of guesting up to two hydrogen carbonate anions in the inner coordination sphere of the metal ion, so that they show an unprecedented affinity towards HCO3- (log K for the formation of the adduct in the 4.6-5.9 range).
Collapse
Affiliation(s)
- Fabio Piccinelli
- Laboratorio Materiali Luminescenti, DB, Università di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Migliorati V, Filipponi A, Sessa F, Lapi A, Serva A, D'Angelo P. Solvation structure of lanthanide(iii) bistriflimide salts in acetonitrile solution: a molecular dynamics simulation and EXAFS investigation. Phys Chem Chem Phys 2019; 21:13058-13069. [DOI: 10.1039/c9cp01417a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lanthanide3+ ions in acetonitrile solutions of bistriflimide salts form 10-fold coordination complexes composed of both solvent molecules and counterions
Collapse
Affiliation(s)
| | - Adriano Filipponi
- Dipartimento di Scienze Fisiche e Chimiche
- Università degli Studi dell’Aquila, Via Vetoio
- 67100 L’Aquila
- Italy
| | - Francesco Sessa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Andrea Lapi
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
- Istituto CNR di Metodologie Chimiche-IMC
| | - Alessandra Serva
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
38
|
Busato M, D’Angelo P, Melchior A. Solvation of Zn2+ ion in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids: a molecular dynamics and X-ray absorption study. Phys Chem Chem Phys 2019; 21:6958-6969. [PMID: 30869085 DOI: 10.1039/c8cp07773h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations and X-ray absorption spectroscopy were employed to study Zn2+ ions in [Cnmim][Tf2N] (n = 2, 4).
Collapse
Affiliation(s)
- Matteo Busato
- DPIA
- Laboratorio di Scienze e Tecnologie Chimiche
- Università di Udine
- 33100 Udine
- Italy
| | - Paola D’Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Andrea Melchior
- DPIA
- Laboratorio di Scienze e Tecnologie Chimiche
- Università di Udine
- 33100 Udine
- Italy
| |
Collapse
|
39
|
Ullmann S, Hahn P, Blömer L, Mehnert A, Laube C, Abel B, Kersting B. Dinuclear lanthanide complexes supported by a hybrid salicylaldiminato/calix[4]arene-ligand: synthesis, structure, and magnetic and luminescence properties of (HNEt3)[Ln2(HL)(L)] (Ln = SmIII, EuIII, GdIII, TbIII). Dalton Trans 2019; 48:3893-3905. [PMID: 30815651 DOI: 10.1039/c9dt00292h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Salicylaldimine/calix[4]arenes support dinuclear, triply bridged, luminescent, lanthanide complexes.
Collapse
Affiliation(s)
- Steve Ullmann
- Institut für Anorganische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Peter Hahn
- Institut für Anorganische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Laura Blömer
- Institut für Anorganische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Anne Mehnert
- Institut für Anorganische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Christian Laube
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- D-04103 Leipzig
- Germany
| | - Bernd Abel
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
| | - Berthold Kersting
- Institut für Anorganische Chemie
- Universität Leipzig
- 04103 Leipzig
- Germany
| |
Collapse
|
40
|
Leonzio M, Melchior A, Faura G, Tolazzi M, Bettinelli M, Zinna F, Arrico L, Di Bari L, Piccinelli F. A chiral lactate reporter based on total and circularly polarized Tb(iii) luminescence. NEW J CHEM 2018. [DOI: 10.1039/c7nj04640e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lactate anion signaling by a chiral Tb(iii) complex based on total and circularly polarized luminescence.
Collapse
Affiliation(s)
- Marco Leonzio
- Luminescent Materials Laboratory
- DB
- Università di Verona, and INSTM
- UdR Verona
- 37134 Verona
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura
- Laboratorio di Tecnologie Chimiche
- Università di Udine
- 33100 Udine
- Italy
| | - Georgina Faura
- Dipartimento Politecnico di Ingegneria e Architettura
- Laboratorio di Tecnologie Chimiche
- Università di Udine
- 33100 Udine
- Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di Ingegneria e Architettura
- Laboratorio di Tecnologie Chimiche
- Università di Udine
- 33100 Udine
- Italy
| | - Marco Bettinelli
- Luminescent Materials Laboratory
- DB
- Università di Verona, and INSTM
- UdR Verona
- 37134 Verona
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale
- 56124 Pisa
- Italy
| | - Lorenzo Arrico
- Dipartimento di Chimica e Chimica Industriale
- 56124 Pisa
- Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale
- 56124 Pisa
- Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory
- DB
- Università di Verona, and INSTM
- UdR Verona
- 37134 Verona
| |
Collapse
|
41
|
Gregor LC, Grajeda J, White PS, Vetter AJ, Miller AJM. Salt-promoted catalytic methanol carbonylation using iridium pincer-crown ether complexes. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00328a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Iridium complexes of pincer ligands containing aza-crown ether macrocycles are precatalysts for methanol carbonylation. Turnover numbers for all acetyl-containing products could be tuned from 265 to 1950 using metal and tetrabutylammonium salts.
Collapse
Affiliation(s)
- Lauren C. Gregor
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Javier Grajeda
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Peter S. White
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | | | | |
Collapse
|
42
|
Rossi P, Macedi E, Paoli P, Giorgi L, Formica M, Fusi V. Crystal structure of bis-{μ 2-2,2'-[(4,10-dimethyl-1,4,7,10-tetra-aza-cyclo-dodecane-1,7-di-yl)bis(meth-yl-ene)]bis-(4-oxo-4 H-pyran-3-olato)}dicobalt-calcium bis-(perchlorate) 1.36-hydrate. Acta Crystallogr E Crystallogr Commun 2017; 73:1959-1965. [PMID: 29250424 PMCID: PMC5730261 DOI: 10.1107/s2056989017016693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 11/28/2022]
Abstract
The title compound, [CaCo2(C22H30N4O6)2](ClO4)2·1.36H2O or {Ca[Co(H-2L1)]2}·2ClO4·1.36H2O {where L1 is 4,10-bis-[(3-hy-droxy-4-pyron-2-yl)meth-yl]-1,7-dimethyl-1,4,7,10-tetra-aza-cyclo-dodecane}, is a trinuclear complex whose asymmetric unit comprises a quarter of the {Ca[Co(H-2L1)]2}2+ trinuclear complex, half of a perchlorate ion and 0.34-water mol-ecules. In the neutral [Co(H-2L1)] moiety, the cobalt ion is hexa-coordinated in a trigonal-prismatic fashion by the surrounding N4O2 donor set. A Ca2+ cation holds together two neutral [Co(H-2L1)] moieties and is octa-coordinated in a distorted trigonal-dodeca-hedral fashion by the surrounding O atoms belonging to the deprotonated oxide and carbonyl groups of two [Co(H-2L1)] units. The coordination of the CoII cation preorganizes L1 and an electron-rich area forms, which is able to host hard metal ions. The comparison between the present structure and the previously published ones suggests a high versatility of this ligand; indeed, hard metal ions with different nature and dimensions lead to complexes having different stoichiometry (mono- and dinuclear monomers and trinuclear dimers) or even a polymeric structure. The heterotrinuclear CoII-CaII-CoII complexes are connected in three dimensions via weak C-H⋯O hydrogen bonds, which are also responsible for the inter-actions with the perchlorate anions and the lattice water mol-ecules. The perchlorate anion is disordered about a twofold rotation axis and was refined giving the two positions a fixed occupancy factor of 0.5. The crystal studied was refined as a two-component inversion twin [BASF parameter = 0.14 (4)].
Collapse
Affiliation(s)
- Patrizia Rossi
- Department of Industrial Engineering, University of Firenze, via Santa Marta 3, I-50139 Firenze, Italy
| | - Eleonora Macedi
- Department of Industrial Engineering, University of Firenze, via Santa Marta 3, I-50139 Firenze, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Firenze, via Santa Marta 3, I-50139 Firenze, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences, Lab of Supramolecular Chemistry, University of Urbino, via della Stazione, 4, I-61029 Urbino, Italy
| | - Mauro Formica
- Department of Pure and Applied Sciences, Lab of Supramolecular Chemistry, University of Urbino, via della Stazione, 4, I-61029 Urbino, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, Lab of Supramolecular Chemistry, University of Urbino, via della Stazione, 4, I-61029 Urbino, Italy
| |
Collapse
|
43
|
Lü L, Liu J, Yang Y, Li K, Hu S, Luo S. Complexation of a macrocyclic ligand, 2,6-di (N-methyl)formamide-calix[4]pyridine, with Eu(III) and extraction of Eu(III) and Am(III). RADIOCHIM ACTA 2017. [DOI: 10.1515/ract-2017-2852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Complexation of a new macrocyclic compound, 2,6-dimethylformamide-calix[4]pyridine (L1
), with Eu(III) was studied by spectrophotometry. Stability constants of the Eu(III)/L1
complex in different solvents were determined. The results reveal that L1
forms moderately strong complexes with Eu(III) and other lanthanides in aprotic solvents and shows little binding ability with transition metals. Moreover, the binding strength of L1
weakens significantly in protic solvents. Using 2-bromodecanoic acid as the synergistic reagent, L1
extracts Am(III) and Eu(III) successfully with a separation factor of SFAm/Eu=1.3, and the distribution ratios of Am(III) and Eu(III) increases as the aqueous acidity is decreased. DFT computational studies were conducted to corroborate the solvent extraction data, and compare the coordination properties of Am(III)/Eu(III) complexes with L1
and a related, 2,6-diformamide-calix[4]pyridine (L2
). The computational results suggest that L2
could form stable complexes [ML]3+ and ML(NO3)3 [where M represent Am(III) or Eu(III)] in aqueous phase, in sharp contrast to the case of L1
where such complexes in aqueous phase are not stable.
Collapse
Affiliation(s)
- Lina Lü
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics , Mianyang 621900 , China
| | - Jun Liu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics , Mianyang 621900 , China
| | - Yanqiu Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics , Mianyang 621900 , China
| | - Kun Li
- College of Chemistry, Sichuan University , Chengdu 610064 , China
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics , Mianyang 621900 , China
| | - Shunzhong Luo
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics , Mianyang 621900 , China
| |
Collapse
|
44
|
|
45
|
Structure, stability and spectroscopic features of the neodymium(III) complex of the octadentate polypyridine ligand 6,6′-bis[bis(2-pyridylmethyl)aminomethyl]-2.2′-bipyridine. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Baudet K, Guerra S, Piguet C. Chemical Potential of the Solvent: A Crucial Player for Rationalizing Host-Guest Affinities. Chemistry 2017; 23:16787-16798. [DOI: 10.1002/chem.201703184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Karine Baudet
- Department of Inorganic, Analytical and Applied Chemistry; University of Geneva; 30 quai E. Ansermet 1211 Geneva 4 Switzerland
| | - Sebastiano Guerra
- Department of Inorganic, Analytical and Applied Chemistry; University of Geneva; 30 quai E. Ansermet 1211 Geneva 4 Switzerland
| | - Claude Piguet
- Department of Inorganic, Analytical and Applied Chemistry; University of Geneva; 30 quai E. Ansermet 1211 Geneva 4 Switzerland
| |
Collapse
|
47
|
Gorbunov AO, Lindqvist-Reis P, Mereshchenko AS, Skripkin MY. Solvation and complexation of europium(III) ions in triflate and chloride aqueous-organic solutions by TRLF spectroscopy. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Leonzio M, Melchior A, Faura G, Tolazzi M, Zinna F, Di Bari L, Piccinelli F. Strongly Circularly Polarized Emission from Water-Soluble Eu(III)- and Tb(III)-Based Complexes: A Structural and Spectroscopic Study. Inorg Chem 2017; 56:4413-4422. [PMID: 28388073 DOI: 10.1021/acs.inorgchem.7b00430] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Water-soluble Eu(III) and Tb(III) complexes with N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N'-diacetic acid (H2bpcd) have been synthesized and characterized in their racemic and enantiopure forms. The ligand has been designed to bind Ln(III) ions, providing a dissymmetric environment able to solicit strong chiroptical features while at the same time leaving a few coordination sites available for engaging further ancillary ligands. Potentiometric studies show that Ln(III) complexes have a relatively good stability and that at pH 7 the [Ln(bpcd)]+ species is largely dominant. DFT calculations carried out on the (S,S)-[Y(bpcd)(H2O)5]+ complexes (the closed-shell equivalents of [Eu(bpcd)(H2O)5]+ and [Tb(bpcd)(H2O)5]+) indicate that the two trans-O,O and trans-Npy,Npy configurations are equally stable in solution and present two coordinated water molecules. This is in agreement with the hydration number ∼2.6 determined by luminescence lifetime measurements on Tb(III) and Eu(III) complexes. A detailed optical and chiroptical spectroscopic characterization has been carried out and reveals that the complexes display an efficient luminescence in the visible spectral range accompanied by a strong CPL activity. A value for glum (around 0.1 on the top of the 546 nm band) for the Tb-based complex has been found. This is one of the highest glum values measured up to now for chiral Tb complexes. These results suggest that in principle Tb(bpcd)Cl is suitable to be employed as a CPL bioprobe for relevant analytes in aqueous media.
Collapse
Affiliation(s)
- Marco Leonzio
- Luminescent Materials Laboratory, DB, Università di Verona, and INSTM, UdR Verona , Strada Le Grazie 15, 37134 Verona, Italy
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, Università di Udine , via Cotonificio 108, 33100 Udine, Italy
| | - Georgina Faura
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, Università di Udine , via Cotonificio 108, 33100 Udine, Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, Università di Udine , via Cotonificio 108, 33100 Udine, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , via Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , via Moruzzi 13, 56124 Pisa, Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory, DB, Università di Verona, and INSTM, UdR Verona , Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
49
|
Wu Q, Sun T, Meng X, Chen J, Xu C. Thermodynamic Insight into the Solvation and Complexation Behavior of U(VI) in Ionic Liquid: Binding of CMPO with U(VI) Studied by Optical Spectroscopy and Calorimetry. Inorg Chem 2017; 56:3014-3021. [PMID: 28212016 DOI: 10.1021/acs.inorgchem.6b03132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complexation of U(VI) with octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO, denoted as L) in ionic liquid (IL) C4mimNTf2 was investigated by UV-vis absorption spectrophotometry and isothermal titration calorimetry. Spectro-photometric titration suggests that three successive complexes, UO2Lj2+ (j = 1-3), formed both in "dry" (water content < 250 ppm) and "wet" (water content ≈ 12 500 ppm) ionic liquid. However, the thermodynamic parameters are distinctly different in the two ILs. In dry IL, the complexation strength between CMPO and U(VI) is much stronger, with stability constants of the respective complexes more than 1 order of magnitude higher than that in wet IL. Energetically, the complexation of U(VI) with CMPO in dry IL is mainly driven by negative enthalpies. In contrast, the complexation in wet IL is overwhelmingly driven by highly positive entropies as a result of the release of a large amount of water molecules from the solvation sphere of U(VI). Moreover, comparisons between the fitted absorption spectra of complexes in wet IL and that of extractive samples from solvent extraction have identified the speciation involved in the extraction of U(VI) by CMPO in ionic liquid. The results from this study not only offer a thermodynamic insight into the complexation behavior of U(VI) with CMPO in IL but also provide valuable information for understanding the extraction behavior in the corresponding solvent extraction system.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum , Beijing 102249, China
| | | | - Xianghai Meng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum , Beijing 102249, China
| | | | | |
Collapse
|
50
|
Xu C, Sun T, Rao L. Interactions of Bis(2,4,4-trimethylpentyl)dithiophosphinate with Trivalent Lanthanides in a Homogeneous Medium: Thermodynamics and Coordination Modes. Inorg Chem 2017; 56:2556-2565. [DOI: 10.1021/acs.inorgchem.6b02744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Linfeng Rao
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|