1
|
Helweg LP, Windmöller BA, Burghardt L, Storm J, Förster C, Wethkamp N, Wilkens L, Kaltschmidt B, Banz-Jansen C, Kaltschmidt C. The Diminishment of Novel Endometrial Carcinoma-Derived Stem-like Cells by Targeting Mitochondrial Bioenergetics and MYC. Int J Mol Sci 2022; 23:ijms23052426. [PMID: 35269569 PMCID: PMC8910063 DOI: 10.3390/ijms23052426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of tumor cells harboring properties that include self-renewal, multi-lineage differentiation, tumor reconstitution, drug resistance and invasiveness, making them key players in tumor relapse. In the present paper, we develop new CSC models and analyze the molecular pathways involved in survival to identify targets for the establishment of novel therapies. Endometrial carcinoma-derived stem-like cells (ECSCs) were isolated from carcinogenic gynecological tissue and analyzed regarding their expression of prominent CSC markers. Further, they were treated with the MYC-signaling inhibitor KJ-Pyr-9, chemotherapeutic agent carboplatin and type II diabetes medication metformin. ECSC populations express common CSC markers, such as Prominin-1 and CD44 antigen as well as epithelial-to-mesenchymal transition markers, Twist, Snail and Slug, and exhibit the ability to form free-floating spheres. The inhibition of MYC signaling and treatment with carboplatin as well as metformin significantly reduced the cell survival of ECSC-like cells. Further, treatment with metformin significantly decreased the mitochondrial membrane potential of ECSC-like cells, while the extracellular lactate concentration was increased. The established ECSC-like populations represent promising in vitro models to further study the contribution of ECSCs to endometrial carcinogenesis. Targeting MYC signaling as well as mitochondrial bioenergetics has shown promising results in the diminishment of ECSCs, although molecular signaling pathways need further investigations.
Collapse
Affiliation(s)
- Laureen P. Helweg
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Correspondence: ; Tel.: +49-0521-106-5619
| | - Beatrice A. Windmöller
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
| | - Leonie Burghardt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
| | - Jonathan Storm
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
| | - Christine Förster
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Institute of Pathology, KRH Hospital Nordstadt, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany;
| | - Nils Wethkamp
- Institute of Pathology, KRH Hospital Nordstadt, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany;
| | - Ludwig Wilkens
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Institute of Pathology, KRH Hospital Nordstadt, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany;
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Constanze Banz-Jansen
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Department of Gynecology and Obstetrics, and Perinatal Center, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
| |
Collapse
|
2
|
Giannone G, Attademo L, Scotto G, Genta S, Ghisoni E, Tuninetti V, Aglietta M, Pignata S, Valabrega G. Endometrial Cancer Stem Cells: Role, Characterization and Therapeutic Implications. Cancers (Basel) 2019; 11:E1820. [PMID: 31752447 PMCID: PMC6896186 DOI: 10.3390/cancers11111820] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Endometrial cancer (EC) is the most frequent gynecological cancer. In patients with relapsed and advanced disease, prognosis is still dismal and development of resistance is common. In this context, endometrial Cancer Stem Cells (eCSC), stem-like cells capable to self-renewal and differentiation in mature cancer cells, represent a potential field of expansion for drug development. The aim of this review is to characterize the role of eCSC in EC, their features and how they could be targeted. CSC are involved in progression, invasiveness and metastasis (though epithelial to mesenchimal transition, EMT), as well as chemoresistance in EC. Nevertheless, isolation of eCSC is still controversial. Indeed, CD133, Aldheyde dehydrogenase (ALDH), CD117, CD55 and CD44 are enriched in CSCs but there is no universal marker nowadays. The most frequently activated pathways in eCSC are Wingless-INT (Wnt)/β-catenin, Notch1, and Hedghog, with a high expression of self-renewal transcription factors like Octamer binding transcription factor 4 (OCT), B Lymphoma Mo-MLV Insertion Region 1 Homolog (BMI1), North American Network Operations Group Homebox protein (NANOG), and SRY-Box 2 (SOX2). These pathways have been targeted with selective drugs alone or in combination with chemotherapy and immunotherapy. Unfortunately, although preclinical results are encouraging, few clinical data are available.
Collapse
Affiliation(s)
- Gaia Giannone
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Laura Attademo
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale Napoli, 80131 Napoli, Italy; (L.A.); (S.P.)
| | - Giulia Scotto
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Sofia Genta
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Eleonora Ghisoni
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Valentina Tuninetti
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Massimo Aglietta
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale Napoli, 80131 Napoli, Italy; (L.A.); (S.P.)
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| |
Collapse
|
3
|
Polonio-Alcalá E, Rabionet M, Ruiz-Martínez S, Ciurana J, Puig T. Three-Dimensional Manufactured Supports for Breast Cancer Stem Cell Population Characterization. Curr Drug Targets 2019; 20:839-851. [DOI: 10.2174/1389450120666181122113300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 12/23/2022]
Abstract
Breast Cancer (BC) is the most common cancer among women and the second cause of female death for cancer. When the tumor is not correctly eradicated, there is a high relapse risk and incidence of metastasis. Breast Cancer Stem Cells (BCSCs) are responsible for initiating tumors and are resistant to current anticancer therapies being in part responsible for tumor relapse and metastasis. The study of BCSCs is limited due to their low percentage within both tumors and established cell models. Hence, three-dimensional (3D) supports are presented as an interesting tool to keep the stem-like features in 3D cell culture. In this review, several 3D culture systems are discussed. Moreover, scaffolds are presented as a tool to enrich in BCSCs in order to find new specific therapeutic strategies against this malignant subpopulation. Anticancer treatments focused on BCSCs could be useful for BC patients, with particular interest in those that progress to current therapies.
Collapse
Affiliation(s)
- Emma Polonio-Alcalá
- New Therapeutic Targets Laboratory (TargetsLab), Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Marc Rabionet
- New Therapeutic Targets Laboratory (TargetsLab), Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab), Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Girona, Spain
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab), Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
4
|
Wang T, Shigdar S, Gantier MP, Hou Y, Wang L, Li Y, Shamaileh HA, Yin W, Zhou SF, Zhao X, Duan W. Cancer stem cell targeted therapy: progress amid controversies. Oncotarget 2016; 6:44191-206. [PMID: 26496035 PMCID: PMC4792551 DOI: 10.18632/oncotarget.6176] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022] Open
Abstract
Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Tao Wang
- School of Nursing, Zhengzhou University, Zhengzhou, China.,School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Michael P Gantier
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Yingchun Hou
- Co-Innovation Center for Qinba Region's Sustainable Development, Shaanxi Normal University, Xi'an, China
| | - Li Wang
- Department of Gynecologic Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Li
- Cancer Care Centre, St George Hospital and St George Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Hadi Al Shamaileh
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Wang Yin
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xinhan Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
5
|
Subramanian N, Akilandeswari B, Bhutra A, Alameen M, Vetrivel U, Khetan V, Kanwar RK, Kanwar JR, Krishnakumar S. Targeting CD44, ABCG2 and CD133 markers using aptamers: in silico analysis of CD133 extracellular domain 2 and its aptamer. RSC Adv 2016. [DOI: 10.1039/c5ra27072c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Truncated CSC marker aptamers penetrate tumor spheres and inhibits cell proliferation; a bioinformatics approach to decipher their structural interactions.
Collapse
Affiliation(s)
- Nithya Subramanian
- Department of Nanobiotechnology
- Vision Research Foundation
- Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology
- Chennai – 600006
- India
| | - Balachandran Akilandeswari
- Department of Nanobiotechnology
- Vision Research Foundation
- Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology
- Chennai – 600006
- India
| | - Anjali Bhutra
- Department of Nanobiotechnology
- Vision Research Foundation
- Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology
- Chennai – 600006
- India
| | - Mohamed Alameen
- Centre for Bioinformatics
- Vision Research Foundation
- Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology
- Chennai – 600006
- India
| | - Umashankar Vetrivel
- Centre for Bioinformatics
- Vision Research Foundation
- Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology
- Chennai – 600006
- India
| | - Vikas Khetan
- Departments of Ocular Oncology and Vitreoretina
- Medical Research Foundation
- Sankara Nethralaya
- Chennai – 600006
- India
| | - Rupinder K. Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR)
- School of Medicine (SoM)
- Centre for Molecular and Medical Research (C-MMR) Strategic Research Centre
- Faculty of Health
- Deakin University
| | - Jagat R. Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR)
- School of Medicine (SoM)
- Centre for Molecular and Medical Research (C-MMR) Strategic Research Centre
- Faculty of Health
- Deakin University
| | - Subramanian Krishnakumar
- Department of Nanobiotechnology
- Vision Research Foundation
- Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology
- Chennai – 600006
- India
| |
Collapse
|
6
|
Zhang XZ, Qi WJ, Kong XT, Yu QG. Changes of amino acid metabolism in colon cancer HCT116 cells under different oxygen supply conditions. Shijie Huaren Xiaohua Zazhi 2014; 22:3639-3643. [DOI: 10.11569/wcjd.v22.i24.3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify metabolic changes of amino acids in HCT116 cells under low (5%) and normal oxygen (21%) supply conditions through metabonomic analysis, and to find new markers for early diagnosis and surgical and treatment effect monitoring, and new targets for colon cancer treatment.
METHODS: High performance liquid chromatography-mass spectrometry (UPLC-MS) was used to detect 40 kinds of amino acids in HCT116 cells under low (5%) and normal oxygen (21%) supply conditions. A total of 36 kinds of amino acids were detected.
RESULTS: Twenty different amino acids showed significant differences between HCT116 cells under low and normal oxygen supply conditions (P < 0.05), with isoleucine being the most significant.
CONCLUSION: Metabolic changes of amino acids occur in HCT116 cells under different oxygen supply conditions. The content of isoleucine in HCT116 cells is significantly higher under normal oxygen condition than under low oxygen condition.
Collapse
|
7
|
Abstract
Aging is a degenerative process resulting in compromised tissue maintenance and increased susceptibility to diseases, such as cancer. Recent advancements support the notion that aging is a highly regulated process governed by evolutionarily conserved pathways. In mammals, tissue-specific adult stem cells (ASCs) persist throughout the lifetime to maintain and repair tissues. While reduced ASC self-renewal is thought to contribute to compromised tissue maintenance, increased self-renewal of cancer stem cells (CSCs) may lead to tumorigenesis. It is speculated that genetic regulators of aging, such as sirtuins, are likely to impinge upon the ASC compartments to regulate tissue maintenance and tumorigenesis. In this review, we discuss the emerging evidence linking sirtuins to normal and malignant ASC self-renewal, tissue maintenance, and tumorigenesis.
Collapse
|
8
|
Prabhu VV, Allen JE, Hong B, Zhang S, Cheng H, El-Deiry WS. Therapeutic targeting of the p53 pathway in cancer stem cells. Expert Opin Ther Targets 2012; 16:1161-74. [PMID: 22998602 DOI: 10.1517/14728222.2012.726985] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cancer stem cells (CSCs) are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance and therapeutic resistance. Restoring wild-type (WT) p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target CSCs. AREAS COVERED This review covers the therapeutic approaches to restore the function of WT p53, cancer and normal stem cell biology in relation to p53 and the downstream effects of p53 on CSCs. EXPERT OPINION The restoration of WT p53 function by targeting p53 directly, its interacting proteins or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and CSCs based on the current evidence linking p53 signaling with these populations.
Collapse
Affiliation(s)
- Varun V Prabhu
- Penn State Hershey Cancer Institute, Penn State College of Medicine, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medicine (Hematology/Oncology), 500 University Drive, Room T4423, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|