1
|
Dai L, Johnson-Buck A, Laird PW, Tewari M, Walter NG. Ultrasensitive Amplification-Free Quantification of a Methyl CpG-Rich Cancer Biomarker by Single-Molecule Kinetic Fingerprinting. Anal Chem 2024; 96:17209-17216. [PMID: 39425638 DOI: 10.1021/acs.analchem.4c03002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The most well-studied epigenetic marker in humans is the 5-methyl modification of cytosine in DNA, which has great potential as a disease biomarker. Currently, quantification of DNA methylation relies heavily on bisulfite conversion followed by PCR amplification and NGS or microarray analysis. PCR is subject to potential bias in differential amplification of bisulfite-converted methylated versus unmethylated sequences. Here, we combine bisulfite conversion with single-molecule kinetic fingerprinting to develop an amplification-free assay for DNA methylation at the branched-chain amino acid transaminase 1 (BCAT1) promoter. Our assay selectively responds to methylated sequences with a limit of detection below 1 fM and a specificity of 99.9999%. Evaluating complex genomic DNA matrices, we reliably distinguish <5% DNA methylation at the BCAT1 promoter in whole blood DNA from completely unmethylated whole-genome amplified DNA. Taken together, these results demonstrate the feasibility and sensitivity of our amplification-free, single-molecule quantification approach to improve the early detection of methylated cancer DNA biomarkers.
Collapse
Affiliation(s)
- Liuhan Dai
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter W Laird
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Muneesh Tewari
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Wang SS, Hall ML, Lee E, Kim SC, Ramesh N, Lee SH, Jang JY, Bold RJ, Ku JL, Hwang CI. Whole-genome bisulfite sequencing identifies stage- and subtype-specific DNA methylation signatures in pancreatic cancer. iScience 2024; 27:109414. [PMID: 38532888 PMCID: PMC10963232 DOI: 10.1016/j.isci.2024.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), no recurrent metastasis-specific mutation has been found, suggesting that epigenetic mechanisms, such as DNA methylation, are the major contributors of late-stage disease progression. Here, we performed the first whole-genome bisulfite sequencing (WGBS) on mouse and human PDAC organoid models to identify stage-specific and molecular subtype-specific DNA methylation signatures. With this approach, we identified thousands of differentially methylated regions (DMRs) that can distinguish between the stages and molecular subtypes of PDAC. Stage-specific DMRs are associated with genes related to nervous system development and cell-cell adhesions, and are enriched in promoters and bivalent enhancers. Subtype-specific DMRs showed hypermethylation of GATA6 foregut endoderm transcriptional networks in the squamous subtype and hypermethylation of EMT transcriptional networks in the progenitor subtype. These results indicate that aberrant DNA methylation contributes to both PDAC progression and subtype differentiation, resulting in significant and reoccurring DNA methylation patterns with diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Sarah S. Wang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Madison L. Hall
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - EunJung Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Soon-Chan Kim
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Neha Ramesh
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Richard J. Bold
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, USA
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Ja-Lok Ku
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
3
|
Dai L, Johnson-Buck A, Laird PW, Tewari M, Walter NG. Ultrasensitive amplification-free quantification of a methyl CpG-rich cancer biomarker by single-molecule kinetic fingerprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.587997. [PMID: 38645159 PMCID: PMC11030368 DOI: 10.1101/2024.04.06.587997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The most well-studied epigenetic marker in humans is the 5-methyl modification of cytosine in DNA, which has great potential as a disease biomarker in liquid biopsies of cell-free DNA. Currently, quantification of DNA methylation relies heavily on bisulfite conversion followed by PCR amplification and NGS or microarray analysis. PCR is subject to potential bias in differential amplification of bisulfite-converted methylated versus unmethylated sequences. Here, we combine bisulfite conversion with single-molecule kinetic fingerprinting to develop an amplification-free assay for DNA methylation at the branched-chain amino acid transaminase 1 (BCAT1) promoter. Our assay selectively responds to methylated sequences with a limit of detection below 1 fM and a specificity of 99.9999%. Evaluating complex genomic DNA matrices, we reliably distinguish 2-5% DNA methylation at the BCAT1 promoter in whole blood DNA from completely unmethylated whole-genome amplified DNA. Taken together, these results demonstrate the feasibility and sensitivity of our amplification-free, single-molecule quantification approach to improve the early detection of methylated cancer DNA biomarkers.
Collapse
Affiliation(s)
- Liuhan Dai
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter W. Laird
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Muneesh Tewari
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Lee YH, Yoon AR, Yun CO, Chung KC. Dual-specificity kinase DYRK3 phosphorylates p62 at the Thr-269 residue and promotes melanoma progression. J Biol Chem 2024; 300:107206. [PMID: 38519031 PMCID: PMC11021969 DOI: 10.1016/j.jbc.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Melanoma is a type of skin cancer that originates in melanin-producing melanocytes. It is considered a multifactorial disease caused by both genetic and environmental factors, such as UV radiation. Dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK) phosphorylates many substrates involved in signaling pathways, cell survival, cell cycle control, differentiation, and neuronal development. However, little is known about the cellular function of DYRK3, one of the five members of the DYRK family. Interestingly, it was observed that the expression of DYRK3, as well as p62 (a multifunctional signaling protein), is highly enhanced in most melanoma cell lines. This study aimed to investigate whether DYRK3 interacts with p62, and how this affects melanoma progression, particularly in melanoma cell lines. We found that DYRK3 directly phosphorylates p62 at the Ser-207 and Thr-269 residue. Phosphorylation at Thr-269 of p62 by DYRK3 increased the interaction of p62 with tumor necrosis factor receptor-associated factor 6 (TRAF6), an already known activator of mammalian target of rapamycin complex 1 (mTORC1) in the mTOR-involved signaling pathways. Moreover, the phosphorylation of p62 at Thr-269 promoted the activation of mTORC1. We also found that DYRK3-mediated phosphorylation of p62 at Thr-269 enhanced the growth of melanoma cell lines and melanoma progression. Conversely, DYRK3 knockdown or blockade of p62-T269 phosphorylation inhibited melanoma growth, colony formation, and cell migration. In conclusion, we demonstrated that DYRK3 phosphorylates p62, positively modulating the p62-TRAF6-mTORC1 pathway in melanoma cells. This finding suggests that DYRK3 suppression may be a novel therapy for preventing melanoma progression by regulating the mTORC1 pathway.
Collapse
Affiliation(s)
- Ye Hyung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
5
|
Shen C, Shi X, Wen D, Zhang Y, Du Y, Zhang Y, Ma B, Tang H, Yin M, Huang N, Liao T, Zhang TT, Kong C, Wei W, Ji Q, Wang Y. Comprehensive DNA Methylation Profiling of Medullary Thyroid Carcinoma: Molecular Classification, Potential Therapeutic Target, and Classifier System. Clin Cancer Res 2024; 30:127-138. [PMID: 37931242 DOI: 10.1158/1078-0432.ccr-23-2142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Medullary thyroid carcinoma (MTC) presents a distinct biological context from other thyroid cancers due to its specific cellular origin. This heterogeneous and rare tumor has a high prevalence of advanced diseases, making it crucial to address the limited therapeutic options and enhance complex clinical management. Given the high clinical accessibility of methylation information, we construct the largest MTC methylation cohort to date. EXPERIMENTAL DESIGN Seventy-eight fresh-frozen MTC samples constituted our methylation cohort. The comprehensive study process incorporated machine learning, statistical analysis, and in vitro experiments. RESULTS Our study pioneered the identification of a three-class clustering system for risk stratification, exhibiting pronounced epigenomic heterogeneity. The elevated overall methylation status in MTC-B, combined with the "mutual exclusivity" of hypomethylated sites displayed by MTC-A and MTC-C, distinctively characterized the MTC-specific methylation pattern. Integrating with the transcriptome, we further depicted the features of these three clusters to scrutinize biological properties. Several MTC-specific aberrant DNA methylation events were emphasized in our study. NNAT expression was found to be notably reduced in poor-prognostic MTC-C, with its promoter region overlapping with an upregulated differentially methylated region. In vitro experiments further affirmed NNAT's therapeutic potential. Moreover, we built an elastic-net logistic regression model with a relatively high AUC encompassing 68 probes, intended for future validation and systematic clinical application. CONCLUSIONS Conducting research on diseases with low incidence poses significant challenges, and we provide a robust resource and comprehensive research framework to assist in ongoing MTC case inclusion and facilitate in-depth dissection of its molecular biological features.
Collapse
Affiliation(s)
- Cenkai Shen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Xiao Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Duo Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuqing Zhang
- School of Data Science, Fudan University, Shanghai, P.R. China
| | - Yuxin Du
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yu Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Haitao Tang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Min Yin
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Naisi Huang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ting-Ting Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Chang'e Kong
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
6
|
Ghazimoradi MH, Pakravan K, Khalafizadeh A, Babashah S. TET1 regulates stem cell properties and cell cycle of Cancer stem cells in triple-negative breast cancer via DNA demethylation. Biochem Pharmacol 2024; 219:115913. [PMID: 37995981 DOI: 10.1016/j.bcp.2023.115913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
The role of cancer stem cells in metastasis, recurrence, and resistance to conventional therapies is significant. Addressing these cells could potentially decrease cancer reoccurrences and mortality rates. TET1, a crucial gene involved in stem cell self-renewal and potency, may also play a part in cancer stem cells, which warrants further research. To explore the role of TET1 in cancer stem cells, we conducted experiments involving loss and gain. We then analyzed factors such as migration, invasion, cell cycle, cell viability, mammosphere formation, and the CD44+/CD24- subpopulation of cancer cells. We also investigate the influence of TET1 on CCNB1, CDK1, and OCT4. Our study reveals that TET1 can regulate the phenotype of cancer stem cells via OCT4. Additionally, it can control the cell cycle by increasing CDK1 and CCNB1 levels. These findings suggest that targeting DNA methylation and TET1 could be an effective strategy to overcome obstacles posed by Cancer stem cells. Our research also indicates that TET1 can influence the phenotype of cancer stem cells and the cell cycle of breast cancer cells potentially through OCT4, CCNB1, and CDK1. This highlights the importance of TET1 in breast cancer cases and suggests a potential therapeutic approach through DNA methylation and modulation of TET1.
Collapse
Affiliation(s)
- Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Rocha GIY, Gomes JEM, Leite ML, da Cunha NB, Costa FF. Epigenome-Driven Strategies for Personalized Cancer Immunotherapy. Cancer Manag Res 2023; 15:1351-1367. [PMID: 38058537 PMCID: PMC10697012 DOI: 10.2147/cmar.s272031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
Fighting cancer remains one of the greatest challenges for science in the 21st century. Advances in immunotherapy against different types of cancer have greatly contributed to the treatment, remission, and cure of patients. In this context, knowledge of epigenetic phenomena, their relationship with tumor cells and how the immune system can be epigenetically modulated represent some of the greatest advances in the development of anticancer therapies. Epigenetics is a rapidly growing field that studies how environmental factors can affect gene expression without altering DNA sequence. Epigenomic changes include DNA methylation, histone modifications, and non-coding RNA regulation, which impact cellular function. Epigenetics has shown promise in developing cancer therapies, such as immunotherapy, which aims to stimulate the immune system to attack cancer cells. For example, PD-1 and PD-L1 are biomarkers that regulate the immune response to cancer cells and recent studies have shown that epigenetic modifications can affect their expression, potentially influencing the efficacy of immunotherapy. New therapies targeting epigenetic modifications, such as histone deacetylases and DNA methyltransferases, are being developed for cancer treatment, and some have shown promise in preclinical studies and clinical trials. With growing understanding of epigenetic regulation, we can expect more personalized and effective cancer immunotherapies in the future. This review highlights key advances in the use of epigenetic and epigenomic tools and modern immuno-oncology strategies to treat several types of tumors.
Collapse
Affiliation(s)
| | | | - Michel Lopes Leite
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Nicolau B da Cunha
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Faculty of Agronomy and Veterinary Medicine (FAV), Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
- Graduate Program in Agronomy, Campus Darcy Ribeiro, University of Brasilia (UnB), Brasília, DF, Brazil
| | - Fabricio F Costa
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, DF, Brazil
- Cancer Biology and Epigenomics Program, Northwestern University’s Feinberg School of Medicine, Chicago, IL, USA
- Genomic Enterprise, San FranciscoCA, USA
| |
Collapse
|
8
|
Tam PLF, Leung D. The Molecular Impacts of Retrotransposons in Development and Diseases. Int J Mol Sci 2023; 24:16418. [PMID: 38003607 PMCID: PMC10671454 DOI: 10.3390/ijms242216418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Retrotransposons are invasive genetic elements that constitute substantial portions of mammalian genomes. They have the potential to influence nearby gene expression through their cis-regulatory sequences, reverse transcription machinery, and the ability to mold higher-order chromatin structures. Due to their multifaceted functions, it is crucial for host fitness to maintain strict regulation of these parasitic sequences to ensure proper growth and development. This review explores how subsets of retrotransposons have undergone evolutionary exaptation to enhance the complexity of mammalian genomes. It also highlights the significance of regulating these elements, drawing on recent studies conducted in human and murine systems.
Collapse
Affiliation(s)
- Phoebe Lut Fei Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
9
|
Cheng MW, Mitra M, Coller HA. Pan-cancer landscape of epigenetic factor expression predicts tumor outcome. Commun Biol 2023; 6:1138. [PMID: 37973839 PMCID: PMC10654613 DOI: 10.1038/s42003-023-05459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
Oncogenic pathways that drive cancer progression reflect both genetic changes and epigenetic regulation. Here we stratified primary tumors from each of 24 TCGA adult cancer types based on the gene expression patterns of epigenetic factors (epifactors). The tumors for five cancer types (ACC, KIRC, LGG, LIHC, and LUAD) separated into two robust clusters that were better than grade or epithelial-to-mesenchymal transition in predicting clinical outcomes. The majority of epifactors that drove the clustering were also individually prognostic. A pan-cancer machine learning model deploying epifactor expression data for these five cancer types successfully separated the patients into poor and better outcome groups. Single-cell analysis of adult and pediatric tumors revealed that expression patterns associated with poor or worse outcomes were present in individual cells within tumors. Our study provides an epigenetic map of cancer types and lays a foundation for discovering pan-cancer targetable epifactors.
Collapse
Affiliation(s)
- Michael W Cheng
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Zhou X, Sekino Y, Li HT, Fu G, Yang Z, Zhao S, Gujar H, Zu X, Weisenberger DJ, Gill IS, Tulpule V, D’souza A, Quinn DI, Han B, Liang G. SETD2 Deficiency Confers Sensitivity to Dual Inhibition of DNA Methylation and PARP in Kidney Cancer. Cancer Res 2023; 83:3813-3826. [PMID: 37695044 PMCID: PMC10843145 DOI: 10.1158/0008-5472.can-23-0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
SETD2 deficiency alters the epigenetic landscape by causing depletion of H3K36me3 and plays an important role in diverse forms of cancer, most notably in aggressive and metastatic clear-cell renal cell carcinomas (ccRCC). Development of an effective treatment scheme targeting SETD2-compromised cancer is urgently needed. Considering that SETD2 is involved in DNA methylation and DNA repair, a combination treatment approach using DNA hypomethylating agents (HMA) and PARP inhibitors (PARPi) could have strong antitumor activity in SETD2-deficient kidney cancer. We tested the effects of the DNA HMA 5-aza-2'-dexoxydytidine (DAC), the PARPi talazoparib (BMN-673), and both in combination in human ccRCC models with or without SETD2 deficiency. The combination treatment of DAC and BMN-673 synergistically increased cytotoxicity in vitro in SETD2-deficient ccRCC cell lines but not in SETD2-proficient cell lines. DAC and BMN-673 led to apoptotic induction, increased DNA damage, insufficient DNA damage repair, and increased genomic instability. Furthermore, the combination treatment elevated immune responses, upregulated STING, and enhanced viral mimicry by activating transposable elements. Finally, the combination effectively suppressed the growth of SETD2-deficient ccRCC in in vivo mouse models. Together, these findings indicate that combining HMA and PARPi is a promising potential therapeutic strategy for treating SETD2-compromised ccRCC. SIGNIFICANCE SETD2 deficiency creates a vulnerable epigenetic status that is targetable using a DNA hypomethylating agent and PARP inhibitor combination to suppress renal cell carcinoma, identifying a precision medicine-based approach for SETD2-compromised cancers.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Urology, Xiangya Hospital, Central South University, Hunan, Changsha 410008, China
| | - Yohei Sekino
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hong-Tao Li
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guanghou Fu
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhi Yang
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California; Department of Surgery and Biomedical Engineering, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Shuqing Zhao
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California; Department of Surgery and Biomedical Engineering, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Hemant Gujar
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Hunan, Changsha 410008, China
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Inderbir S. Gill
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Varsha Tulpule
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anishka D’souza
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David I Quinn
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bo Han
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California; Department of Surgery and Biomedical Engineering, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Su J, Song S, Dou Y, Jia X, Song S, Ding X. Methylation specific enzyme-linked oligonucleotide assays (MS-ELONA) for ultrasensitive DNA methylation analysis. Biosens Bioelectron 2023; 238:115587. [PMID: 37586263 DOI: 10.1016/j.bios.2023.115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Methylation of the promoter region of cancer related genes plays a crucial role in the occurrence and development of cancer, and the degree of methylation has great potential for the early cancer diagnosis. At present, the technology used to quantify DNA methylation is mainly based on the DNA sequencing which are time-consuming and high-cost in the relating application. We have developed an ultrasensitive method of methylation specific enzyme-linked oligonucleotide assays (MS-ELONA) to detect and quantify the level of DNA methylation. We could detect as little as 2 pg of methylated DNA in the 100000-fold excess of unmethylated genes, and discriminate prostate cancer from benign prostatic hyperplasia (BPH) and control with serum samples. We also demonstrate the reversibility of DNA methylation modification by treatment with demethylation drugs. With 16-channel electrochemical work station, our research reveals a simple and inexpensive method to quantify the methylation level of specially appointed genes, and have the potential to be applied in the clinical research.
Collapse
Affiliation(s)
- Jing Su
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shasha Song
- Pathology Department, Yantai Fushan People's Hospital, Yantai, China
| | - Yanzhi Dou
- Shanghai Institute of Microsystem and Information Technology, Chinse Academy of Sciences, Shanghai 200050, China
| | - Xiaolong Jia
- Department of Urology, The First Affiliated Hospital of Ningbo University, Liuting Street, Ningbo 315010, China
| | - Shiping Song
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Kaur D, Lee SM, Goldberg D, Spix NJ, Hinoue T, Li HT, Dwaraka VB, Smith R, Shen H, Liang G, Renke N, Laird PW, Zhou W. Comprehensive Evaluation of The Infinium Human MethylationEPIC v2 BeadChip. EPIGENETICS COMMUNICATIONS 2023; 3:6. [PMID: 38455390 PMCID: PMC10919401 DOI: 10.1186/s43682-023-00021-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/18/2023] [Indexed: 03/09/2024]
Abstract
Infinium Methylation BeadChips are widely used to profile DNA cytosine modifications in large cohort studies for reasons of cost-effectiveness, accurate quantification, and user-friendly data analysis in characterizing these canonical epigenetic marks. In this work, we conducted a comprehensive evaluation of the updated Infinium MethylationEPIC v2 BeadChip (EPICv2). Our evaluation revealed that EPICv2 offers significant improvements over its predecessors, including expanded enhancer coverage, applicability to diverse ancestry groups, support for low-input DNA down to one nanogram, coverage of existing epigenetic clocks, cell type deconvolution panels, and human trait associations, while maintaining accuracy and reproducibility. Using EPICv2, we were able to identify epigenome and sequence signatures in cell line models of DNMT and SETD2 loss and/or hypomorphism. Furthermore, we provided probe-wise evaluation and annotation to facilitate the use of new features on this array for studying the interplay between somatic mutations and epigenetic landscape in cancer genomics. In conclusion, EPICv2 provides researchers with a valuable tool for studying epigenetic modifications and their role in development and disease.
Collapse
Affiliation(s)
- Diljeet Kaur
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
- These authors contribute equally
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
- These authors contribute equally
| | - David Goldberg
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Nathan J Spix
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Toshinori Hinoue
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hong-Tao Li
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | | | - Ryan Smith
- TruDiagnostic Inc, Lexington, KY 40503, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nicole Renke
- Illumina, Inc., Product Management Department, San Diego, CA 92122, USA
| | - Peter W Laird
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
13
|
Tejedor JR, Peñarroya A, Gancedo-Verdejo J, Santamarina-Ojeda P, Pérez RF, López-Tamargo S, Díez-Borge A, Alba-Linares JJ, González-Del-Rey N, Urdinguio RG, Mangas C, Roberti A, López V, Morales-Ruiz T, Ariza RR, Roldán-Arjona T, Meijón M, Valledor L, Cañal MJ, Fernández-Martínez D, Fernández-Hevia M, Jiménez-Fonseca P, García-Flórez LJ, Fernández AF, Fraga MF. CRISPR/dCAS9-mediated DNA demethylation screen identifies functional epigenetic determinants of colorectal cancer. Clin Epigenetics 2023; 15:133. [PMID: 37612734 PMCID: PMC10464368 DOI: 10.1186/s13148-023-01546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Promoter hypermethylation of tumour suppressor genes is frequently observed during the malignant transformation of colorectal cancer (CRC). However, whether this epigenetic mechanism is functional in cancer or is a mere consequence of the carcinogenic process remains to be elucidated. RESULTS In this work, we performed an integrative multi-omic approach to identify gene candidates with strong correlations between DNA methylation and gene expression in human CRC samples and a set of 8 colon cancer cell lines. As a proof of concept, we combined recent CRISPR-Cas9 epigenome editing tools (dCas9-TET1, dCas9-TET-IM) with a customized arrayed gRNA library to modulate the DNA methylation status of 56 promoters previously linked with strong epigenetic repression in CRC, and we monitored the potential functional consequences of this DNA methylation loss by means of a high-content cell proliferation screen. Overall, the epigenetic modulation of most of these DNA methylated regions had a mild impact on the reactivation of gene expression and on the viability of cancer cells. Interestingly, we found that epigenetic reactivation of RSPO2 in the tumour context was associated with a significant impairment in cell proliferation in p53-/- cancer cell lines, and further validation with human samples demonstrated that the epigenetic silencing of RSPO2 is a mid-late event in the adenoma to carcinoma sequence. CONCLUSIONS These results highlight the potential role of DNA methylation as a driver mechanism of CRC and paves the way for the identification of novel therapeutic windows based on the epigenetic reactivation of certain tumour suppressor genes.
Collapse
Affiliation(s)
- Juan Ramón Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Alfonso Peñarroya
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
| | - Javier Gancedo-Verdejo
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Pablo Santamarina-Ojeda
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Raúl F Pérez
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Sara López-Tamargo
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Ana Díez-Borge
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Viralgen Vector Core, 20009, San Sebastián, Gipuzkoa, Spain
| | - Juan J Alba-Linares
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Nerea González-Del-Rey
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Rocío G Urdinguio
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Cristina Mangas
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Annalisa Roberti
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
| | - Virginia López
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Teresa Morales-Ruiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Mónica Meijón
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
| | - Daniel Fernández-Martínez
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
- Division of General Surgery, Department of Colorectal Surgery, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
| | - María Fernández-Hevia
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
- Division of General Surgery, Department of Colorectal Surgery, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
| | - Paula Jiménez-Fonseca
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Division of Oncology, Department of Medical Oncology, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
| | - Luis J García-Flórez
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
- Division of General Surgery, Department of Colorectal Surgery, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
- Department of Surgery and Medical Surgical Specialties, University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Agustín F Fernández
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain.
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain.
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain.
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain.
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain.
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain.
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain.
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
14
|
An N, Cui L, Yang X. Low RPMB indicates better disease-free survival of adjuvant radiotherapy after radical surgery in thymoma. Am J Transl Res 2023; 15:5457-5468. [PMID: 37692947 PMCID: PMC10492043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The current use of adjuvant radiotherapy in thymoma (THYM) following radical surgery is primarily based on clinical factors and is a subject of ongoing debate. METHODS We developed a new biomarker, promotor methylation burden of Deoxyribonucleic acid repair genes (RPMB), to identify patients who may benefit from adjuvant radiotherapy after complete resection in THYM. RPMB quantitatively measures the promoter methylation level of Deoxyribonucleic acid (DNA) repair genes. RESULTS The methylation profile of 124 patients and corresponding clinical data were retrieved from The Cancer Genome Atlas (TCGA) database. The methylation level of DNA repair genes (DRGs) was found to be significantly hypomethylated juxtaposed to other genes across the whole human genome (all P < 0.001). THYM patients with higher RPMB tended to be female (P = 1.114×10-12) and have a more advanced Masaoka stage (P = 0.034). Kaplan-Meier analysis showed that high RPMB could significantly predict a poor disease-free survival (DFS) in THYM patients who received adjuvant radiotherapy after complete resection (HR = 5.750, 95% CI: 1.213-27.251, P = 0.013). Furthermore, Cox regression analysis indicated that RPMB was the only prognostic factor significantly associated with DFS after adjuvant radiotherapy (P = 0.028). CONCLUSIONS Low RPMB may be a potential indicator to identify suitable patients who can benefit from adjuvant radiotherapy in THYM, sparing others from treatment toxicity.
Collapse
Affiliation(s)
- Ning An
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| | - Li Cui
- Department of Oncology, The People’s Hospital of Pingyi CountyLinyi 273399, Shandong, China
| | - Xue Yang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao UniversityQingdao 266003, Shandong, China
| |
Collapse
|
15
|
An N, Yang X. Prediction of disease-free survival of N1/2 non-small cell lung cancer after adjuvant chemotherapy by the biomarker RPMB. Heliyon 2023; 9:e18266. [PMID: 37501955 PMCID: PMC10368914 DOI: 10.1016/j.heliyon.2023.e18266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
No molecular biomarkers have been proven applicable in clinical practice to identify patients who can benefit from adjuvant chemotherapy in non-small cell lung cancer (NSCLC). In this study, we established a biomarker, RPMB, short for promotor methylation burden of DNA repair genes (DRGs), to identify the subgroup of patients who might benefit from adjuvant chemotherapy in NSCLC. Methylation profiles of 828 NSCLC primary tumors and their clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. The RPMB for each patient after radical resection was calculated and its correlation with the prognosis of NSCLC was extensively investigated. DRGs of NSCLC were much more hypomethylated than the other genes (all p<0.001). RPMB was defined as the ratio of methylated DRGs to the total number of all the DRGs. Patients with higher RPMB values tended to be nonsmokers, had adenocarcinoma, were female and had peripheral tumors. Subgroup analysis of forest plot among different clinical factors showed that high RPMB was significantly correlated to better disease-free survival (DFS) in pathologic N-positive patients after adjuvant chemotherapy (HR = 0.404, n = 62, p = 0.034). Notably, more superior DFS was exhibited in high RPMB NSCLCs with N1 nodal stage compared with those with low RPMB values (HR = 0.348, n = 47, p = 0.043). High RPMB might be used as a potential predictor to identify suitable N-positive NSCLC patients who can benefit from adjuvant chemotherapy after radical surgery.
Collapse
Affiliation(s)
- Ning An
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Xue Yang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| |
Collapse
|
16
|
Cai C, Zhu Y, Mu J, Liu S, Yang Z, Wu Z, Zhao C, Song X, Ye Y, Gu J, Sang Y, Wu X, Gong W. DNA methylation of RUNX3 promotes the progression of gallbladder cancer through repressing SLC7A11-mediated ferroptosis. Cell Signal 2023; 108:110710. [PMID: 37156453 DOI: 10.1016/j.cellsig.2023.110710] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Gallbladder cancer (GBC) is a type of rare but highly aggressive cancer with a dismal prognosis. Runt-related transcription factor 3 (RUNX3), a member of the runt-domain family, and its promoter methylation have been widely observed in a variety of human malignancies. However, the biological function and underlying mechanism of RUNX3 in GBC remain elusive. In this study, bisulfate sequencing PCR (BSP), Western blot, and qPCR were applied to identify the expression level and DNA methylation level of RUNX3 in GBC tissues and cells. The transcriptional relationship between RUNX3 and Inhibitor of growth 1 (ING1) was validated by dual-luciferase reporter assay and ChIP assay. A series of gain-of-function and loss-of-function assays were performed to detect the function and the regulatory relationship of RUNX3 in vitro and in vivo. RUNX3 was aberrantly downregulated in GBC cells and tissues caused by DNA Methyltransferase 1 (DNMT1)-mediated methylation, and downregulation of RUNX3 is associated with poor prognosis of GBC patients. Functional experiments reveal that RUNX3 can induce ferroptosis of GBC cells in vitro and in vivo. Mechanistically, RUNX3 induces ferroptosis by activating ING1 transcription, thereby repressing SLC7A11 in a p53-dependent manner. In conclusion, the downregulation of RUNX3 is mediated by DNA methylation, which promotes the pathogenesis of gallbladder cancer through attenuating SLC7A11-mediated ferroptosis. This study gives novel insights into the role of RUNX3 in the ferroptosis of GBC cells, which may contribute to developing potential treatment targets for GBC.
Collapse
Affiliation(s)
- Chen Cai
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Yidi Zhu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Jiasheng Mu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Shilei Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ziyi Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ziyou Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Cheng Zhao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Jun Gu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch. No. 25 Nanmen Road, Shanghai 202150, China
| | - Yuer Sang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
17
|
Vanneste D, Verscheure E, Srinivasan AN, Godderis L, Ghosh M. Systematic review of genotoxicity induced by occupational exposure to antineoplastic drugs. Arch Toxicol 2023; 97:1453-1517. [PMID: 37099053 DOI: 10.1007/s00204-023-03481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 04/27/2023]
Abstract
With increasing numbers of cancer cases, the use of antineoplastic agents is expected to rise. This will be accompanied by an increase in occupational exposure, which can cause unwanted health effects in workers. Our aim was to give an overview of genotoxic and epigenetic effects after occupational exposure to antineoplastic agents and to assess the concentration-effect relation. Four databases were searched for papers investigating genotoxic and/or epigenetic effects of occupational exposure to antineoplastic agents. Out of the 245 retrieved papers, 62 were included in this review. In this systematic literature review, we confirmed that exposure of healthcare workers to antineoplastic agents can lead to genotoxic damage. However, we observed a lack of data on exposure as well as genotoxic and epigenetic effects in workers other than healthcare workers. Furthermore, gaps in the current knowledge regarding the potential epigenetic effects caused by antineoplastic drug exposure and regarding the link between internal antineoplastic drug concentration and genotoxic and epigenetic effects after occupational exposure to antineoplastic agents were identified, offering a first step for future research.
Collapse
Affiliation(s)
- Dorian Vanneste
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, ON5 Herestraat 49, Box 952, 3000, Leuven, Belgium
| | - Eline Verscheure
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, ON5 Herestraat 49, Box 952, 3000, Leuven, Belgium
| | - Adhithya Narayanan Srinivasan
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, ON5 Herestraat 49, Box 952, 3000, Leuven, Belgium
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, ON5 Herestraat 49, Box 952, 3000, Leuven, Belgium
| | - Manosij Ghosh
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, ON5 Herestraat 49, Box 952, 3000, Leuven, Belgium.
| |
Collapse
|
18
|
Hu Y, Mu H, Deng Z. RBM14 as a novel epigenetic-activated tumor oncogene is implicated in the reprogramming of glycolysis in lung cancer. World J Surg Oncol 2023; 21:132. [PMID: 37060064 PMCID: PMC10105460 DOI: 10.1186/s12957-023-02928-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/05/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND RNA-binding motif protein 14 (RBM14) is upregulated in a variety of tumors. However, the expression and biological role of RBM14 in lung cancer remain unclear. METHODS Chromatin immunoprecipitation and PCR were carried out to measure the levels of sedimentary YY1, EP300, H3K9ac, and H3K27ac in the RBM14 promoter. Co-immunoprecipitation was used to verify the interaction between YY1 and EP300. Glycolysis was investigated according to glucose consumption, lactate production, and the extracellular acidification rate (ECAR). RESULTS RBM14 level is increased in lung adenocarcinoma (LUAD) cells. The increased RBM14 expression was correlated with TP53 mutation and individual cancer stages. A high level of RBM14 predicted a poorer overall survival of LUAD patients. The upregulated RBM14 in LUAD is induced by DNA methylation and histone acetylation. The transcription factor YY1 directly binds to EP300 and recruits EP300 to the promoter regions of RBM14, which further enhances H3K27 acetylation and promotes RBM14 expression. YY1-induced upregulation of RBM14 promoted cell growth and inhibited apoptosis by affecting the reprogramming of glycolysis. CONCLUSIONS These results indicated that epigenetically activated RBM14 regulated growth and apoptosis by regulating the reprogramming of glycolysis and RBM14 may serve as a promising biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yan Hu
- Department of Respiratory, The First People's Hospital of Zigong City, No.42, Shangyihao Road, Ziliujing District, Zigong City, 643000, Sichuan, China
| | - Hanshuo Mu
- Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhiping Deng
- Department of Respiratory, The First People's Hospital of Zigong City, No.42, Shangyihao Road, Ziliujing District, Zigong City, 643000, Sichuan, China.
| |
Collapse
|
19
|
Desaulniers D, Cummings-Lorbetskie C, Leingartner K, Meier MJ, Pickles JC, Yauk CL. DNA methylation changes from primary cultures through senescence-bypass in Syrian hamster fetal cells initially exposed to benzo[a]pyrene. Toxicology 2023; 487:153451. [PMID: 36754249 DOI: 10.1016/j.tox.2023.153451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Current chemical testing strategies are limited in their ability to detect non-genotoxic carcinogens (NGTxC). Epigenetic anomalies develop during carcinogenesis regardless of whether the molecular initiating event is associated with genotoxic (GTxC) or NGTxC events; therefore, epigenetic markers may be harnessed to develop new approach methodologies that improve the detection of both types of carcinogens. This study used Syrian hamster fetal cells to establish the chronology of carcinogen-induced DNA methylation changes from primary cells until senescence-bypass as an essential carcinogenic step. Cells exposed to solvent control for 7 days were compared to naïve primary cultures, to cells exposed for 7 days to benzo[a]pyrene, and to cells at the subsequent transformation stages: normal colonies, morphologically transformed colonies, senescence, senescence-bypass, and sustained proliferation in vitro. DNA methylation changes identified by reduced representation bisulphite sequencing were minimal at day-7. Profound DNA methylation changes arose during cellular senescence and some of these early differentially methylated regions (DMRs) were preserved through the final sustained proliferation stage. A set of these DMRs (e.g., Pou4f1, Aifm3, B3galnt2, Bhlhe22, Gja8, Klf17, and L1l) were validated by pyrosequencing and their reproducibility was confirmed across multiple clones obtained from a different laboratory. These DNA methylation changes could serve as biomarkers to enhance objectivity and mechanistic understanding of cell transformation and could be used to predict senescence-bypass and chemical carcinogenicity.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | | | - Karen Leingartner
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | | | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| |
Collapse
|
20
|
Epigenetic Regulation Mediated by Sphingolipids in Cancer. Int J Mol Sci 2023; 24:ijms24065294. [PMID: 36982369 PMCID: PMC10048860 DOI: 10.3390/ijms24065294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Epigenetic changes are heritable modifications that do not directly affect the DNA sequence. In cancer cells, the maintenance of a stable epigenetic profile can be crucial to support survival and proliferation, and said profile can differ significantly from that of healthy cells. The epigenetic profile of a cancer cell can be modulated by several factors, including metabolites. Recently, sphingolipids have emerged as novel modulators of epigenetic changes. Ceramide and sphingosine 1-phosphate have become well known in cancer due to activating anti-tumour and pro-tumour signalling pathways, respectively, and they have recently been shown to also induce several epigenetic modifications connected to cancer growth. Additionally, acellular factors in the tumour microenvironment, such as hypoxia and acidosis, are now recognised as crucial in promoting aggressiveness through several mechanisms, including epigenetic modifications. Here, we review the existing literature on sphingolipids, cancer, and epigenetic changes, with a focus on the interaction between these elements and components of the chemical tumour microenvironment.
Collapse
|
21
|
Li HT, Jang HJ, Rohena-Rivera K, Liu M, Gujar H, Kulchycki J, Zhao S, Billet S, Zhou X, Weisenberger DJ, Gill I, Jones PA, Bhowmick NA, Liang G. RNA mis-splicing drives viral mimicry response after DNMTi therapy in SETD2-mutant kidney cancer. Cell Rep 2023; 42:112016. [PMID: 36662621 PMCID: PMC10034851 DOI: 10.1016/j.celrep.2023.112016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Tumors with mutations in chromatin regulators present attractive targets for DNA hypomethylating agent 5-aza-2'-deoxycytidine (DAC) therapy, which further disrupts cancer cells' epigenomic fidelity and reactivates transposable element (TE) expression to drive viral mimicry responses. SETD2 encodes a histone methyltransferase (H3K36me3) and is prevalently mutated in advanced kidney cancers. Here, we show that SETD2-mutant kidney cancer cells are especially sensitive in vitro and in vivo to DAC treatment. We find that the viral mimicry response are direct consequences of mis-splicing events, such as exon inclusions or extensions, triggered by DAC treatment in an SETD2-loss context. Comprehensive epigenomic analysis reveals H3K9me3 deposition, rather than DNA methylation dynamics, across intronic TEs might contribute to elevated mis-splicing rates. Through epigenomic and transcriptomic analyses, we show that SETD2-deficient kidney cancers are prone to mis-splicing, which can be therapeutically exacerbated with DAC treatment to increase viral mimicry activation and provide synergy with combinatorial immunotherapy approaches.
Collapse
Affiliation(s)
- Hong-Tao Li
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - H Josh Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Krizia Rohena-Rivera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Minmin Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hemant Gujar
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Justin Kulchycki
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Shuqing Zhao
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Sandrin Billet
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xinyi Zhou
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Inderbir Gill
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Neil A Bhowmick
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
22
|
Tsoneva DK, Ivanov MN, Conev NV, Manev R, Stoyanov DS, Vinciguerra M. Circulating Histones to Detect and Monitor the Progression of Cancer. Int J Mol Sci 2023; 24:ijms24020942. [PMID: 36674455 PMCID: PMC9860657 DOI: 10.3390/ijms24020942] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Liquid biopsies have emerged as a minimally invasive cancer detection and monitoring method, which could identify cancer-related alterations in nucleosome or histone levels and modifications in blood, saliva, and urine. Histones, the core component of the nucleosome, are essential for chromatin compaction and gene expression modulation. Increasing evidence suggests that circulating histones and histone complexes, originating from cell death or immune cell activation, could act as promising biomarkers for cancer detection and management. In this review, we provide an overview of circulating histones as a powerful liquid biopsy approach and methods for their detection. We highlight current knowledge on circulating histones in hematologic malignancies and solid cancer, with a focus on their role in cancer dissemination, monitoring, and tumorigenesis. Last, we describe recently developed strategies to identify cancer tissue-of-origin in blood plasma based on nucleosome positioning, inferred from nucleosomal DNA fragmentation footprint, which is independent of the genetic landscape.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Nikolay Vladimirov Conev
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Rostislav Manev
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Dragomir Svetozarov Stoyanov
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
- Correspondence:
| |
Collapse
|
23
|
Endothelin-3 is epigenetically silenced in endometrioid endometrial cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04525-w. [PMID: 36542159 PMCID: PMC10356642 DOI: 10.1007/s00432-022-04525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Abstract
Purpose
Changes in the activity of endothelins and their receptors may promote neoplastic processes. They can be caused by epigenetic modifications and modulators, but little is known about endothelin-3 (EDN3), particularly in endometrial cancer. The aim of the study was to determine the expression profile of endothelin family and their interactions with miRNAs, and to assess the degree of EDN3 methylation.
Methods
The study enrolled 45 patients with endometrioid endometrial cancer and 30 patients without neoplastic changes. The expression profile of endothelins and their receptors was determined with mRNA microarrays and RT-qPCR. The miRNA prediction was based on the miRNA microarray experiment and the mirDB tool. The degree of EDN3 methylation was assessed by MSP.
Results
EDN1 and EDNRA were overexpressed regardless of endometrial cancer grade, which may be due to the lack of regulatory effect of miR-130a-3p and miR-485-3p, respectively. In addition, EDN3 and EDNRB were significantly downregulated.
Conclusion
The endothelial axis is disturbed in endometrioid endometrial cancer. The observed silencing of EDN3 activity may be mainly due to DNA methylation.
Collapse
|
24
|
Screening for Lipid-Metabolism-Related Genes and Identifying the Diagnostic Potential of ANGPTL6 for HBV-Related Early-Stage Hepatocellular Carcinoma. Biomolecules 2022; 12:biom12111700. [DOI: 10.3390/biom12111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Lipid metabolic reprogramming is one of the hallmarks of hepatocarcinogenesis and development. Therefore, lipid-metabolism-related genes may be used as potential biomarkers for hepatocellular carcinoma (HCC). This study aimed to screen for genes with dysregulated expression related to lipid metabolism in HCC and explored the clinical value of these genes. We screened differentially expressed proteins between tumorous and adjacent nontumorous tissues of hepatitis B virus (HBV)-related HCC patients using a Nanoscale Liquid Chromatography–Tandem Mass Spectrometry platform and combined it with transcriptomic data of lipid-metabolism-related genes from the GEO and HPA databases to identify dysregulated genes that may be involved in lipid metabolic processes. The potential clinical values of these genes were explored by bioinformatics online analysis tools (GEPIA, cBioPortal, SurvivalMeth, and TIMER). The expression levels of the secreted protein (angiopoietin-like protein 6, ANGPTL6) in serum were analyzed by ELISA. The ability of serum ANGPTL6 to diagnose early HCC was assessed by ROC curves. The results showed that serum ANGPTL6 could effectively differentiate between HBV-related early HCC patients with normal serum alpha-fetoprotein (AFP) levels and the noncancer group (healthy participants and chronic hepatitis B patients) (AUC = 0.717, 95% CI: from 0.614 to 0.805). Serum ANGPTL6 can be used as a potential second-line biomarker to supplement serum AFP in the early diagnosis of HBV-related HCC.
Collapse
|
25
|
SIX3 function in cancer: progression and comprehensive analysis. Cancer Gene Ther 2022; 29:1542-1549. [PMID: 35764712 DOI: 10.1038/s41417-022-00488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
The homeobox gene family encodes transcription factors that are essential for cell growth, proliferation, and differentiation, and its dysfunction is linked to tumor initiation and progression. Sine oculis homeobox (SIX) belongs to the homeobox gene family, with SIX3 being a core member. Recent studies indicate that SXI3 functions as a cancer suppressor or promoter, which is mainly dependent on SIX3's influence on the signal pathways that promote or inhibit cancer in cells. The low expression of SIX3 in most malignant tumors was confirmed by detailed studies, which could promote the cell cycle, proliferation, migration, and angiogenesis. The recovery or upregulation of SIX3 expression to suppress cancer is closely related to the direct or indirect inhibition of the Wnt pathway. However, in some malignancies, such as esophageal cancer and gastric cancer, SIX3 is a tumor-promoting factor, and repressing SIX3 improves patients' prognosis. This review introduces the research progress of SIX3 in tumors and gives a comprehensive analysis, intending to explain why SIX3 plays different roles in different cancers and provide new cancer therapy strategies.
Collapse
|
26
|
Li HT, Xu L, Weisenberger DJ, Li M, Zhou W, Peng CC, Stachelek K, Cobrinik D, Liang G, Berry JL. Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy. Nat Commun 2022; 13:5523. [PMID: 36130950 PMCID: PMC9492718 DOI: 10.1038/s41467-022-33248-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023] Open
Abstract
Retinoblastoma (RB) is a cancer that forms in the developing retina of babies and toddlers. The goal of therapy is to cure the tumor, save the eye and maximize vision. However, it is difficult to predict which eyes are likely to respond to therapy. Predictive molecular biomarkers are needed to guide prognosis and optimize treatment decisions. Direct tumor biopsy is not an option for this cancer; however, the aqueous humor (AH) is an alternate source of tumor-derived cell-free DNA (cfDNA). Here we show that DNA methylation profiling of the AH is a valid method to identify the methylation status of RB tumors. We identify 294 genes directly regulated by methylation that are implicated in p53 tumor suppressor (RB1, p53, p21, and p16) and oncogenic (E2F) pathways. Finally, we use AH to characterize molecular subtypes that can potentially be used to predict the likelihood of treatment success for retinoblastoma patients.
Collapse
Affiliation(s)
- Hong-Tao Li
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
| | - Liya Xu
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, CA, 90033, USA
| | - Wanding Zhou
- University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Chen-Ching Peng
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Kevin Stachelek
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - David Cobrinik
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90089, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Jesse L Berry
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90089, USA.
| |
Collapse
|
27
|
Yuan Z, Yu X, Chen W, Chen D, Cai J, Jiang Y, Liu X, Wu Z, Wang L, Grady WM, Wang H. Epigenetic silencing and tumor suppressor gene of HAND2 by targeting ERK signaling in colorectal cancer. Cell Commun Signal 2022; 20:111. [PMID: 35870943 PMCID: PMC9308366 DOI: 10.1186/s12964-022-00878-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The screening biomarkers for early detection of colorectal cancer (CRC) is lacking. The aim is to identify epigenetic silenced genes and clarify its roles and underlying mechanism in CRC. We conducted integrative analyses of epigenome-wide Human Methylation 450 K arrays and transcriptome to screen out candidate epigenetic driver genes with transcription silencing. Methylated silencing HAND2 were identified and verified in large CRC cohort. The mechanism of HAND2 expression by promoter inhibition were clarified both in vitro and vivo assays. Cell biofunctional roles of HAND2 methylation was investigated in CRC cells. HAND2 reconstitution were constructed by lentivirus plasmid and tumor xenograft model of HAND2 were built subcutaneously. Genomic mRNA analysis by RNA-sequencing and subsequent GSEA analysis were performed to identify potential target of HAND2 and qPCR/WB was conducted to identify the results. RESULTS We firstly reported high frequency of HAND2 methylation in promoter in CRC and hypermethylation was negatively correlated with expression silencing and leaded to poor survival in several CRC cohort patients. 5-Aza treatment to demethylated HAND2 could revert its expression in CRC cells. Functionally, HAND2 reconstitution can inhibit cell proliferation, invasion and migration in vitro. In tumor xenograft, HAND2 reconstruction significantly repressed tumor growth when compared to control vector. Thousands of aberrant expressed genes were observed in the heatmap of RNA-sequencing data. HAND2 reconstitution could bind to ERK and reduce its phosphorylation by CoIP assay. These above results showed HAND2 reconstitution perturbed the activation of MAPK/ERK signaling by reduction of ERK phosphorylation. CONCLUSIONS HAND2 is one tumor suppressor by targeting ERK signaling and one potential epigenetic driver gene in CRC. Video Abstract.
Collapse
Affiliation(s)
- Zixu Yuan
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China.
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D4-100, Seattle, WA, 98109, USA.
| | - Xihu Yu
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenle Chen
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Daici Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jian Cai
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingming Jiang
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Xiaoxia Liu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhijie Wu
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Lei Wang
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D4-100, Seattle, WA, 98109, USA.
| | - Hui Wang
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China.
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
28
|
Gamba R, Mazzucco G, Wilhelm T, Velikovsky L, Salinas-Luypaert C, Chardon F, Picotto J, Bohec M, Baulande S, Doksani Y, Fachinetti D. Enrichment of centromeric DNA from human cells. PLoS Genet 2022; 18:e1010306. [PMID: 35853083 PMCID: PMC9295943 DOI: 10.1371/journal.pgen.1010306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Centromeres are key elements for chromosome segregation. Canonical centromeres are built over long-stretches of tandem repetitive arrays. Despite being quite abundant compared to other loci, centromere sequences overall still represent only 2 to 5% of the human genome, therefore studying their genetic and epigenetic features is a major challenge. Furthermore, sequencing of centromeric regions requires high coverage to fully analyze length and sequence variations, and this can be extremely costly. To bypass these issues, we have developed a technique, named CenRICH, to enrich for centromeric DNA from human cells based on selective restriction digestion and size fractionation. Combining restriction enzymes cutting at high frequency throughout the genome, except within most human centromeres, with size-selection of fragments >20 kb, resulted in over 25-fold enrichment in centromeric DNA. High-throughput sequencing revealed that up to 60% of the DNA in the enriched samples is made of centromeric repeats. We show that this method can be used in combination with long-read sequencing to investigate the DNA methylation status of certain centromeres and, with a specific enzyme combination, also of their surrounding regions (mainly HSATII). Finally, we show that CenRICH facilitates single-molecule analysis of replicating centromeric fibers by DNA combing. This approach has great potential for making sequencing of centromeric DNA more affordable and efficient and for single DNA molecule studies.
Collapse
Affiliation(s)
- Riccardo Gamba
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Giulia Mazzucco
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Therese Wilhelm
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Leonid Velikovsky
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | | | - Florian Chardon
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Julien Picotto
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Mylène Bohec
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, Paris, France
| | - Ylli Doksani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | |
Collapse
|
29
|
Chromosome-specific retention of cancer-associated DNA hypermethylation following pharmacological inhibition of DNMT1. Commun Biol 2022; 5:528. [PMID: 35654826 PMCID: PMC9163065 DOI: 10.1038/s42003-022-03509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/20/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe DNA methylation status of the X-chromosome in cancer cells is often overlooked because of computational difficulties. Most of the CpG islands on the X-chromosome are mono-allelically methylated in normal female cells and only present as a single copy in male cells. We treated two colorectal cancer cell lines from a male (HCT116) and a female (RKO) with increasing doses of a DNA methyltransferase 1 (DNMT1)-specific inhibitor (GSK3685032/GSK5032) over several months to remove as much non-essential CpG methylation as possible. Profiling of the remaining DNA methylome revealed an unexpected, enriched retention of DNA methylation on the X-chromosome. Strikingly, the identified retained X-chromosome DNA methylation patterns accurately predicted de novo DNA hypermethylation in colon cancer patient methylomes in the TCGA COAD/READ cohort. These results suggest that a re-examination of tumors for X-linked DNA methylation changes may enable greater understanding of the importance of epigenetic silencing of cancer related genes.
Collapse
|
30
|
Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell 2022; 40:458-478. [PMID: 35487215 DOI: 10.1016/j.ccell.2022.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
The translational challenges in the field of precision oncology are in part related to the biological complexity and diversity of this disease. Technological advances in genomics have facilitated large sequencing efforts and discoveries that have further supported this notion. In this review, we reflect on the impact of these discoveries on our understanding of several concepts: cancer initiation, cancer prevention, early detection, adjuvant therapy and minimal residual disease monitoring, cancer drug resistance, and cancer evolution in metastasis. We discuss key areas of focus for improving cancer outcomes, from biological insights to clinical application, and suggest where the development of these technologies will lead us. Finally, we discuss practical challenges to the wider adoption of molecular profiling in the clinic and the need for robust translational infrastructure.
Collapse
Affiliation(s)
- Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
31
|
Tu S, Zhang H, Qu X. Screening of key methylation-driven genes CDO1 in breast cancer based on WGCNA. Cancer Biomark 2022; 34:571-582. [PMID: 35342080 DOI: 10.3233/cbm-210485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND With the rapid development of genomics and molecular biology, not only have biochemical indicators been used as tumour markers, but many new molecular markers have emerged. Epigenetic abnormalities are a new type of molecular marker, and DNA methylation is an important part of epigenetics. OBJECTIVE This study used weighted gene coexpression network analysis (WGCNA) to analyse key methylation-driven genes in breast cancer. METHODS The RNA-seq transcriptome data, DNA methylation data, and clinical information data of breast cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database, and the MethylMix R package was used to screen methylation-driven genes in breast cancer. The ClusterProfiler package and enrichplot package in R software were used to further analyse the function and signalling pathway of methylation-driven genes. Through univariate and multivariate Cox regression analyses, methylation-driver genes related to prognostic were obtained, a prognostic model was constructed and prognostic characteristics were analysed. RESULTS The 17 methylation-driven genes related to prognosis were obtained by the WGCNA method in breast cancer, and the prognostic significance of these methylation-driven genes was determined by transcriptome and methylation combined survival analysis. Analysis of functions and signalling pathways showed that these genes were mainly enriched in biological processes and signalling pathway. Through univariate and multivariate Cox regression analyses, a prognostic model of 5 methylation-driven genes was constructed. CONCLUSIONS The AUC of the receiver operating characteristic (ROC) curve of this model was 0.784, showing that the model had a good prediction effect. Based on WGCNA screening, it was found that only CDO1 was the key methylation-driven gene for prognosis in breast cancer, indicating that CDO1 may be an important indicator of the prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Simei Tu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning, China
| | - Hao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning, China
| | - Xinjian Qu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning, China
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
32
|
Effect of single and double methylation on the position of the π∗ shape resonance of formamide and acetamide. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Muthamilselvan S, Raghavendran A, Palaniappan A. Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression. PLoS One 2022; 17:e0249151. [PMID: 35202405 PMCID: PMC8870460 DOI: 10.1371/journal.pone.0249151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant DNA methylation acts epigenetically to skew the gene transcription rate up or down, contributing to cancer etiology. A gap in our understanding concerns the epigenomics of stagewise cancer progression. In this study, we have developed a comprehensive computational framework for the stage-differentiated modelling of DNA methylation landscapes in colorectal cancer (CRC). Methods The methylation β-matrix was derived from the public-domain TCGA data, converted into M-value matrix, annotated with AJCC stages, and analysed for stage-salient genes using an ensemble of approaches involving stage-differentiated modelling of methylation patterns and/or expression patterns. Differentially methylated genes (DMGs) were identified using a contrast against controls (adjusted p-value <0.001 and |log fold-change of M-value| >2), and then filtered using a series of all possible pairwise stage contrasts (p-value <0.05) to obtain stage-salient DMGs. These were then subjected to a consensus analysis, followed by matching with clinical data and performing Kaplan–Meier survival analysis to evaluate the impact of methylation patterns of consensus stage-salient biomarkers on disease prognosis. Results We found significant genome-wide changes in methylation patterns in cancer cases relative to controls agnostic of stage. The stage-differentiated models yielded the following consensus salient genes: one stage-I gene (FBN1), one stage-II gene (FOXG1), one stage-III gene (HCN1) and four stage-IV genes (NELL1, ZNF135, FAM123A, LAMA1). All the biomarkers were significantly hypermethylated in the promoter regions, indicating down-regulation of expression and implying a putative CpG island Methylator Phenotype (CIMP) manifestation. A prognostic signature consisting of FBN1 and FOXG1 survived all the analytical filters, and represents a novel early-stage epigenetic biomarker / target. Conclusions We have designed and executed a workflow for stage-differentiated epigenomic analysis of colorectal cancer progression, and identified several stage-salient diagnostic biomarkers, and an early-stage prognostic biomarker panel. The study has led to the discovery of an alternative CIMP-like signature in colorectal cancer, reinforcing the role of CIMP drivers in tumor pathophysiology.
Collapse
Affiliation(s)
- Sangeetha Muthamilselvan
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
| | - Abirami Raghavendran
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
- * E-mail:
| |
Collapse
|
34
|
Wang X, Xiong M, Pan B, Cho WCS, Zhou J, Wang S, He B. Association Between SNPs in the One-Carbon Metabolism Pathway and the Risk of Female Breast Cancer in a Chinese Population. Pharmgenomics Pers Med 2022; 15:9-16. [PMID: 35046699 PMCID: PMC8761026 DOI: 10.2147/pgpm.s328612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The aim of this study is to assess the relationship between the single-nucleotide polymorphism (SNP) in the one-carbon metabolism pathway (MTR rs1805087; MTHFR rs1801133; ALDH1L1 rs2002287, rs2276731; DNMT1 rs16999593, rs2228611; DNMT3B rs2424908) and the risk of female breast cancer (BC) in a Chinese population. Methods A population-based case-control study was conducted, involving a total of 439 BC patients and 439 age-matched healthy controls. We adopted Sequence MASSarray to identify genotyping, and used immunohistochemistry (IHC) to test the expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) in tumor tissue. Results We found that rs16999593 (TC/CC vs TT: adjusted OR=1.38, 95% CI: 1.03-1.84, p=0.030) was associated with an increased risk of BC, while rs2228611 was related to a decreased BC risk (GA/AA vs GG: adjusted OR=0.74, 95% CI: 0.56-0.97, p=0.030). In addition, stratified analysis revealed that DNMT1 rs16999593, rs2228611 and ALDH1L1 rs2002287 contributed to the risk of BC, with associations with ER, PR and HER-2 expression. Conclusion In summary, this study revealed that DNMT1 rs16999593 and rs2228611 were associated with BC risk.
Collapse
Affiliation(s)
- Xuhong Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210096, People's Republic of China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People's Republic of China
| | - Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People's Republic of China
| | - Bei Pan
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210096, People's Republic of China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People's Republic of China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, People's Republic of China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210096, People's Republic of China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People's Republic of China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People's Republic of China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
35
|
Yan J, Man Z, Gao L, Cai L, Lu Q, Dong J. The role of CpG island methylator phenotype in the clinical course of hepatocellular carcinoma. Bioinformatics 2021; 38:9-15. [PMID: 34406374 DOI: 10.1093/bioinformatics/btab600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Aberrant DNA methylation is strongly associated with heterogeneity in tumors. This study investigated the prognostic value of CpG island methylator phenotype in hepatocellular carcinoma (HCC). RESULTS A total of 319 HCC samples with 21 121 CpG sites were included in this study and 215 disease-free survival (DFS) and overall survival (OS)-related CpG sites were identified. These CpG sites were divided into seven clusters by using consensus clustering method. Cluster 4, which constructed the prognostic prediction model as the seed cluster to evaluate survival risk for DFS and OS of HCC patients, had the lowest methylation level with the worse prognosis. The low-risk group patients had a significantly prolonged DFS and OS than the patients in the high-risk group (P = 0.008 and P < 0.001, respectively). A receiver operating characteristic curve results for predicting DFS and OS were 0.691 and 0.695, respectively. These results suggested that the CpG site methylation appears to be an informative prognostic biomarker in HCC. The CpG site methylation-related prognostic model may be an innovative insight to evaluate clinical outcomes for HCC patients. AVAILABILITY AND IMPLEMENTATION The code of the analysis is available at https://www.bioconductor.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jun Yan
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing 102218, China.,Department of Hepatobiliary Surgery, Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou 221000, China
| | - Zhongsong Man
- Department of Hepatobiliary Surgery, Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou 221000, China.,Xuzhou Clinical School of Xuzhou Medical University, Xuzhou 221000, China
| | - Lu Gao
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing 102218, China
| | - Lei Cai
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen 518000, China
| | - Qian Lu
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing 102218, China
| | - Jiahong Dong
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing 102218, China
| |
Collapse
|
36
|
Walunj D, Thankarajan E, Prasad C, Tuchinsky H, Baldan S, Sherman MY, Patsenker L, Gellerman G. Targeted methylation facilitates DNA double strand breaks and enhances cancer suppression: A DNA intercalating/methylating dual-action chimera Amonafidazene. Eur J Med Chem 2021; 225:113811. [PMID: 34507011 DOI: 10.1016/j.ejmech.2021.113811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 02/01/2023]
Abstract
A DNA intercalating agent Amonafide interferes with topoisomerase 2 (Topo II) activity and prevents re-ligation of DNA strands, leading to double strand breaks (DSB). If DSB repair fails, cells stop dividing and eventually die. In a search of approaches to enhance anti-cancer activities of Topo II inhibitors, we hypothesized that introduction of additional damage in proximity to the DSB may suppress DNA repair and enhance cancer cell killing. Accordingly, chimeric molecules were created that target a DNA alkylating component to the proximity of Topo II-induced DSBs. These chimeras consist of Amonafide or its 4-amino isomer, and DNA methylating methyl triazene moiety Azene protected with a carbamate group, connected via linker. Treatment of cancer cells with the chimeric molecules leads to significantly higher number of DSBs, which were repaired slower compared to Amonafide or monomethyl triazene-treated cells. On the other hand, methyl triazene linked to non-intercalating Amonafide analogs was ineffective. Together, these data strongly support our hypothesis. In line with increased DSBs, the chimeric molecules exhibited significantly higher antiproliferative activity in cancer cell lines compared to Amonafide or monomethyl triazene constituent Azene. We utilized the fluorescent properties of chimera Amonafidazene to develop ''photo-switchable'' reporting system to monitor the prodrug activation. Using this approach, we found that the chimera accumulated and was activated at the tumor sites specifically and demonstrated significantly stronger tumor suppressing activities compared to Amonafide in a xenograft model. Therefore, targeting alkylating groups to the proximity of DSB sites may become an effective approach towards enhancing anti-cancer activities of inhibitors of topoisomerases.
Collapse
Affiliation(s)
- Dipak Walunj
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| | | | | | - Helena Tuchinsky
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Simone Baldan
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Leonid Patsenker
- Department of Chemical Sciences, Ariel University, Ariel, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel, Israel.
| |
Collapse
|
37
|
Chen R, Ishak CA, De Carvalho DD. Endogenous Retroelements and the Viral Mimicry Response in Cancer Therapy and Cellular Homeostasis. Cancer Discov 2021; 11:2707-2725. [PMID: 34649957 DOI: 10.1158/2159-8290.cd-21-0506] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Features of the cancer epigenome distinguish cancers from their respective cell of origin and establish therapeutic vulnerabilities that can be exploited through pharmacologic inhibition of DNA- or histone-modifying enzymes. Epigenetic therapies converge with cancer immunotherapies through "viral mimicry," a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons. This review describes the initial characterization and expansion of viral mimicry-inducing approaches as well as features that "prime" cancers for viral mimicry induction. Increased understanding of viral mimicry in therapeutic contexts suggests potential physiologic roles in cellular homeostasis. SIGNIFICANCE: Recent literature establishes elevated cytosolic double strand RNA (dsRNA) levels as a cancer-specific therapeutic vulnerability that can be elevated by viral mimicry-inducing therapies beyond tolerable thresholds to induce antiviral signaling and increase dependence on dsRNA stress responses mediated by ADAR1. Improved understanding of viral mimicry signaling and tolerance mechanisms reveals synergistic treatment combinations with epigenetic therapies that include inhibition of BCL2, ADAR1, and immune checkpoint blockade. Further characterization of viral mimicry tolerance may identify contexts that maximize efficacy of conventional cancer therapies.
Collapse
Affiliation(s)
- Raymond Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
38
|
He Y, Lu M, Che J, Chu Q, Zhang P, Chen Y. Biomarkers and Future Perspectives for Hepatocellular Carcinoma Immunotherapy. Front Oncol 2021; 11:716844. [PMID: 34552872 PMCID: PMC8450565 DOI: 10.3389/fonc.2021.716844] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular cancer is the sixth most frequently diagnosed malignant disease worldwide, and was responsible for tens of millions of deaths in 2020; however, treatment options for patients with advanced hepatocellular carcinoma remain limited. Immunotherapy has undergone rapid development over recent years, especially in the field of immune checkpoint inhibitors (ICIs). These drugs aim to activate and enhance antitumor immunity and represent a new prospect for the treatment of patients with advanced cancer. Nevertheless, only a small proportion of liver cancer patients currently benefit from ICI-based treatment, highlighting the need to better understand how ICIs and tumors interact, as well as identify predictive biomarkers for immunotherapeutic responses. In this review, we highlight clinical trials and basic research in hepatocellular carcinoma, with a particular focus on predictive biomarkers for the therapeutic efficacy of ICIs. Predictive biomarkers for immune-related adverse events are also discussed.
Collapse
Affiliation(s)
- Yuqing He
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyao Lu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Che
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Nag JK, Malka H, Appasamy P, Sedley S, Bar-Shavit R. GPCR Partners as Cancer Driver Genes: Association with PH-Signal Proteins in a Distinctive Signaling Network. Int J Mol Sci 2021; 22:8985. [PMID: 34445691 PMCID: PMC8396503 DOI: 10.3390/ijms22168985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
The essential role of G-protein coupled receptors (GPCRs) in tumor growth is recognized, yet a GPCR based drug in cancer is rare. Understanding the molecular path of a tumor driver gene may lead to the design and development of an effective drug. For example, in members of protease-activated receptor (PAR) family (e.g., PAR1 and PAR2), a novel PH-binding motif is allocated as critical for tumor growth. Animal models have indicated the generation of large tumors in the presence of PAR1 or PAR2 oncogenes. These tumors showed effective inhibition when the PH-binding motif was either modified or were inhibited by a specific inhibitor targeted to the PH-binding motif. In the second part of the review we discuss several aspects of some cardinal GPCRs in tumor angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (J.K.N.); (H.M.); (P.A.); (S.S.)
| |
Collapse
|
40
|
Notarstefano V, Belloni A, Sabbatini S, Pro C, Orilisi G, Monterubbianesi R, Tosco V, Byrne HJ, Vaccari L, Giorgini E. Cytotoxic Effects of 5-Azacytidine on Primary Tumour Cells and Cancer Stem Cells from Oral Squamous Cell Carcinoma: An In Vitro FTIRM Analysis. Cells 2021; 10:2127. [PMID: 34440896 PMCID: PMC8392608 DOI: 10.3390/cells10082127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 01/05/2023] Open
Abstract
In the present study, the cytotoxic effects of 5-azacytidine on primary Oral Squamous Cell Carcinoma cells (OSCCs) from human biopsies, and on Cancer Stem Cells (CSCs) from the same samples, were investigated by an in vitro Fourier Transform InfraRed Microscospectroscopy (FTIRM) approach coupled with multivariate analysis. OSCC is an aggressive tumoral lesion of the epithelium, accounting for ~90% of all oral cancers. It is usually diagnosed in advanced stages, and this causes a poor prognosis with low success rates of surgical, as well as radiation and chemotherapy treatments. OSCC is frequently characterised by recurrence after chemotherapy and by the development of a refractoriness to some employed drugs, which is probably ascribable to the presence of CSCs niches, responsible for cancer growth, chemoresistance and metastasis. The spectral information from FTIRM was correlated with the outcomes of cytotoxicity tests and image-based cytometry, and specific spectral signatures attributable to 5-azacytidine treatment were identified, allowing us to hypothesise the demethylation of DNA and, hence, an increase in the transcriptional activity, together with a conformational transition of DNA, and a triggering of cell death by an apoptosis mechanism. Moreover, a different mechanism of action between OSSC and CSC cells was highlighted, probably due to possible differences between OSCCs and CSCs response.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| | - Alessia Belloni
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| | - Simona Sabbatini
- Department of Material, Environmental Sciences and Urban Planning, Università Politecnica Delle Marche, 60131 Ancona, Italy;
| | - Chiara Pro
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| | - Giulia Orilisi
- Department of Clinical Sciences and Stomatology, Università Politecnica Delle Marche, 60126 Ancona, Italy; (G.O.); (R.M.); (V.T.)
| | - Riccardo Monterubbianesi
- Department of Clinical Sciences and Stomatology, Università Politecnica Delle Marche, 60126 Ancona, Italy; (G.O.); (R.M.); (V.T.)
| | - Vincenzo Tosco
- Department of Clinical Sciences and Stomatology, Università Politecnica Delle Marche, 60126 Ancona, Italy; (G.O.); (R.M.); (V.T.)
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin 8, Ireland;
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, SISSI Beamline, 34149 Basovizza, Italy;
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, 60131 Ancona, Italy; (V.N.); (A.B.); (C.P.)
| |
Collapse
|
41
|
Gujar H, Mehta A, Li HT, Tsai YC, Qiu X, Weisenberger DJ, Jasiulionis MG, In GK, Liang G. Characterizing DNA methylation signatures and their potential functional roles in Merkel cell carcinoma. Genome Med 2021; 13:130. [PMID: 34399838 PMCID: PMC8365948 DOI: 10.1186/s13073-021-00946-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare but aggressive skin cancer with limited treatment possibilities. Merkel cell tumors display with neuroendocrine features and Merkel cell polyomavirus (MCPyV) infection in the majority (80%) of patients. Although loss of histone H3 lysine 27 trimethylation (H3K27me3) has been shown during MCC tumorigenesis, epigenetic dysregulation has largely been overlooked. METHODS We conducted global DNA methylation profiling of clinically annotated MCC primary tumors, metastatic skin tumors, metastatic lymph node tumors, paired normal tissues, and two human MCC cell lines using the Illumina Infinium EPIC DNA methylation BeadArray platform. RESULTS Significant differential DNA methylation patterns across the genome are revealed between the four tissue types, as well as based on MCPyV status. Furthermore, 964 genes directly regulated by promoter or gene body DNA methylation were identified with high enrichment in neuro-related pathways. Finally, our findings suggest that loss of H3K27me3 occupancy in MCC is attributed to KDM6B and EZHIP overexpression as a consequence of promoter DNA hypomethylation. CONCLUSIONS We have demonstrated specific DNA methylation patterns for primary MCC tumors, metastatic MCCs, and adjacent-normal tissues. We have also identified DNA methylation markers that not only show potential diagnostic or prognostic utility in MCC management, but also correlate with MCC tumorigenesis, MCPyV expression, neuroendocrine features, and H3K27me3 status. The identification of DNA methylation alterations in MCC supports the need for further studies to understand the clinical implications of epigenetic dysregulation and potential therapeutic targets in MCC.
Collapse
Affiliation(s)
- Hemant Gujar
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Arjun Mehta
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Hong-Tao Li
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Yvonne C. Tsai
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Xiangning Qiu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669 5 andar, Vila Clementino, São Paulo, SP 04039032 Brazil
| | - Gino K. In
- Department of Dermatology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
42
|
Mao Y, Qamar M, Qamar SA, Khan MI, Bilal M, Iqbal HM. Insight of nanomedicine strategies for a targeted delivery of nanotherapeutic cues to cope with the resistant types of cancer stem cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Liu W, Huang Y, Wang D, Han F, Chen H, Chen J, Jiang X, Cao J, Liu J. MPDZ as a novel epigenetic silenced tumor suppressor inhibits growth and progression of lung cancer through the Hippo-YAP pathway. Oncogene 2021; 40:4468-4485. [PMID: 34108620 DOI: 10.1038/s41388-021-01857-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023]
Abstract
MPDZ also named MUPP1 is involved in signal transduction mediated by the formation of protein complexes. However, the expression regulation, clinical significance, potential function, and mechanism of this gene in lung cancer remain unclear. Methylation status of MPDZ was measured by methylation-specific PCR and bisulfite genomic sequencing. Kaplan-Meier and Cox regression analyses were performed to identify the prognostic value of MPDZ. The tumor suppressing effects of MPDZ were determined in vitro and in vivo. The target molecules and signaling pathway that mediated the function of MPDZ were also identified. MPDZ methylation was identified in 61.2% of primary lung cancer tissues and most lung cancer cell lines but not in normal lung tissues. MPDZ expression was significantly downregulated in lung cancer tissues and negatively associated with DNA hypermethylation, and attenuated MPDZ expression predicted a poor outcome. Furthermore, MPDZ overexpression prominently dampened cell growth, migration, and invasion of tumor cells. Conversely, MPDZ knockdown promoted cell proliferation, migration, and invasion in vitro and in vivo. Moreover, MPDZ deficiency promotes tumor metastasis and reduces the survival of MPDZ knockout mice. Importantly, MPDZ promotes tumor suppressor ability that depends on the Hippo pathway-mediated repression of YAP. MPDZ activates the phosphorylation of YAP (Ser127) and inhibits YAP expression through stabilizing MST1 and interaction with LATS1. We first identified and validated that MPDZ methylation and expression could be a good diagnostic marker and independent prognostic factor for lung cancer. MPDZ functions as a tumor suppressor by inhibiting cell proliferation, migration, and invasion through regulating the Hippo-YAP signaling pathway.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China.
| | - Yongsheng Huang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Dandan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jianping Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China.
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, PR China.
| |
Collapse
|
44
|
Cristall K, Bidard FC, Pierga JY, Rauh MJ, Popova T, Sebbag C, Lantz O, Stern MH, Mueller CR. A DNA methylation-based liquid biopsy for triple-negative breast cancer. NPJ Precis Oncol 2021; 5:53. [PMID: 34135468 PMCID: PMC8209161 DOI: 10.1038/s41698-021-00198-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Here, we present a next-generation sequencing (NGS) methylation-based blood test called methylation DETEction of Circulating Tumour DNA (mDETECT) designed for the optimal detection and monitoring of metastatic triple-negative breast cancer (TNBC). Based on a highly multiplexed targeted sequencing approach, this assay incorporates features that offer superior performance and included 53 amplicons from 47 regions. Analysis of a previously characterised cohort of women with metastatic TNBC with limited quantities of plasma (<2 ml) produced an AUC of 0.92 for detection of a tumour with a sensitivity of 76% for a specificity of 100%. mDETECTTNBC was quantitative and showed superior performance to an NGS TP53 mutation-based test carried out on the same patients and to the conventional CA15-3 biomarker. mDETECT also functioned well in serum samples from metastatic TNBC patients where it produced an AUC of 0.97 for detection of a tumour with a sensitivity of 93% for a specificity of 100%. An assay for BRCA1 promoter methylation was also incorporated into the mDETECT assay and functioned well but its clinical significance is currently unclear. Clonal Hematopoiesis of Indeterminate Potential was investigated as a source of background in control subjects but was not seen to be significant, though a link to adiposity may be relevant. The mDETECTTNBC assay is a liquid biopsy able to quantitatively detect all TNBC cancers and has the potential to improve the management of patients with this disease.
Collapse
Affiliation(s)
- Katrina Cristall
- Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Francois-Clement Bidard
- Circulating Tumor Biomarkers Laboratory, SiRIC, Translational Research Department, Institut Curie, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France
| | - Jean-Yves Pierga
- Circulating Tumor Biomarkers Laboratory, SiRIC, Translational Research Department, Institut Curie, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France.,Université Paris Descartes, Paris, France
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Tatiana Popova
- INSERM U830 Cancer, Heterogeneity, Instability and Plasticity (CHIP), Institut Curie, Paris, France
| | - Clara Sebbag
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Olivier Lantz
- Circulating Tumor Biomarkers Laboratory, SiRIC, Translational Research Department, Institut Curie, Paris, France.,INSERM CIC BT 1428, Institut Curie, Paris, France.,INSERM U932, Institut Curie, Paris, France
| | - Marc-Henri Stern
- INSERM U830 Cancer, Heterogeneity, Instability and Plasticity (CHIP), Institut Curie, Paris, France
| | - Christopher R Mueller
- Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada. .,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada. .,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
45
|
Sun X, Yi J, Yang J, Han Y, Qian X, Liu Y, Li J, Lu B, Zhang J, Pan X, Liu Y, Liang M, Chen E, Liu P, Lu Y. An integrated epigenomic-transcriptomic landscape of lung cancer reveals novel methylation driver genes of diagnostic and therapeutic relevance. Am J Cancer Res 2021; 11:5346-5364. [PMID: 33859751 PMCID: PMC8039961 DOI: 10.7150/thno.58385] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Aberrant DNA methylation occurs commonly during carcinogenesis and is of clinical value in human cancers. However, knowledge of the impact of DNA methylation changes on lung carcinogenesis and progression remains limited. Methods: Genome-wide DNA methylation profiles were surveyed in 18 pairs of tumors and adjacent normal tissues from non-small cell lung cancer (NSCLC) patients using Reduced Representation Bisulfite Sequencing (RRBS). An integrated epigenomic-transcriptomic landscape of lung cancer was depicted using the multi-omics data integration method. Results: We discovered a large number of hypermethylation events pre-marked by poised promoter in embryonic stem cells, being a hallmark of lung cancer. These hypermethylation events showed a high conservation across cancer types. Eight novel driver genes with aberrant methylation (e.g., PCDH17 and IRX1) were identified by integrated analysis of DNA methylome and transcriptome data. Methylation level of the eight genes measured by pyrosequencing can distinguish NSCLC patients from lung tissues with high sensitivity and specificity in an independent cohort. Their tumor-suppressive roles were further experimentally validated in lung cancer cells, which depend on promoter hypermethylation. Similarly, 13 methylation-driven ncRNAs (including 8 lncRNAs and 5 miRNAs) were identified, some of which were co-regulated with their host genes by the same promoter hypermethylation. Finally, by analyzing the transcription factor (TF) binding motifs, we uncovered sets of TFs driving the expression of epigenetically regulated genes and highlighted the epigenetic regulation of gene expression of TCF21 through DNA methylation of EGR1 binding motifs. Conclusions: We discovered several novel methylation driver genes of diagnostic and therapeutic relevance in lung cancer. Our findings revealed that DNA methylation in TF binding motifs regulates target gene expression by affecting the binding ability of TFs. Our study also provides a valuable epigenetic resource for identifying DNA methylation-based diagnostic biomarkers, developing cancer drugs for epigenetic therapy and studying cancer pathogenesis.
Collapse
|
46
|
Su SF, Liu CH, Cheng CL, Ho CC, Yang TY, Chen KC, Hsu KH, Tseng JS, Chen HW, Chang GC, Yu SL, Li KC. Genome-Wide Epigenetic Landscape of Lung Adenocarcinoma Links HOXB9 DNA Methylation to Intrinsic EGFR-TKI Resistance and Heterogeneous Responses. JCO Precis Oncol 2021; 5:PO.20.00151. [PMID: 34036228 PMCID: PMC8140798 DOI: 10.1200/po.20.00151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) show efficacy in treating patients with lung adenocarcinoma with EGFR-activating mutations. However, a significant subset of targeted patients fail to respond. Unlike acquired resistance (AR), intrinsic resistance (IR) remains poorly understood. We investigated whether epigenomic factors contribute to patient-to-patient heterogeneity in the EGFR-TKI response and aimed to characterize the IR subpopulation that obtains no benefit from EGFR-TKIs. PATIENTS AND METHODS We conducted genome-wide DNA methylation profiling of 79 tumors sampled from patients with advanced lung adenocarcinoma before they received EGFR-TKI treatment and analyzed the patient responses. Pyrosequencing was performed in a validation cohort of 163 patients with EGFR-activating mutations. RESULTS A DNA methylation landscape of 216 CpG sites with differential methylation was established to elucidate the association of DNA methylation with the characteristics and EGFR-TKI response status of the patients. Functional analysis of 37 transcription-repressive sites identified the enrichment of transcription factors, notably homeobox (HOX) genes. DNA methylation of HOXB9 (cg13643585) in the enhancer region yielded 88% sensitivity for predicting drug response (odds ratio [OR], 6.64; 95% CI, 1.98 to 25.23; P = .0009). Pyrosequencing validated that HOXB9 gained methylation in patients with a poor EGFR-TKI response (OR, 3.06; 95% CI, 1.13 to 8.19; P = .019). CONCLUSION Our data suggest that homeobox DNA methylation could be a novel tumor cellular state that can aid the precise categorization of tumor heterogeneity in the study of IR to EGFR-TKIs. We identified, for the first time, an epigenomic factor that can potentially complement DNA mutation status in discriminating patients with lung adenocarcinoma who are less likely to benefit from EGFR-TKI treatment, thereby leading to improved patient management in precision medicine.
Collapse
Affiliation(s)
- Sheng-Fang Su
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University, College of Medicine, Taipei, Taiwan.,YongLin Institute of Health, YongLin Scholar, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsin Liu
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chiou-Ling Cheng
- NTU Centers for Genomic and Precision Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Chieh Chen
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Kuo-Hsuan Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Internal Medicine, Division of Critical Care and Respiratory Therapy, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Sen Tseng
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Gee-Chen Chang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sung-Liang Yu
- NTU Centers for Genomic and Precision Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pathology and Graduate Institute of Pathology, National Taiwan University, College of Medicine, Taipei, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Statistics, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
47
|
Santoni D, Pignotti D, Vergni D. A genome-wide study on differential methylation in different cancers using TCGA database. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Abstract
Through novel methodologies, including both basic and clinical research, progress has been made in the therapy of solid cancer. Recent innovations in anticancer therapies, including immune checkpoint inhibitor biologics, therapeutic vaccines, small drugs, and CAR-T cell injections, mark a new epoch in cancer research, already known for faster (epi-)genomics, transcriptomics, and proteomics. As the long-sought after personalization of cancer therapies comes to fruition, the need to evaluate all current therapeutic possibilities and select the best for each patient is of paramount importance. This is a novel task for medical care that deserves prominence in therapeutic considerations in the future. This is because cancer is a complex genetic disease. In its deadly form, metastatic cancer, it includes altered genes (and their regulators) that encode ten hallmarks of cancer-independent growth, dodging apoptosis, immortalization, multidrug resistance, neovascularization, invasiveness, genome instability, inflammation, deregulation of metabolism, and avoidance of destruction by the immune system. These factors have been known targets for many anticancer drugs and treatments, and their modulation is a therapeutic goal, with the hope of rendering solid cancer a chronic rather than deadly disease. In this article, the current therapeutic arsenal against cancers is reviewed with a focus on immunotherapies.
Collapse
Affiliation(s)
- Zlatko Dembic
- Molecular Genetics Laboratory, Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
- Molecular Genetics Laboratory, Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
49
|
Li Y, Bai L, Yu H, Cai D, Wang X, Huang B, Peng S, Huang M, Cao G, Kaz AM, Grady WM, Wang J, Luo Y. Epigenetic Inactivation of α-Internexin Accelerates Microtubule Polymerization in Colorectal Cancer. Cancer Res 2020; 80:5203-5215. [PMID: 33051252 DOI: 10.1158/0008-5472.can-20-1590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/26/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
Abstract
DNA methylation contributes to malignant transformation, but little is known about how the methylation drives colorectal cancer evolution at the early stages. Here we identify aberrant INA (α-internexin) gene methylation in colon adenoma and adenocarcinoma by filtering data obtained from a genome-wide screen of methylated genes. The gene encoding INA, a type IV intermediate filament, was frequently hypermethylated in CpG islands located in the promoter region. This hypermethylation preferentially occurred in large tumors and was a prognostic marker for poor overall survival in patients with colorectal cancer. This type of epigenetic alteration silenced INA expression in both adenoma and adenocarcinoma tissues. Gene silencing of INA in colorectal cancer cells increased cell proliferation, migration, and invasion. Restored INA expression blocked migration and invasion in vitro and reduced lung metastasis in vivo. Mechanistically, INA directly inhibited microtubule polymerization in vitro and decreased intracellular microtubule plus-end assembly rates. A peptide array screen surveying the tubulin-binding sites in INA identified a tubulin-binding motif located in the N-terminal head domain that plays a tumor-suppressive role by binding to unpolymerized tubulins and impeding microtubule polymerization. Thus, epigenetic inactivation of INA is an intermediate filament reorganization event that is essential to accelerate microtubule polymerization in the early stages of colorectal cancer. SIGNIFICANCE: This work provides insight into the epigenetic inactivation of INA, a novel identified tumor suppressor, which increases microtubule polymerization during colorectal cancer progression.
Collapse
Affiliation(s)
- Yingjie Li
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liangliang Bai
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Du Cai
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baoyuan Huang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoyong Peng
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meijin Huang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Andrew M Kaz
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Gastroenterology Section, VA Puget Sound Health Care System, Seattle, Washington.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Jianping Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Park J, Ahn SH, Shin MG, Kim HK, Chang S. tRNA-Derived Small RNAs: Novel Epigenetic Regulators. Cancers (Basel) 2020; 12:cancers12102773. [PMID: 32992597 PMCID: PMC7599909 DOI: 10.3390/cancers12102773] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cells must synthesize new proteins to maintain its life and tRNA (transfer RNA) is an essential component of the translation process. tRNA-derived small RNA (tsRNA) is a relatively uncharacterized small RNA, derived from enzymatic cleavage of the tRNAs. Accumulating evidences suggest that tsRNA is an abundant, highly modified, dynamically regulated small-RNA and interacts with other types of RNAs or proteins. Moreover, it is abnormally expressed in multiple human diseases including systemic lupus, neurological disorder, metabolic disorder and cancer, implying its diverse function in the initiation or progression of such diseases. In this review, we summarize the classification of tsRNA and its role focused on the epigenetic regulation. Further, we discuss the limitation of current knowledge about the tsRNA and its potential applications. Abstract An epigenetic change is a heritable genetic alteration that does not involve any nucleotide changes. While the methylation of specific DNA regions such as CpG islands or histone modifications, including acetylation or methylation, have been investigated in detail, the role of small RNAs in epigenetic regulation is largely unknown. Among the many types of small RNAs, tRNA-derived small RNAs (tsRNAs) represent a class of noncoding small RNAs with multiple roles in diverse physiological processes, including neovascularization, sperm maturation, immune modulation, and stress response. Regarding these roles, several pioneering studies have revealed that dysregulated tsRNAs are associated with human diseases, such as systemic lupus, neurological disorder, metabolic disorder, and cancer. Moreover, recent findings suggest that tsRNAs regulate the expression of critical genes linked with these diseases by a variety of mechanisms, including epigenetic regulation. In this review, we will describe different classes of tsRNAs based on their biogenesis and will focus on their role in epigenetic regulation.
Collapse
Affiliation(s)
- Joonhyeong Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
| | - Se Hee Ahn
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Myung Geun Shin
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
- Correspondence: (H.K.K.); (S.C.); Tel.: +82-2-820-5197 (H.K.K.); +82-2-3010-2095 (S.C.)
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
- Correspondence: (H.K.K.); (S.C.); Tel.: +82-2-820-5197 (H.K.K.); +82-2-3010-2095 (S.C.)
| |
Collapse
|