1
|
Mineev KS, Hargittay B, Jin J, Catapano C, Dietz MS, Segarra M, Harwardt MS, Richter C, Jonker HRA, Saxena K, Sreeramulu S, Heilemann M, Acker-Palmer A, Schwalbe H. Differential effects of the N-terminal helix of FGF8b on the activity of a small-molecule FGFR inhibitor in cell culture and for the extracellular domain of FGFR3c in solution. FEBS Lett 2024; 598:2518-2532. [PMID: 38997225 DOI: 10.1002/1873-3468.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
SSR128129E (SSR) is a unique small-molecule inhibitor of fibroblast growth factor receptors (FGFRs). SSR is a high-affinity allosteric binder that selectively blocks one of the two major FGFR-mediated pathways. The mechanisms of SSR activity were studied previously in much detail, allowing the identification of its binding site, located in the hydrophobic groove of the receptor D3 domain. The binding site overlaps with the position of an N-terminal helix, an element exclusive for the FGF8b growth factor, which could potentially convert SSR from an allosteric inhibitor into an orthosteric blocker for the particular FGFR/FGF8b system. In this regard, we report here on the structural and functional investigation of FGF8b/FGFR3c system and the effects imposed on it by SSR. We show that SSR is equally or more potent in inhibiting FGF8b-induced FGFR signaling compared to FGF2-induced activation. On the other hand, when studied in the context of separate extracellular domains of FGFR3c in solution with NMR spectroscopy, SSR is unable to displace the N-terminal helix of FGF8b from its binding site on FGFR3c and behaves as a weak orthosteric inhibitor. The substantial inconsistency between the results obtained with cell culture and for the individual water-soluble subdomains of the FGFR proteins points to the important role played by the cell membrane.
Collapse
Affiliation(s)
- Konstantin S Mineev
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Bruno Hargittay
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Jing Jin
- BMLS and Institute for Cell Biology and Neuroscience, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Claudia Catapano
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Marta Segarra
- BMLS and Institute for Cell Biology and Neuroscience, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Mark S Harwardt
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Hendrik R A Jonker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Amparo Acker-Palmer
- BMLS and Institute for Cell Biology and Neuroscience, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
2
|
Jain NK, Tailang M, Thangavel N, Makeen HA, Albratty M, Najmi A, Alhazmi HA, Zoghebi K, Alagusundaram M, Jain HK, Chandrasekaran B. A comprehensive overview of selective and novel fibroblast growth factor receptor inhibitors as a potential anticancer modality. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:1-36. [PMID: 38554385 DOI: 10.2478/acph-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 04/01/2024]
Abstract
The arrival of comprehensive genome sequencing has accelerated the understanding of genetically aberrant advanced cancers and target identification for possible cancer treatment. Fibroblast growth factor receptor (FGFR) gene alterations are frequent findings in various rare and advanced cancers refractive to mainstay chemo-therapy or surgical interventions. Several FGFR inhibitors have been developed for addressing these genetically altered FGFR-harboring malignancies, and some have performed well in clinical trials. In contrast, others are still being investigated in different phases of clinical trials. FDA has approved four anticancer agents such as erdafitinib, pemigatinib, infigratinib, and futibatinib, for clinical use in oncogenic FGFR-driven malignancies. These include cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid malignancies. Pemigatinib is the only FGFR inhibitor globally approved (USA, EU, and Japan) and available as a targeted therapy for two types of cancer, including FGFR2 fusion or other rearrangements harboring cholangiocarcinoma and relapsed/refractory myeloid/lymphoid neoplasms with FGFR1 rearrangements. Myeloid/lymphoid neoplasm is the latest area of application added to the therapeutic armamentarium of FGFR inhibitors. Furthermore, futibatinib is the first-in-class covalent or irreversible pan-FGFR inhibitor that has received FDA approval for locally advanced or metastatic intrahepatic cholangiocarcinoma harboring FGFR2 gene aberrations. This review highlights the current clinical progress concerning the safety and efficacy of all the approved FGFR-TKIs (tyrosine kinase inhibitors) and their ongoing investigations in clinical trials for other oncogenic FGFR-driven malignancies.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University Gwalior 474001, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University Gwalior 474001, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University Gwalior 474001, Madhya Pradesh, India
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Hassan Ahmad Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | | | - Hemant Kumar Jain
- Department of General Medicine Government Medical College Datia 475661, Madhya Pradesh, India
| | | |
Collapse
|
3
|
Zarei P, Ghasemi F. The Application of Artificial Intelligence and Drug Repositioning for the Identification of Fibroblast Growth Factor Receptor Inhibitors: A Review. Adv Biomed Res 2024; 13:9. [PMID: 38525398 PMCID: PMC10958741 DOI: 10.4103/abr.abr_170_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 03/26/2024] Open
Abstract
Artificial intelligence talks about modeling intelligent behavior through a computer with the least human involvement. Drug repositioning techniques based on artificial intelligence accelerate the research process and decrease the cost of experimental studies. Dysregulation of fibroblast growth factor (FGF) receptors as the tyrosine kinase family of receptors plays a vital role in a wide range of malignancies. Because of their functional significance, they were considered promising drug targets for the therapy of various cancers. This review has summarized small molecules capable of inhibiting FGF receptors that progressed using artificial intelligence and repositioning drugs examined in clinical trials associated with cancer therapy. This review is based on a literature search in PubMed, Web of Science, Scopus EMBASE, and Google Scholar databases to gather the necessary information in each chapter by employing keywords like artificial intelligence, computational drug design, drug repositioning, and FGF receptor inhibitors. To achieve this goal, a spacious literature review of human studies in these fields-published over the last 20 decades-was performed. According to published reports, nonselective FGF receptor inhibitors can be used for cancer management, and multitarget kinase inhibitors are the first drug class approved due to more advanced clinical studies. For example, AZD4547 and BGJ398 are gradually entering the consumption cycle and are good options as combined treatments. Artificial intelligence and drug repositioning methods can help preselect suitable drug targets more successfully for future inhibition of carcinogenicity.
Collapse
Affiliation(s)
- Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Ghasemi
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Zinck NW, McInnis SJL, Franz-Odendaal TA. Intravitreal injection of FGF and TGF-β inhibitors disrupts cranial cartilage development. Differentiation 2023; 133:51-59. [PMID: 37481903 DOI: 10.1016/j.diff.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Cartilage development is a tightly regulated process that requires the interaction of epithelial and mesenchymal tissues layers to initiate the aggregation of mesenchyme in a condensation. Several signaling molecules have been implicated in cartilage formation including FGFs, WNTs, and members of the TGF-β super family. However, little is known about the earliest signals involved in these initial phases of development. Here we aimed to investigate whether direct intravitreal injection of pharmaceutical inhibitors for FGF and TGF-β signaling would perturb cranial cartilages in zebrafish. Via wholemount bone and cartilage staining, we found effects on multiple cranial cartilage elements. We found no effect on scleral cartilage development, however, the epiphyseal bar, basihyal, and basicapsular cartilages were disrupted. Interestingly, the epiphyseal bar arises from the same progenitor pool as the scleral cartilage, namely, the periocular ectomesenchyme. This study adds to the foundational knowledge about condensation induction of cranial cartilage development and provides insight into the timing and signaling involved in the early development of several craniofacial cartilage elements in zebrafish.
Collapse
Affiliation(s)
- Nicholas W Zinck
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada; Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada
| | - Shea J L McInnis
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada; Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Tamara A Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| |
Collapse
|
5
|
Hargittay B, Mineev KS, Richter C, Sreeramulu S, Jonker HRA, Saxena K, Schwalbe H. NMR resonance assignment of a fibroblast growth factor 8 splicing isoform b. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:10.1007/s12104-023-10132-8. [PMID: 37118562 DOI: 10.1007/s12104-023-10132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
The splicing isoform b of human fibroblast growth factor 8 (FGF8b) is an important regulator of brain embryonic development. Here, we report the almost complete NMR chemical shift assignment of the backbone and aliphatic side chains of FGF8b. Obtained chemical shifts are in good agreement with the previously reported X-ray data, excluding the N-terminal gN helix, which apparently forms only in complex with the receptor. The reported data provide an NMR starting point for the investigation of FGF8b interaction with its receptors and with potential drugs or inhibitors.
Collapse
Affiliation(s)
- Bruno Hargittay
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Konstantin S Mineev
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Hendrik R A Jonker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany
- Structural Genomics Consortium, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, 60438, Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
6
|
Pagano K, Listro R, Linciano P, Rossi D, Longhi E, Taraboletti G, Molinari H, Collina S, Ragona L. Identification of a novel extracellular inhibitor of FGF2/FGFR signaling axis by combined virtual screening and NMR spectroscopy approach. Bioorg Chem 2023; 136:106529. [PMID: 37084585 DOI: 10.1016/j.bioorg.2023.106529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
The aberrant activation of the fibroblast growth factor 2 (FGF2)/fibroblast growth factor receptor (FGFR) signalling pathway drives severe pathologies, including cancer development and angiogenesis-driven pathologies. The perturbation of the FGF2/FGFR axis via extracellular allosteric small inhibitors is a promising strategy for developing FGFR inhibitors with improved safety and efficacy for cancer treatment. We have previously investigated the role of new extracellular inhibitors, such as rosmarinic acid (RA), which bind the FGFR-D2 domain and directly compete with FGF2 for the same binding site, enabling the disruption of the functional FGF2/FGFR interaction. To select ligands for the previously identified FGF2/FGFR RA binding site, NMR data-driven virtual screening has been performed on an in-house library of non-commercial small molecules and metabolites. A novel drug-like compound, a resorcinol derivative named RBA4 has been identified. NMR interaction studies demonstrate that RBA4 binds the FGF2/FGFR complex, in agreement with docking prediction. Residue-level NMR perturbations analysis highlights that the mode of action of RBA4 is similar to RA in terms of its ability to target the FGF2/FGFR-D2 complex, inducing perturbations on both proteins and triggering complex dissociation. Biological assays proved that RBA4 inhibited FGF2 proliferative activity at a level comparable to the previously reported natural product, RA. Identification of RBA4 chemical groups involved in direct interactions represents a starting point for further optimization of drug-like extracellular inhibitors with improved activity.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy
| | - Roberta Listro
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Pasquale Linciano
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy.
| | - Elisa Longhi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche, Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche, Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy
| | - Simona Collina
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy.
| |
Collapse
|
7
|
Decoding the Conformational Selective Mechanism of FGFR Isoforms: A Comparative Molecular Dynamics Simulation. Molecules 2023; 28:molecules28062709. [PMID: 36985681 PMCID: PMC10052029 DOI: 10.3390/molecules28062709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play critical roles in the regulation of cell growth, differentiation, and proliferation. Specifically, FGFR2 gene amplification has been implicated in gastric and breast cancer. Pan-FGFR inhibitors often cause large toxic side effects, and the highly conserved ATP-binding pocket in the FGFR1/2/3 isoforms poses an immense challenge in designing selective FGFR2 inhibitors. Recently, an indazole-based inhibitor has been discovered that can selectively target FGFR2. However, the detailed mechanism involved in selective inhibition remains to be clarified. To this end, we performed extensive molecular dynamics simulations of the apo and inhibitor-bound systems along with multiple analyses, including Markov state models, principal component analysis, a cross-correlation matrix, binding free energy calculation, and community network analysis. Our results indicated that inhibitor binding induced the phosphate-binding loop (P-loop) of FGFR2 to switch from the open to the closed conformation. This effect enhanced extensive hydrophobic FGFR2-inhibitor contacts, contributing to inhibitor selectivity. Moreover, the key conformational intermediate states, dynamics, and driving forces of this transformation were uncovered. Overall, these findings not only provided a structural basis for understanding the closed P-loop conformation for therapeutic potential but also shed light on the design of selective inhibitors for treating specific types of cancer.
Collapse
|
8
|
Naik RR, Shakya AK. Exploring the chemotherapeutic potential of currently used kinase inhibitors: An update. Front Pharmacol 2023; 13:1064472. [PMID: 36699049 PMCID: PMC9868582 DOI: 10.3389/fphar.2022.1064472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Protein kinases are enzymes that transfer phosphate to protein, resulting in the modification of the protein. The human genome encodes approximately 538 kinases. Kinases play a role in maintaining a number of cellular processes, including control of the cell cycle, metabolism, survival, and differentiation. Protein kinase dysregulation causes several diseases, and it has been shown that numerous kinases are deregulated in cancer. The oncogenic potential of these kinases is increased by a number of processes, including overexpression, relocation, fusion point mutations, and the disruption of upstream signaling. Understanding of the mechanism or role played by kinases has led to the development of a large number of kinase inhibitors with promising clinical benefits. In this review, we discuss FDA-approved kinase inhibitors and their mechanism, clinical benefits, and side effects, as well as the challenges of overcoming some of their side effects and future prospects for new kinase inhibitor discovery.
Collapse
Affiliation(s)
- Rajashri R. Naik
- Faculty of Allied Medical Sciences, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | - Ashok K. Shakya
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan,*Correspondence: Ashok K. Shakya,
| |
Collapse
|
9
|
Rutz A, Das CK, Fasano A, Jaenecke J, Yadav S, Apfel UP, Engelbrecht V, Fourmond V, Léger C, Schäfer LV, Happe T. Increasing the O 2 Resistance of the [FeFe]-Hydrogenase CbA5H through Enhanced Protein Flexibility. ACS Catal 2022; 13:856-865. [PMID: 36733639 PMCID: PMC9886219 DOI: 10.1021/acscatal.2c04031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/08/2022] [Indexed: 12/29/2022]
Abstract
The high turnover rates of [FeFe]-hydrogenases under mild conditions and at low overpotentials provide a natural blueprint for the design of hydrogen catalysts. However, the unique active site (H-cluster) degrades upon contact with oxygen. The [FeFe]-hydrogenase fromClostridium beijerinckii (CbA5H) is characterized by the flexibility of its protein structure, which allows a conserved cysteine to coordinate to the active site under oxidative conditions. Thereby, intrinsic cofactor degradation induced by dioxygen is minimized. However, the protection from O2 is only partial, and the activity of the enzyme decreases upon each exposure to O2. By using site-directed mutagenesis in combination with electrochemistry, ATR-FTIR spectroscopy, and molecular dynamics simulations, we show that the kinetics of the conversion between the oxygen-protected inactive state (cysteine-bound) and the oxygen-sensitive active state can be accelerated by replacing a surface residue that is very distant from the active site. This sole exchange of methionine for a glutamate residue leads to an increased resistance of the hydrogenase to dioxygen. With our study, we aim to understand how local modifications of the protein structure can have a crucial impact on protein dynamics and how they can control the reactivity of inorganic active sites through outer sphere effects.
Collapse
Affiliation(s)
- Andreas Rutz
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Chandan K. Das
- Theoretical
Chemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Andrea Fasano
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, CNRS, Aix-Marseille Université, Institut de
Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Jan Jaenecke
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Shanika Yadav
- Inorganic
Chemistry Ι, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic
Chemistry Ι, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany,Fraunhofer
UMSICHT, 46047 Oberhausen, Germany
| | - Vera Engelbrecht
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vincent Fourmond
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, CNRS, Aix-Marseille Université, Institut de
Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Christophe Léger
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, CNRS, Aix-Marseille Université, Institut de
Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Lars V. Schäfer
- Theoretical
Chemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany,
| |
Collapse
|
10
|
Chang Y, Hawkins BA, Du JJ, Groundwater PW, Hibbs DE, Lai F. A Guide to In Silico Drug Design. Pharmaceutics 2022; 15:pharmaceutics15010049. [PMID: 36678678 PMCID: PMC9867171 DOI: 10.3390/pharmaceutics15010049] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
The drug discovery process is a rocky path that is full of challenges, with the result that very few candidates progress from hit compound to a commercially available product, often due to factors, such as poor binding affinity, off-target effects, or physicochemical properties, such as solubility or stability. This process is further complicated by high research and development costs and time requirements. It is thus important to optimise every step of the process in order to maximise the chances of success. As a result of the recent advancements in computer power and technology, computer-aided drug design (CADD) has become an integral part of modern drug discovery to guide and accelerate the process. In this review, we present an overview of the important CADD methods and applications, such as in silico structure prediction, refinement, modelling and target validation, that are commonly used in this area.
Collapse
Affiliation(s)
- Yiqun Chang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Bryson A. Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jonathan J. Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W. Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - David E. Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Felcia Lai
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
11
|
Pagano K, Longhi E, Molinari H, Taraboletti G, Ragona L. Inhibition of FGFR Signaling by Targeting FGF/FGFR Extracellular Interactions: Towards the Comprehension of the Molecular Mechanism through NMR Approaches. Int J Mol Sci 2022; 23:ijms231810860. [PMID: 36142770 PMCID: PMC9503799 DOI: 10.3390/ijms231810860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
NMR-based approaches play a pivotal role in providing insight into molecular recognition mechanisms, affording the required atomic-level description and enabling the identification of promising inhibitors of protein–protein interactions. The aberrant activation of the fibroblast growth factor 2 (FGF2)/fibroblast growth factor receptor (FGFR) signaling pathway drives several pathologies, including cancer development, metastasis formation, resistance to therapy, angiogenesis-driven pathologies, vascular diseases, and viral infections. Most FGFR inhibitors targeting the intracellular ATP binding pocket of FGFR have adverse effects, such as limited specificity and relevant toxicity. A viable alternative is represented by targeting the FGF/FGFR extracellular interactions. We previously identified a few small-molecule inhibitors acting extracellularly, targeting FGFR or FGF. We have now built a small library of natural and synthetic molecules that potentially act as inhibitors of FGF2/FGFR interactions to improve our understanding of the molecular mechanisms of inhibitory activity. Here, we provide a comparative analysis of the interaction mode of small molecules with the FGF2/FGFR complex and the single protein domains. DOSY and residue-level NMR analysis afforded insights into the capability of the potential inhibitors to destabilize complex formation, highlighting different mechanisms of inhibition of FGF2-induced cell proliferation.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), via Corti 12, 20133 Milano, Italy
- Correspondence: (K.P.); (L.R.)
| | - Elisa Longhi
- Laboratory of Tumour Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), via Corti 12, 20133 Milano, Italy
| | - Giulia Taraboletti
- Laboratory of Tumour Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), via Corti 12, 20133 Milano, Italy
- Correspondence: (K.P.); (L.R.)
| |
Collapse
|
12
|
Zhang X, Wen X, Hu G, Zhang Q, Sun Q, Jia Y, Liu Y, Lin H, Li H. The fibroblast growth factor receptor antagonist SSR128129E inhibits fat accumulation via suppressing adipogenesis in mice. Mol Biol Rep 2022; 49:8641-8649. [PMID: 35731366 DOI: 10.1007/s11033-022-07699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AS an allosteric inhibitor of fibroblast growth factor receptors (FGFRs), SSR128129E (SSR) extensively inhibits the fibroblast growth factor (FGF) signaling. Given the metabolic importance of FGFs and the global epidemic of obesity, we explored the effect of SSR on fat metabolism. METHODS AND RESULTS Three-week-old male mice were administered intragastrically with SSR (30 mg/kg/day) or PBS for 5 weeks. The effects of SSR on white and brown fat metabolism were investigated by respiratory metabolic monitoring, histological assessment and molecular analysis. Results indicated that SSR administration significantly reduced the body weight gain and the fat content of mice. SSR did not increase, but decreased the thermogenic capability of both brown and white fat. However, SSR markedly suppressed adipogenesis of adipose tissues. Further study demonstrated the involvement of ERK signaling in the action of SSR. CONCLUSIONS SSR may be a promising drug candidate for the prevention of obesity via suppressing adipogenesis. However, the influence of SSR on thermogenesis in humans should be further investigated before its clinical application.
Collapse
Affiliation(s)
- Xinzhi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin Wen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qianying Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanxin Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| | - Haifang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
13
|
Zheng J, Zhang W, Li L, He Y, Wei Y, Dang Y, Nie S, Guo Z. Signaling Pathway and Small-Molecule Drug Discovery of FGFR: A Comprehensive Review. Front Chem 2022; 10:860985. [PMID: 35494629 PMCID: PMC9046545 DOI: 10.3389/fchem.2022.860985] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted therapy is a groundbreaking innovation for cancer treatment. Among the receptor tyrosine kinases, the fibroblast growth factor receptors (FGFRs) garnered substantial attention as promising therapeutic targets due to their fundamental biological functions and frequently observed abnormality in tumors. In the past 2 decades, several generations of FGFR kinase inhibitors have been developed. This review starts by introducing the biological basis of FGF/FGFR signaling. It then gives a detailed description of different types of small-molecule FGFR inhibitors according to modes of action, followed by a systematic overview of small-molecule-based therapies of different modalities. It ends with our perspectives for the development of novel FGFR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenyou Nie
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Lee PY, Yeoh Y, Low TY. A recent update on small‐molecule kinase inhibitors for targeted cancer therapy and their therapeutic insights from mass spectrometry‐based proteomic analysis. FEBS J 2022. [PMID: 35313089 DOI: 10.1111/febs.16442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI) Universiti Kebangsaan Malaysia Kuala Lumpur Malaysia
| | - Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI) Universiti Kebangsaan Malaysia Kuala Lumpur Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI) Universiti Kebangsaan Malaysia Kuala Lumpur Malaysia
| |
Collapse
|
15
|
Wu M, Carballo-Jane E, Zhou H, Zafian P, Dai G, Liu M, Lao J, Kelly T, Shao D, Gorski J, Pissarnitski D, Kekec A, Chen Y, Previs SF, Scapin G, Gomez-Llorente Y, Hollingsworth SA, Yan L, Feng D, Huo P, Walford G, Erion MD, Kelley DE, Lin S, Mu J. Functionally selective signaling and broad metabolic benefits by novel insulin receptor partial agonists. Nat Commun 2022; 13:942. [PMID: 35177603 PMCID: PMC8854621 DOI: 10.1038/s41467-022-28561-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, inherent liabilities (e.g. hypoglycemia) of injectable insulin continue to limit the true therapeutic potential of related agents. Insulin dimers were synthesized to investigate whether partial agonism of the insulin receptor (IR) tyrosine kinase is achievable, and to explore the potential for tissue-selective systemic insulin pharmacology. The insulin dimers induced distinct IR conformational changes compared to native monomeric insulin and substrate phosphorylation assays demonstrated partial agonism. Structurally distinct dimers with differences in conjugation sites and linkers were prepared to deliver desirable IR partial agonist (IRPA). Systemic infusions of a B29-B29 dimer in vivo revealed sharp differences compared to native insulin. Suppression of hepatic glucose production and lipolysis were like that attained with regular insulin, albeit with a distinctly shallower dose-response. In contrast, there was highly attenuated stimulation of glucose uptake into muscle. Mechanistic studies indicated that IRPAs exploit tissue differences in receptor density and have additional distinctions pertaining to drug clearance and distribution. The hepato-adipose selective action of IRPAs is a potentially safer approach for treatment of diabetes.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Alloxan/administration & dosage
- Alloxan/toxicity
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- CHO Cells
- Cricetulus
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- HEK293 Cells
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/pharmacology
- Insulin/therapeutic use
- Lipolysis/drug effects
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Rats
- Receptor, Insulin/agonists
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Signal Transduction/drug effects
- Swine
- Swine, Miniature
Collapse
Affiliation(s)
- Margaret Wu
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | - Ge Dai
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Mindy Liu
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | - Julie Lao
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | - Terri Kelly
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Dan Shao
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | | | | | - Ahmet Kekec
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Ying Chen
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | | | - Lin Yan
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | - Pei Huo
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | | | - James Mu
- Merck & Co., Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
16
|
Wang B, Wu H, Hu C, Wang H, Liu J, Wang W, Liu Q. An overview of kinase downregulators and recent advances in discovery approaches. Signal Transduct Target Ther 2021; 6:423. [PMID: 34924565 PMCID: PMC8685278 DOI: 10.1038/s41392-021-00826-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Since the clinical approval of imatinib, the discovery of protein kinase downregulators entered a prosperous age. However, challenges still exist in the discovery of kinase downregulator drugs, such as the high failure rate during development, side effects, and drug-resistance problems. With the progress made through multidisciplinary efforts, an increasing number of new approaches have been applied to solve the above problems during the discovery process of kinase downregulators. In terms of in vitro and in vivo drug evaluation, progress was also made in cellular and animal model platforms for better and more clinically relevant drug assessment. Here, we review the advances in drug design strategies, drug property evaluation technologies, and efficacy evaluation models and technologies. Finally, we discuss the challenges and perspectives in the development of kinase downregulator drugs.
Collapse
Affiliation(s)
- Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Haizhen Wang
- Hefei PreceDo pharmaceuticals Co., Ltd, Hefei, Anhui, 230088, People's Republic of China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
17
|
Pihan E, Kotev M, Rabal O, Beato C, Diaz Gonzalez C. Fine tuning for success in structure-based virtual screening. J Comput Aided Mol Des 2021; 35:1195-1206. [PMID: 34799816 DOI: 10.1007/s10822-021-00431-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
Structure-based virtual screening plays a significant role in drug-discovery. The method virtually docks millions of compounds from corporate or public libraries into a binding site of a disease-related protein structure, allowing for the selection of a small list of potential ligands for experimental testing. Many algorithms are available for docking and assessing the affinity of compounds for a targeted protein site. The performance of affinity estimation calculations is highly dependent on the size and nature of the site, therefore a rationale for selecting the best protocol is required. To address this issue, we have developed an automated calibration process, implemented in a Knime workflow. It consists of four steps: preparation of a protein test set with structures and models of the target, preparation of a compound test set with target-related ligands and decoys, automatic test of 24 scoring/rescoring protocols for each target structure and model, and graphical display of results. The automation of the process combined with execution on high performance computing resources greatly reduces the duration of the calibration phase, and the test of many combinations of algorithms on various target conformations results in a rational and optimal choice of the best protocol. Here, we present this tool and exemplify its application in setting-up an optimal protocol for SBVS against Retinoid X Receptor alpha.
Collapse
Affiliation(s)
- Emilie Pihan
- Computational Drug Discovery, Evotec (France) SAS, Campus Curie, 195 Route d'Espagne, 31036, Toulouse, France.
| | - Martin Kotev
- Computational Drug Discovery, Evotec (France) SAS, Campus Curie, 195 Route d'Espagne, 31036, Toulouse, France
| | - Obdulia Rabal
- Computational Drug Discovery, Evotec (France) SAS, Campus Curie, 195 Route d'Espagne, 31036, Toulouse, France
| | - Claudia Beato
- Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135, Verona, Italy
| | - Constantino Diaz Gonzalez
- Computational Drug Discovery, Evotec (France) SAS, Campus Curie, 195 Route d'Espagne, 31036, Toulouse, France
| |
Collapse
|
18
|
Castelli M, Serapian SA, Marchetti F, Triveri A, Pirota V, Torielli L, Collina S, Doria F, Freccero M, Colombo G. New perspectives in cancer drug development: computational advances with an eye to design. RSC Med Chem 2021; 12:1491-1502. [PMID: 34671733 PMCID: PMC8459323 DOI: 10.1039/d1md00192b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Computational chemistry has come of age in drug discovery. Indeed, most pharmaceutical development programs rely on computer-based data and results at some point. Herein, we discuss recent applications of advanced simulation techniques to difficult challenges in drug discovery. These entail the characterization of allosteric mechanisms and the identification of allosteric sites or cryptic pockets determined by protein motions, which are not immediately evident in the experimental structure of the target; the study of ligand binding mechanisms and their kinetic profiles; and the evaluation of drug-target affinities. We analyze different approaches to tackle challenging and emerging biological targets. Finally, we discuss the possible perspectives of future application of computation in drug discovery.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia via Taramelli 12 27100 Pavia Italy
| | - Stefano A Serapian
- Department of Chemistry, University of Pavia via Taramelli 12 27100 Pavia Italy
| | - Filippo Marchetti
- Department of Chemistry, University of Pavia via Taramelli 12 27100 Pavia Italy
| | - Alice Triveri
- Department of Chemistry, University of Pavia via Taramelli 12 27100 Pavia Italy
| | - Valentina Pirota
- Department of Chemistry, University of Pavia via Taramelli 12 27100 Pavia Italy
| | - Luca Torielli
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia via Taramelli 12 27100 Pavia Italy
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia via Taramelli 12 27100 Pavia Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia via Taramelli 12 27100 Pavia Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia via Taramelli 12 27100 Pavia Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia via Taramelli 12 27100 Pavia Italy
| |
Collapse
|
19
|
Karl K, Hristova K. Pondering the mechanism of receptor tyrosine kinase activation: The case for ligand-specific dimer microstate ensembles. Curr Opin Struct Biol 2021; 71:193-199. [PMID: 34399300 DOI: 10.1016/j.sbi.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that regulate cell growth, differentiation, motility, and metabolism. Here, we review recent advancements in RTK structure determination and in the understanding of RTK activation. We argue that further progress in the field will necessitate new ways of thinking, and we introduce the concept that RTK dimers explore ensembles of microstates, each characterized by different kinase domain dimer conformations, but the same extracellular domain dimer structure. Many microstates are phosphorylation-competent and ensure the phosphorylation of one specific tyrosine. The prevalence of each microstate correlates with its stability. A switch in ligand will lead to a switch in the extracellular domain configuration and to a subsequent switch in the ensemble of microstates. This model can explain how different ligands produce specific phosphorylation patterns, how receptor overexpression leads to enhanced signaling even in the absence of activating ligands, and why RTK kinase domain structures have remained unresolved in cryogenic electron microscopy studies.
Collapse
Affiliation(s)
- Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA.
| |
Collapse
|
20
|
Bolnykh V, Rossetti G, Rothlisberger U, Carloni P. Expanding the boundaries of ligand–target modeling by exascale calculations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Viacheslav Bolnykh
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
- Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich Jülich Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation University Hospital Aachen RWTH Aachen University Aachen Germany
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Paolo Carloni
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS‐5/INM‐9) “Computational Biomedicine” Forschungszentrum Jülich Jülich Germany
- JARA‐Institute INM‐11 “Molecular Neuroscience and Neuroimaging” Forschungszentrum Jülich Jülich Germany
| |
Collapse
|
21
|
Margiotta A. All Good Things Must End: Termination of Receptor Tyrosine Kinase Signal. Int J Mol Sci 2021; 22:ijms22126342. [PMID: 34198477 PMCID: PMC8231876 DOI: 10.3390/ijms22126342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane receptors that regulate many fundamental cellular processes. A tight regulation of RTK signaling is fundamental for development and survival, and an altered signaling by RTKs can cause cancer. RTKs are localized at the plasma membrane (PM) and the major regulatory mechanism of signaling of RTKs is their endocytosis and degradation. In fact, RTKs at the cell surface bind ligands with their extracellular domain, become active, and are rapidly internalized where the temporal extent of signaling, attenuation, and downregulation are modulated. However, other mechanisms of signal attenuation and termination are known. Indeed, inhibition of RTKs’ activity may occur through the modulation of the phosphorylation state of RTKs and the interaction with specific proteins, whereas antagonist ligands can inhibit the biological responses mediated by the receptor. Another mechanism concerns the expression of endogenous inactive receptor variants that are deficient in RTK activity and take part to inactive heterodimers or hetero-oligomers. The downregulation of RTK signals is fundamental for several cellular functions and the homeostasis of the cell. Here, we will review the mechanisms of signal attenuation and termination of RTKs, focusing on FGFRs.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
22
|
Dissecting FGF Signalling to Target Cellular Crosstalk in Pancreatic Cancer. Cells 2021; 10:cells10040847. [PMID: 33918004 PMCID: PMC8068358 DOI: 10.3390/cells10040847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis with a 5 year survival rate of less than 8%, and is predicted to become the second leading cause of cancer-related death by 2030. Alongside late detection, which impacts upon surgical treatment, PDAC tumours are challenging to treat due to their desmoplastic stroma and hypovascular nature, which limits the effectiveness of chemotherapy and radiotherapy. Pancreatic stellate cells (PSCs), which form a key part of this stroma, become activated in response to tumour development, entering into cross-talk with cancer cells to induce tumour cell proliferation and invasion, leading to metastatic spread. We and others have shown that Fibroblast Growth Factor Receptor (FGFR) signalling can play a critical role in the interactions between PDAC cells and the tumour microenvironment, but it is clear that the FGFR signalling pathway is not acting in isolation. Here we describe our current understanding of the mechanisms by which FGFR signalling contributes to PDAC progression, focusing on its interaction with other pathways in signalling networks and discussing the therapeutic approaches that are being developed to try and improve prognosis for this terrible disease.
Collapse
|
23
|
Pagano K, Carminati L, Tomaselli S, Molinari H, Taraboletti G, Ragona L. Molecular Basis of the Antiangiogenic Action of Rosmarinic Acid, a Natural Compound Targeting Fibroblast Growth Factor-2/FGFR Interactions. Chembiochem 2021; 22:160-169. [PMID: 32975328 DOI: 10.1002/cbic.202000610] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor (FGF2)/fibroblast growth factor receptor (FGFR) signalling plays a major role both in physiology and in several pathologies, including cancer development, metastasis formation and resistance to therapy. The development of small molecules, acting extracellularly to target FGF2/FGFR interactions, has the advantage of limiting the adverse effects associated with current intracellular FGFR inhibitors. Herein, we discuss the ability of the natural compound rosmarinic acid (RA) to induce FGF2/FGFR complex dissociation. The molecular-level description of the FGF2/FGFR/RA system, by NMR spectroscopy and docking, clearly demonstrates that RA binds to the FGFR-D2 domain and directly competes with FGF2 for the same binding site. Direct and allosteric perturbations combine to destabilise the complex. The proposed molecular mechanism is validated by cellular studies showing that RA inhibits FGF2-induced endothelial cell proliferation and FGFR activation. Our results can serve as the basis for the development of new extracellular inhibitors of the FGF/FGFR pathways.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) CNR, Institution, Via Corti 12, 20133, Milano, Italy
| | - Laura Carminati
- Laboratory of Tumour Microenvironment, Department of Oncology Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126, Bergamo, Italy
| | - Simona Tomaselli
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) CNR, Institution, Via Corti 12, 20133, Milano, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) CNR, Institution, Via Corti 12, 20133, Milano, Italy
| | - Giulia Taraboletti
- Laboratory of Tumour Microenvironment, Department of Oncology Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126, Bergamo, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) CNR, Institution, Via Corti 12, 20133, Milano, Italy
| |
Collapse
|
24
|
Karl K, Paul MD, Pasquale EB, Hristova K. Ligand bias in receptor tyrosine kinase signaling. J Biol Chem 2020; 295:18494-18507. [PMID: 33122191 PMCID: PMC7939482 DOI: 10.1074/jbc.rev120.015190] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ligand bias is the ability of ligands to differentially activate certain receptor signaling responses compared with others. It reflects differences in the responses of a receptor to specific ligands and has implications for the development of highly specific therapeutics. Whereas ligand bias has been studied primarily for G protein-coupled receptors (GPCRs), there are also reports of ligand bias for receptor tyrosine kinases (RTKs). However, the understanding of RTK ligand bias is lagging behind the knowledge of GPCR ligand bias. In this review, we highlight how protocols that were developed to study GPCR signaling can be used to identify and quantify RTK ligand bias. We also introduce an operational model that can provide insights into the biophysical basis of RTK activation and ligand bias. Finally, we discuss possible mechanisms underpinning RTK ligand bias. Thus, this review serves as a primer for researchers interested in investigating ligand bias in RTK signaling.
Collapse
Affiliation(s)
- Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael D Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
25
|
Allosterische Kinaseinhibitoren – Erwartungen und Chancen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
A Personal History of Using Crystals and Crystallography to Understand Biology and Advanced Drug Discovery. CRYSTALS 2020. [DOI: 10.3390/cryst10080676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past 60 years, the use of crystals to define structures of complexes using X-ray analysis has contributed to the discovery of new medicines in a very significant way. This has been in understanding not only small-molecule inhibitors of proteins, such as enzymes, but also protein or peptide hormones or growth factors that bind to cell surface receptors. Experimental structures from crystallography have also been exploited in software to allow prediction of structures of important targets based on knowledge of homologues. Crystals and crystallography continue to contribute to drug design and provide a successful example of academia–industry collaboration.
Collapse
|
27
|
Evans R, Hovan L, Tribello GA, Cossins BP, Estarellas C, Gervasio FL. Combining Machine Learning and Enhanced Sampling Techniques for Efficient and Accurate Calculation of Absolute Binding Free Energies. J Chem Theory Comput 2020; 16:4641-4654. [PMID: 32427471 PMCID: PMC7467642 DOI: 10.1021/acs.jctc.0c00075] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calculating absolute binding free energies is challenging and important. In this paper, we test some recently developed metadynamics-based methods and develop a new combination with a Hamiltonian replica-exchange approach. The methods were tested on 18 chemically diverse ligands with a wide range of different binding affinities to a complex target; namely, human soluble epoxide hydrolase. The results suggest that metadynamics with a funnel-shaped restraint can be used to calculate, in a computationally affordable and relatively accurate way, the absolute binding free energy for small fragments. When used in combination with an optimal pathlike variable obtained using machine learning or with the Hamiltonian replica-exchange algorithm SWISH, this method can achieve reasonably accurate results for increasingly complex ligands, with a good balance of computational cost and speed. An additional benefit of using the combination of metadynamics and SWISH is that it also provides useful information about the role of water in the binding mechanism.
Collapse
Affiliation(s)
| | | | - Gareth A Tribello
- Atomistic Simulation Centre, Queen's University, Belfast BT7 1NN, United Kingdom
| | | | | | | |
Collapse
|
28
|
Dunkel H, Chaverra M, Bradley R, Lefcort F. FGF
signaling is required for chemokinesis and ventral migration of trunk neural crest cells. Dev Dyn 2020; 249:1077-1097. [DOI: 10.1002/dvdy.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Haley Dunkel
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Martha Chaverra
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Roger Bradley
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Frances Lefcort
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| |
Collapse
|
29
|
Lu X, Smaill JB, Ding K. New Promise and Opportunities for Allosteric Kinase Inhibitors. Angew Chem Int Ed Engl 2020; 59:13764-13776. [PMID: 31889388 DOI: 10.1002/anie.201914525] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.
Collapse
Affiliation(s)
- Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|
30
|
Kuzmanic A, Bowman GR, Juarez-Jimenez J, Michel J, Gervasio FL. Investigating Cryptic Binding Sites by Molecular Dynamics Simulations. Acc Chem Res 2020; 53:654-661. [PMID: 32134250 DOI: 10.1021/acs.accounts.9b00613] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Account highlights recent advances and discusses major challenges in investigations of cryptic (hidden) binding sites by molecular simulations. Cryptic binding sites are not visible in protein targets crystallized without a ligand and only become visible crystallographically upon binding events. These sites have been shown to be druggable and might provide a rare opportunity to target difficult proteins. However, due to their hidden nature, they are difficult to find through experimental screening. Computational methods based on atomistic molecular simulations remain one of the best approaches to identify and characterize cryptic binding sites. However, not all methods are equally efficient. Some are more apt at quickly probing protein dynamics but do not provide thermodynamic or druggability information, while others that are able to provide such data are demanding in terms of time and resources. Here, we review the recent contributions of mixed-solvent simulations, metadynamics, Markov state models, and other enhanced sampling methods to the field of cryptic site identification and characterization. We discuss how these methods were able to provide precious information on the nature of the site opening mechanisms, to predict previously unknown sites which were used to design new ligands, and to compute the free energy landscapes and kinetics associated with the opening of the sites and the binding of the ligands. We highlight the potential and the importance of such predictions in drug discovery, especially for difficult ("undruggable") targets. We also discuss the major challenges in the field and their possible solutions.
Collapse
Affiliation(s)
- Antonija Kuzmanic
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London, London WC1E 0AJ, United Kingdom
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jordi Juarez-Jimenez
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 9FJ, United Kingdom
| | - Julien Michel
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 9FJ, United Kingdom
| | - Francesco L. Gervasio
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London, London WC1E 0AJ, United Kingdom
- Pharmaceutical Sciences, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
31
|
Abstract
Pseudokinases are members of the protein kinase superfamily but signal primarily through noncatalytic mechanisms. Many pseudokinases contribute to the pathologies of human diseases, yet they remain largely unexplored as drug targets owing to challenges associated with modulation of their biological functions. Our understanding of the structure and physiological roles of pseudokinases has improved substantially over the past decade, revealing intriguing similarities between pseudokinases and their catalytically active counterparts. Pseudokinases often adopt conformations that are analogous to those seen in catalytically active kinases and, in some cases, can also bind metal cations and/or nucleotides. Several clinically approved kinase inhibitors have been shown to influence the noncatalytic functions of active kinases, providing hope that similar properties in pseudokinases could be pharmacologically regulated. In this Review, we discuss known roles of pseudokinases in disease, their unique structural features and the progress that has been made towards developing pseudokinase-directed therapeutics.
Collapse
|
32
|
Marseglia G, Lodola A, Mor M, Castelli R. Fibroblast growth factor receptor inhibitors: patent review (2015-2019). Expert Opin Ther Pat 2019; 29:965-977. [PMID: 31679402 DOI: 10.1080/13543776.2019.1688300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: fibroblast growth factor receptors (FGFRs) are a family of tyrosine-kinase receptors whose signaling cascade regulates cellular proliferation, differentiation, and survival. Deregulation of the FGFR pathway is recognized as a driving factor in tumor development. On this basis, FGFR is an attractive target for anti-cancer small-molecule therapeutic agents.Areas covered: This review summarizes patent and literature publications spanning from 2015 to 2019 pertaining to small-molecule FGFR kinase inhibitors.Expert opinion: The first generation of non-covalent FGFR inhibitors is characterized by a broad spectrum of activity and a relatively high toxicity profile. The second generation of FGFR inhibitors shows higher selectivity and a more favorable toxicity profile, but the clinical use appears restricted only to small subsets of cancers strongly dependent on FGFR signaling. Nevertheless, erdafitinib has been approved for the treatment of metastatic urothelial carcinoma, becoming the first marketed selective FGFR inhibitor. The insurgence of mutant kinases, resistant to available therapies, has led to the development of irreversible FGFR inhibitors. The adoption of safer and more selective covalent inhibitors might supersede reversible inhibitors in specific therapeutic areas. Alternative strategies, such as FGF trapping by protein or small-molecule therapeutics, deserve attention and further investigations to unravel their potential.
Collapse
Affiliation(s)
| | - Alessio Lodola
- Food and Drug Department, University of Parma, Parma, Italy
| | - Marco Mor
- Food and Drug Department, University of Parma, Parma, Italy
| | | |
Collapse
|
33
|
Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci 2019; 20:ijms20184331. [PMID: 31487867 PMCID: PMC6769923 DOI: 10.3390/ijms20184331] [Citation(s) in RCA: 920] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular docking is an established in silico structure-based method widely used in drug discovery. Docking enables the identification of novel compounds of therapeutic interest, predicting ligand-target interactions at a molecular level, or delineating structure-activity relationships (SAR), without knowing a priori the chemical structure of other target modulators. Although it was originally developed to help understanding the mechanisms of molecular recognition between small and large molecules, uses and applications of docking in drug discovery have heavily changed over the last years. In this review, we describe how molecular docking was firstly applied to assist in drug discovery tasks. Then, we illustrate newer and emergent uses and applications of docking, including prediction of adverse effects, polypharmacology, drug repurposing, and target fishing and profiling, discussing also future applications and further potential of this technique when combined with emergent techniques, such as artificial intelligence.
Collapse
|
34
|
Paul S, Nair NN, Vashisth H. Phase space and collective variable based simulation methods for studies of rare events. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1634268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sanjib Paul
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, USA
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology, Kanpur, India
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
35
|
Dai S, Zhou Z, Chen Z, Xu G, Chen Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and Small Molecule Inhibitors. Cells 2019; 8:E614. [PMID: 31216761 PMCID: PMC6627960 DOI: 10.3390/cells8060614] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/05/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases expressed on the cell membrane that play crucial roles in both developmental and adult cells. Dysregulation of FGFRs has been implicated in a wide variety of cancers, such as urothelial carcinoma, hepatocellular carcinoma, ovarian cancer and lung adenocarcinoma. Due to their functional importance, FGFRs have been considered as promising drug targets for the therapy of various cancers. Multiple small molecule inhibitors targeting this family of kinases have been developed, and some of them are in clinical trials. Furthermore, the pan-FGFR inhibitor erdafitinib (JNJ-42756493) has recently been approved by the U.S. Food and Drug Administration (FDA) for the treatment of metastatic or unresectable urothelial carcinoma (mUC). This review summarizes the structure of FGFR, especially its kinase domain, and the development of small molecule FGFR inhibitors.
Collapse
Affiliation(s)
- Shuyan Dai
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Zhan Zhou
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Zhuchu Chen
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Yongheng Chen
- NHC Key Laboratory of Cancer Proteomics & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
36
|
Indarte M, Puentes R, Maruggi M, Ihle NT, Grandjean G, Scott M, Ahmed Z, Meuillet EJ, Zang S, Lemos R, Du-Cuny L, Layng FIAL, Correa RG, Bankston LA, Liddington RC, Kirkpatrick L, Powis G. An Inhibitor of the Pleckstrin Homology Domain of CNK1 Selectively Blocks the Growth of Mutant KRAS Cells and Tumors. Cancer Res 2019; 79:3100-3111. [PMID: 31040156 DOI: 10.1158/0008-5472.can-18-2372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/03/2018] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
Cnk1 (connector enhancer of kinase suppressor of Ras 1) is a pleckstrin homology (PH) domain-containing scaffold protein that increases the efficiency of Ras signaling pathways, imparting efficiency and specificity to the response of cell proliferation, survival, and migration. Mutated KRAS (mut-KRAS) is the most common proto-oncogenic event, occurring in approximately 25% of human cancers and has no effective treatment. In this study, we show that selective inhibition of Cnk1 blocks growth and Raf/Mek/Erk, Rho and RalA/B signaling in mut-KRAS lung and colon cancer cells with little effect on wild-type (wt)-KRAS cells. Cnk1 inhibition decreased anchorage-independent mut-KRas cell growth more so than growth on plastic, without the partial "addiction" to mut-KRAS seen on plastic. The PH domain of Cnk1 bound with greater affinity to PtdIns(4,5)P2 than PtdIns(3,4,5)P3, and Cnk1 localized to areas of the plasma membranes rich in PtdIns, suggesting a role for the PH domain in the biological activity of Cnk1. Through molecular modeling and structural modification, we identified a compound PHT-7.3 that bound selectively to the PH domain of Cnk1, preventing plasma membrane colocalization with mut-KRas. PHT-7.3 inhibited mut-KRas, but not wild-type KRas cancer cell and tumor growth and signaling. Thus, the PH domain of Cnk1 is a druggable target whose inhibition selectively blocks mutant KRas activation, making Cnk1 an attractive therapeutic target in patients with mut-KRAS-driven cancer. SIGNIFICANCE: These findings identify a therapeutic strategy to selectively block oncogenic KRas activity through the PH domain of Cnk1, which reduces its cell membrane binding, decreasing the efficiency of Ras signaling and tumor growth.
Collapse
Affiliation(s)
| | - Roisin Puentes
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | - Marco Maruggi
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | | | - Geoffrey Grandjean
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | | | | | | | | | - Robert Lemos
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | | | - Fabiana I A L Layng
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | - Laurie A Bankston
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | | | - Garth Powis
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California.
| |
Collapse
|
37
|
Lipok M, Szlachcic A, Kindela K, Czyrek A, Otlewski J. Identification of a peptide antagonist of the FGF1-FGFR1 signaling axis by phage display selection. FEBS Open Bio 2019; 9:914-924. [PMID: 30968602 PMCID: PMC6487701 DOI: 10.1002/2211-5463.12618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 12/11/2022] Open
Abstract
Overexpression of fibroblast growth factor receptor 1 (FGFR1) is a common aberration in lung and breast cancers and has necessitated the design of drugs targeting FGFR1‐dependent downstream signaling and FGFR1 ligand binding. To date, the major group of drugs being developed for treatment of FGFR1‐dependent cancers are small‐molecule tyrosine kinase inhibitors; however, the limited specificity of these drugs has led to increasing attempts to design molecules targeting the extracellular domain of FGFR1. Here, we used the phage display technique to select cyclic peptides F8 (ACSLNHTVNC) and G10 (ACSAKTTSAC) as binders of the fibroblast growth factor 1 (FGF1)–FGFR1 interface. ELISA and in vitro cell assays were performed to reveal that cyclic peptide F8 is more effective in preventing the FGF1–FGFR1 interaction, and also decreases FGF1‐induced proliferation of BA/F3 FGFR1c cells by over 40%. Such an effect was not observed for BA/F3 cells lacking FGFR1. Therefore, cyclic peptide F8 can act as a FGF1–FGFR1 interaction antagonist, and may be suitable for further development for potential use in therapies against FGFR1‐expressing cancer cells.
Collapse
Affiliation(s)
- Magdalena Lipok
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Poland.,PORT - Polish Center for Technology Development, Wroclaw, Poland
| | - Anna Szlachcic
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Poland.,PORT - Polish Center for Technology Development, Wroclaw, Poland
| | - Kinga Kindela
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Poland.,PORT - Polish Center for Technology Development, Wroclaw, Poland
| |
Collapse
|
38
|
Egbivwie N, Cockle JV, Humphries M, Ismail A, Esteves F, Taylor C, Karakoula K, Morton R, Warr T, Short SC, Brüning-Richardson A. FGFR1 Expression and Role in Migration in Low and High Grade Pediatric Gliomas. Front Oncol 2019; 9:103. [PMID: 30931252 PMCID: PMC6425865 DOI: 10.3389/fonc.2019.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/04/2019] [Indexed: 01/10/2023] Open
Abstract
The heterogeneous and invasive nature of pediatric gliomas poses significant treatment challenges, highlighting the importance of identifying novel chemotherapeutic targets. Recently, recurrent Fibroblast growth factor receptor 1 (FGFR1) mutations in pediatric gliomas have been reported. Here, we explored the clinical relevance of FGFR1 expression, cell migration in low and high grade pediatric gliomas and the role of FGFR1 in cell migration/invasion as a potential chemotherapeutic target. A high density tissue microarray (TMA) was used to investigate associations between FGFR1 and activated phosphorylated FGFR1 (pFGFR1) expression and various clinicopathologic parameters. Expression of FGFR1 and pFGFR1 were measured by immunofluorescence and by immunohistochemistry (IHC) in 3D spheroids in five rare patient-derived pediatric low-grade glioma (pLGG) and two established high-grade glioma (pHGG) cell lines. Two-dimensional (2D) and three-dimensional (3D) migration assays were performed for migration and inhibitor studies with three FGFR1 inhibitors. High FGFR1 expression was associated with age, malignancy, tumor location and tumor grade among astrocytomas. Membranous pFGFR1 was associated with malignancy and tumor grade. All glioma cell lines exhibited varying levels of FGFR1 and pFGFR1 expression and migratory phenotypes. There were significant anti-migratory effects on the pHGG cell lines with inhibitor treatment and anti-migratory or pro-migratory responses to FGFR1 inhibition in the pLGGs. Our findings support further research to target FGFR1 signaling in pediatric gliomas.
Collapse
Affiliation(s)
- Naomi Egbivwie
- Leeds School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Julia V Cockle
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Matthew Humphries
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Azzam Ismail
- Histopathology Department, Bexley Wing, St James's University Hospital, Leeds, United Kingdom
| | - Filomena Esteves
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Claire Taylor
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Katherine Karakoula
- School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Ruth Morton
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Tracy Warr
- School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Susan C Short
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Anke Brüning-Richardson
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
39
|
Motornov VA, Tabolin AA, Nelyubina YV, Nenajdenko VG, Ioffe SL. Copper-mediated oxidative [3 + 2]-annulation of nitroalkenes and pyridinium ylides: general access to functionalized indolizines and efficient synthesis of 1-fluoroindolizines. Org Biomol Chem 2019; 17:1442-1454. [PMID: 30672946 DOI: 10.1039/c8ob03126f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A general method for the synthesis of substituted indolizines by copper(ii) acetate-promoted oxidative [3 + 2]-annulation of α-fluoronitroalkenes with in situ generated pyridinium ylides was developed. Application of the copper(ii) acetate-2,6-lutidine system provides efficient access to various 1-fluoroindolizines in up to 81% yield. Both electron-rich and electron-deficient nitroalkenes as well as different pyridinium and isoquinolinium salts can be involved in the reaction. Moreover, it was found that copper-mediated annulation is applicable for other α-substituted (alkyl, chloro, and ester) nitroalkenes giving rise to the corresponding indolizines. First synthesis of monofluorinated [3,2,2]cyclazines was demonstrated via oxidative annulation of 3-unsubstituted fluoroindolizines with diethyl acetylene dicarboxylate.
Collapse
Affiliation(s)
- Vladimir A Motornov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
40
|
Athanasiou C, Cournia Z. From Computers to Bedside: Computational Chemistry Contributing to FDA Approval. BIOMOLECULAR SIMULATIONS IN STRUCTURE-BASED DRUG DISCOVERY 2018. [DOI: 10.1002/9783527806836.ch7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Christina Athanasiou
- Biomedical Research Foundation; Academy of Athens; 4 Soranou Ephessiou 11527 Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation; Academy of Athens; 4 Soranou Ephessiou 11527 Athens Greece
| |
Collapse
|
41
|
Farrell B, Breeze AL. Structure, activation and dysregulation of fibroblast growth factor receptor kinases: perspectives for clinical targeting. Biochem Soc Trans 2018; 46:1753-1770. [PMID: 30545934 PMCID: PMC6299260 DOI: 10.1042/bst20180004] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 01/22/2023]
Abstract
The receptor tyrosine kinase family of fibroblast growth factor receptors (FGFRs) play crucial roles in embryonic development, metabolism, tissue homeostasis and wound repair via stimulation of intracellular signalling cascades. As a consequence of FGFRs' influence on cell growth, proliferation and differentiation, FGFR signalling is frequently dysregulated in a host of human cancers, variously by means of overexpression, somatic point mutations and gene fusion events. Dysregulation of FGFRs is also the underlying cause of many developmental dysplasias such as hypochondroplasia and achondroplasia. Accordingly, FGFRs are attractive pharmaceutical targets, and multiple clinical trials are in progress for the treatment of various FGFR aberrations. To effectively target dysregulated receptors, a structural and mechanistic understanding of FGFR activation and regulation is required. Here, we review some of the key research findings from the last couple of decades and summarise the strategies being explored for therapeutic intervention.
Collapse
Affiliation(s)
- Brendan Farrell
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
42
|
Awasthi S, Nair NN. Exploring high‐dimensional free energy landscapes of chemical reactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shalini Awasthi
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| | - Nisanth N. Nair
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| |
Collapse
|
43
|
Haldar S, Comitani F, Saladino G, Woods C, van der Kamp MW, Mulholland AJ, Gervasio FL. A Multiscale Simulation Approach to Modeling Drug-Protein Binding Kinetics. J Chem Theory Comput 2018; 14:6093-6101. [PMID: 30208708 DOI: 10.1021/acs.jctc.8b00687] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Drug-target binding kinetics has recently emerged as a sometimes critical determinant of in vivo efficacy and toxicity. Its rational optimization to improve potency or reduce side effects of drugs is, however, extremely difficult. Molecular simulations can play a crucial role in identifying features and properties of small ligands and their protein targets affecting the binding kinetics, but significant challenges include the long time scales involved in (un)binding events and the limited accuracy of empirical atomistic force fields (lacking, e.g., changes in electronic polarization). In an effort to overcome these hurdles, we propose a method that combines state-of-the-art enhanced sampling simulations and quantum mechanics/molecular mechanics (QM/MM) calculations at the BLYP/VDZ level to compute association free energy profiles and characterize the binding kinetics in terms of structure and dynamics of the transition state ensemble. We test our combined approach on the binding of the anticancer drug Imatinib to Src kinase, a well-characterized target for cancer therapy with a complex binding mechanism involving significant conformational changes. The results indicate significant changes in polarization along the binding pathways, which affect the predicted binding kinetics. This is likely to be of widespread importance in binding of ligands to protein targets.
Collapse
Affiliation(s)
- Susanta Haldar
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , BS8 1TS , United Kingdom
| | | | | | - Christopher Woods
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , BS8 1TS , United Kingdom
| | - Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , BS8 1TS , United Kingdom
- School of Biochemistry , University of Bristol , Bristol , BS8 1TD , United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol , BS8 1TS , United Kingdom
| | | |
Collapse
|
44
|
Liu L, Yu H, Du K, Wang Z, Gan Y, Huang H. Enhanced trypsin thermostability in Pichia pastoris through truncating the flexible region. Microb Cell Fact 2018; 17:165. [PMID: 30359279 PMCID: PMC6201580 DOI: 10.1186/s12934-018-1012-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/19/2018] [Indexed: 12/03/2022] Open
Abstract
Background High thermostability is required for trypsin to have wider industrial applications. Target mutagenesis at flexible regions has been proved to be an efficient protein engineering method to enhance the protein thermostability. Results The flexible regions in porcine trypsin were predicted using the methods including molecular dynamic simulation, FlexPred, and FoldUnfold. The amino acids 78–90 was predicted to be the highly flexible region simultaneously by the three methods and hence selected to be the mutation target. We constructed five variants (D3, D5, D7, D9, and D11) by truncating the region. And the variant D9 showed higher thermostability, with a 5 °C increase in Topt, 5.8 °C rise in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_{50}^{10}$$\end{document}T5010, and a 4.5 °C rise in Tm, compared to the wild-type. Moreover, the half-life value of the variant D9 was also found to be dramatically improved by 46 min. Circular dichroism and intrinsic fluorescence indicated that the structures had no significant change between the variant D9 and the wild-type. The surface hydrophobicity of D9 was measured to be lower than that of wild-type, indicating the increased hydrophobic interaction, which could have contributed to the improved thermostability of D9. Conclusions These results showed that the thermostability of variant D9 was increased. The variant D9 could be expected to be a promising tool enzyme for its wider industrial applications. The method of truncating the flexible region used in our study has the potential to be used for enhancing the thermostability of other proteins. Electronic supplementary material The online version of this article (10.1186/s12934-018-1012-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Haoran Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China.,Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Kun Du
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Zhiyan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Yiru Gan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China. .,Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300350, China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China.
| |
Collapse
|
45
|
Leontiadou H, Galdadas I, Athanasiou C, Cournia Z. Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations. Sci Rep 2018; 8:15544. [PMID: 30341384 PMCID: PMC6195558 DOI: 10.1038/s41598-018-27044-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
Phosphoinositide 3-kinase alpha (PI3Kα) is involved in fundamental cellular processes including cell proliferation and differentiation and is frequently mutated in human malignancies. One of the most common mutations is E545K, which results in an amino acid substitution of opposite charge. It has been recently proposed that in this oncogenic charge-reversal mutation, the interactions between the protein catalytic and regulatory subunits are abrogated, resulting in loss of regulation and constitutive PI3Kα activity, which can lead to oncogenesis. To assess the mechanism of the PI3Kα E545K activating mutation, extensive Molecular Dynamics simulations were performed to examine conformational changes differing between the wild type (WT) and mutant proteins as they occur in microsecond simulations. In the E545K mutant PI3Kα, we observe a spontaneous detachment of the nSH2 PI3Kα domain (regulatory subunit, p85α) from the helical domain (catalytic subunit, p110α) causing significant loss of communication between the regulatory and catalytic subunits. We examine the allosteric network of the two proteins and show that a cluster of residues around the mutation is important for delivering communication signals between the catalytic and regulatory subunits. Our results demonstrate the dynamical and structural effects induced by the p110α E545K mutation in atomic level detail and indicate a possible mechanism for the loss of regulation that E545K confers on PI3Kα.
Collapse
Affiliation(s)
- Hari Leontiadou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Ioannis Galdadas
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Christina Athanasiou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece.
| |
Collapse
|
46
|
Huggins DJ, Biggin PC, Dämgen MA, Essex JW, Harris SA, Henchman RH, Khalid S, Kuzmanic A, Laughton CA, Michel J, Mulholland AJ, Rosta E, Sansom MSP, van der Kamp MW. Biomolecular simulations: From dynamics and mechanisms to computational assays of biological activity. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1393] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- David J. Huggins
- TCM Group, Cavendish Laboratory University of Cambridge Cambridge UK
- Unilever Centre, Department of Chemistry University of Cambridge Cambridge UK
- Department of Physiology and Biophysics Weill Cornell Medical College New York NY
| | | | - Marc A. Dämgen
- Department of Biochemistry University of Oxford Oxford UK
| | - Jonathan W. Essex
- School of Chemistry University of Southampton Southampton UK
- Institute for Life Sciences University of Southampton Southampton UK
| | - Sarah A. Harris
- School of Physics and Astronomy University of Leeds Leeds UK
- Astbury Centre for Structural and Molecular Biology University of Leeds Leeds UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester Manchester UK
- School of Chemistry The University of Manchester Oxford UK
| | - Syma Khalid
- School of Chemistry University of Southampton Southampton UK
- Institute for Life Sciences University of Southampton Southampton UK
| | | | - Charles A. Laughton
- School of Pharmacy University of Nottingham Nottingham UK
- Centre for Biomolecular Sciences University of Nottingham Nottingham UK
| | - Julien Michel
- EaStCHEM school of Chemistry University of Edinburgh Edinburgh UK
| | - Adrian J. Mulholland
- Centre of Computational Chemistry, School of Chemistry University of Bristol Bristol UK
| | - Edina Rosta
- Department of Chemistry King's College London London UK
| | | | - Marc W. van der Kamp
- Centre of Computational Chemistry, School of Chemistry University of Bristol Bristol UK
- School of Biochemistry, Biomedical Sciences Building University of Bristol Bristol UK
| |
Collapse
|
47
|
Inhibition of tumor-microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. Proc Natl Acad Sci U S A 2018; 115:E7786-E7794. [PMID: 30061414 PMCID: PMC6099886 DOI: 10.1073/pnas.1805020115] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To effectively prevent cancer spread from primary tumor sites, new treatments need to target tumor cells, the cells and extracellular matrix within the tumor environment, and communicating pathways between these sites simultaneously. The collagen receptor discoidin domain receptor 2 (DDR2) has been implicated as such a target. Here, we describe the identification and characterization of a small molecule inhibitor of DDR2 that uniquely acts in an allosteric manner via the extracellular domain to selectively inhibit the action of DDR2 in tumor cells and tumor stromal cancer-associated fibroblasts. In experimental mouse models of breast cancer, WRG-28 inhibits DDR2 signaling and tumor cell invasion. The action of the collagen binding receptor tyrosine kinase (RTK) discoidin domain receptor 2 (DDR2) in both tumor and tumor stromal cells has been established as critical for breast cancer metastasis. Small molecule inhibitors that target the extracellular domain of RTKs are rare, as they have classically been regarded as too small to block binding with large polypeptide ligands. Here, we report the identification and characterization of a selective, extracellularly acting small molecule inhibitor (WRG-28) of DDR2 that uniquely inhibits receptor–ligand interactions via allosteric modulation of the receptor. By targeting DDR2, WRG-28 inhibits tumor invasion and migration, as well as tumor-supporting roles of the stroma, and inhibits metastatic breast tumor cell colonization in the lungs. These findings represent an approach to inhibiting tumor–stromal interactions and support the development of allosteric inhibitors of DDR2, such as WRG-28, as a promising approach to antimetastasis treatment.
Collapse
|
48
|
Ghedini GC, Ronca R, Presta M, Giacomini A. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev Anticancer Ther 2018; 18:861-872. [PMID: 29936878 DOI: 10.1080/14737140.2018.1491795] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Deregulation of the fibroblast growth factor (FGF)/FGF receptor (FGFR) network occurs frequently in tumors due to gene amplification, activating mutations, and oncogenic fusions. Thus, the development of FGF/FGFR-targeting therapies is the focus of several basic, preclinical, and clinical studies. Areas covered: This review will recapitulate the status of current FGF/FGFR-targeted drugs. Expert commentary: Non-selective FGF/FGFR inhibitors have been approved for cancer treatment but evidence highlights various complications affecting their use in the clinical practice. It appears mandatory to identify FGF/FGFR alterations and appropriate biomarkers that may predict and monitor response to treatment, to establish the contribution of the FGF/FGFR system to the onset of mechanisms of drug resistance, and to develop effective combinations of FGF/FGFR inhibitors with other targeted therapies.
Collapse
Affiliation(s)
- Gaia Cristina Ghedini
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Roberto Ronca
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Marco Presta
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Arianna Giacomini
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| |
Collapse
|
49
|
Xie Z, Cheng D, Luo L, Shen G, Pan S, Pan Y, Chen B, Wang X, Liu Z, Zhang Y, Ye F. Design, synthesis and biological evaluation of 4-bromo-N-(3,5-dimethoxyphenyl)benzamide derivatives as novel FGFR1 inhibitors for treatment of non-small cell lung cancer. J Enzyme Inhib Med Chem 2018; 33:905-919. [PMID: 29734851 PMCID: PMC6009922 DOI: 10.1080/14756366.2018.1460824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A series of 4-bromo-N-(3,5-dimethoxyphenyl)benzamide derivatives were designed and synthesised as novel fibroblast growth factor receptor-1 (FGFR1) inhibitors. We found that one of the most promising compounds, C9, inhibited five non-small cell lung cancer (NSCLC) cell lines with FGFR1 amplification, including NCI-H520, NCI-H1581, NCI-H226, NCI-H460 and NCI-H1703. Moreover, the IC50 values for the compound C9 were 1.36 ± 0.27 µM, 1.25 ± 0. 23 µM, 2.31 ± 0.41 µM, 2.14 ± 0.36 µM and 1.85 ± 0.32 µM, respectively. The compound C9 arrested the cell cycle at the G2 phase in NSCLC cell lines. The compound C9 also induced cellular apoptosis and inhibited the phosphorylation of FGFR1, PLCγ1 and ERK in a dose-dependent manner. In addition, molecular docking experiments showed that compound C9 binds to FGFR1 to form six hydrogen bonds. Taken together, our data suggested that the compound C9 represented a promising lead compound-targeting FGFR1.
Collapse
Affiliation(s)
- Zixin Xie
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Donghua Cheng
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Lu Luo
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Guoliang Shen
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Suwei Pan
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Yaqian Pan
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Bo Chen
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Xuebao Wang
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Zhiguo Liu
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Yuan Zhang
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Faqing Ye
- a School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| |
Collapse
|
50
|
Kappert F, Sreeramulu S, Jonker HRA, Richter C, Rogov VV, Proschak E, Hargittay B, Saxena K, Schwalbe H. Structural Characterization of the Interaction of the Fibroblast Growth Factor Receptor with a Small Molecule Allosteric Inhibitor. Chemistry 2018; 24:7861-7865. [DOI: 10.1002/chem.201801770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Franziska Kappert
- Goethe University; Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Max von Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Sridhar Sreeramulu
- Goethe University; Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Max von Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Hendrik R. A. Jonker
- Goethe University; Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Max von Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Christian Richter
- Goethe University; Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Max von Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Vladimir V. Rogov
- Goethe University; Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Biophysical Chemistry; Max von Laue-Straße 9 60438 Frankfurt am Main Germany
| | - Ewgenij Proschak
- Goethe University; Institute of Pharmaceutical Chemistry; Max von Laue-Straße 9 60438 Frankfurt Germany
| | - Bruno Hargittay
- Goethe University; Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Max von Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Krishna Saxena
- Goethe University; Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Max von Laue-Straße 7 60438 Frankfurt am Main Germany
- German Cancer Research Center (DKFZ); Partner facility Frankfurt/Mainz
| | - Harald Schwalbe
- Goethe University; Center for Biomolecular Magnetic Resonance (BMRZ); Institute for Organic Chemistry and Chemical Biology; Max von Laue-Straße 7 60438 Frankfurt am Main Germany
- German Cancer Research Center (DKFZ); Partner facility Frankfurt/Mainz
| |
Collapse
|