1
|
Kepp KP, Robakis NK, Høilund-Carlsen PF, Sensi SL, Vissel B. The amyloid cascade hypothesis: an updated critical review. Brain 2023; 146:3969-3990. [PMID: 37183523 DOI: 10.1093/brain/awad159] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
Results from recent clinical trials of antibodies that target amyloid-β (Aβ) for Alzheimer's disease have created excitement and have been heralded as corroboration of the amyloid cascade hypothesis. However, while Aβ may contribute to disease, genetic, clinical, imaging and biochemical data suggest a more complex aetiology. Here we review the history and weaknesses of the amyloid cascade hypothesis in view of the new evidence obtained from clinical trials of anti-amyloid antibodies. These trials indicate that the treatments have either no or uncertain clinical effect on cognition. Despite the importance of amyloid in the definition of Alzheimer's disease, we argue that the data point to Aβ playing a minor aetiological role. We also discuss data suggesting that the concerted activity of many pathogenic factors contribute to Alzheimer's disease and propose that evolving multi-factor disease models will better underpin the search for more effective strategies to treat the disease.
Collapse
Affiliation(s)
- Kasper P Kepp
- Section of Biophysical and Biomedicinal chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY 10029, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology-CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Sydney, 2010, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Kepp KP, Sensi SL, Johnsen KB, Barrio JR, Høilund-Carlsen PF, Neve RL, Alavi A, Herrup K, Perry G, Robakis NK, Vissel B, Espay AJ. The Anti-Amyloid Monoclonal Antibody Lecanemab: 16 Cautionary Notes. J Alzheimers Dis 2023; 94:497-507. [PMID: 37334596 DOI: 10.3233/jad-230099] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
After the CLARITY-AD clinical trial results of lecanemab were interpreted as positive, and supporting the amyloid hypothesis, the drug received accelerated Food and Drug Administration approval. However, we argue that benefits of lecanemab treatment are uncertain and may yield net harm for some patients, and that the data do not support the amyloid hypothesis. We note potential biases from inclusion, unblinding, dropouts, and other issues. Given substantial adverse effects and subgroup heterogeneity, we conclude that lecanemab's efficacy is not clinically meaningful, consistent with numerous analyses suggesting that amyloid-β and its derivatives are not the main causative agents of Alzheimer's disease dementia.
Collapse
Affiliation(s)
- Kasper P Kepp
- Department of Chemistry, Section of Biophysical and Biomedicinal Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology - CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Kasper B Johnsen
- Department of Health Science and Technology, Neurobiology Research and Drug Delivery Group, Aalborg University, Aalborg, Denmark
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Rachael L Neve
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
3
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
4
|
Grazioso R, García-Viñuales S, D'Abrosca G, Baglivo I, Pedone PV, Milardi D, Fattorusso R, Isernia C, Russo L, Malgieri G. The change of conditions does not affect Ros87 downhill folding mechanism. Sci Rep 2020; 10:21067. [PMID: 33273582 PMCID: PMC7713307 DOI: 10.1038/s41598-020-78008-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
Downhill folding has been defined as a unique thermodynamic process involving a conformations ensemble that progressively loses structure with the decrease of protein stability. Downhill folders are estimated to be rather rare in nature as they miss an energetically substantial folding barrier that can protect against aggregation and proteolysis. We have previously demonstrated that the prokaryotic zinc finger protein Ros87 shows a bipartite folding/unfolding process in which a metal binding intermediate converts to the native structure through a delicate barrier-less downhill transition. Significant variation in folding scenarios can be detected within protein families with high sequence identity and very similar folds and for the same sequence by varying conditions. For this reason, we here show, by means of DSC, CD and NMR, that also in different pH and ionic strength conditions Ros87 retains its partly downhill folding scenario demonstrating that, at least in metallo-proteins, the downhill mechanism can be found under a much wider range of conditions and coupled to other different transitions. We also show that mutations of Ros87 zinc coordination sphere produces a different folding scenario demonstrating that the organization of the metal ion core is determinant in the folding process of this family of proteins.
Collapse
Affiliation(s)
- Rinaldo Grazioso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | | | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Danilo Milardi
- Institute of Crystallography-CNR, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy.
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy.
| |
Collapse
|
5
|
Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario. Int J Mol Sci 2020; 21:ijms21218285. [PMID: 33167398 PMCID: PMC7663847 DOI: 10.3390/ijms21218285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
The structural effects of zinc replacement by xenobiotic metal ions have been widely studied in several eukaryotic and prokaryotic zinc-finger-containing proteins. The prokaryotic zinc finger, that presents a bigger βββαα domain with a larger hydrophobic core with respect to its eukaryotic counterpart, represents a valuable model protein to study metal ion interaction with metallo-proteins. Several studies have been conducted on Ros87, the DNA binding domain of the prokaryotic zinc finger Ros, and have demonstrated that the domain appears to structurally tolerate Ni(II), albeit with important structural perturbations, but not Pb(II) and Hg(II), and it is in vitro functional when the zinc ion is replaced by Cd(II). We have previously shown that Ros87 unfolding is a two-step process in which a zinc binding intermediate converts to the native structure thorough a delicate downhill folding transition. Here, we explore the folding/unfolding behaviour of Ros87 coordinated to Co(II), Ni(II) or Cd(II), by UV-Vis, CD, DSC and NMR techniques. Interestingly, we show how the substitution of the native metal ion results in complete different folding scenarios. We found a two-state unfolding mechanism for Cd-Ros87 whose metal affinity Kd is comparable to the one obtained for the native Zn-Ros87, and a more complex mechanism for Co-Ros87 and Ni-Ros87, that show higher Kd values. Our data outline the complex cross-correlation between the protein-metal ion equilibrium and the folding mechanism proposing such an interplay as a key factor in the proper metal ion selection by a specific metallo-protein.
Collapse
|
6
|
Grasso G. THE USE OF MASS SPECTROMETRY TO STUDY ZN-METALLOPROTEASE-SUBSTRATE INTERACTIONS. MASS SPECTROMETRY REVIEWS 2020; 39:574-585. [PMID: 31898821 DOI: 10.1002/mas.21621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Zinc metalloproteases (ZnMPs) participate in diverse biological reactions, encompassing the synthesis and degradation of all the major metabolites in living organisms. In particular, ZnMPs have been recognized to play a very important role in controlling the concentration level of several peptides and/or proteins whose homeostasis has to be finely regulated for the correct physiology of cells. Dyshomeostasis of aggregation-prone proteins causes pathological conditions and the development of several different diseases. For this reason, in recent years, many analytical approaches have been applied for studying the interaction between ZnMPs and their substrates and how environmental factors can affect enzyme activities. In this scenario, mass spectrometric methods occupy a very important role in elucidating different aspects of ZnMPs-substrates interaction. These range from identification of cleavage sites to quantitation of kinetic parameters. In this work, an overview of all the main achievements regarding the application of mass spectrometric methods to investigating ZnMPs-substrates interactions is presented. A general experimental protocol is also described which may prove useful to the study of similar interactions. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, Catania, 95125, Italy
| |
Collapse
|
7
|
Structural Insight of the Full-Length Ros Protein: A Prototype of the Prokaryotic Zinc-Finger Family. Sci Rep 2020; 10:9283. [PMID: 32518326 PMCID: PMC7283297 DOI: 10.1038/s41598-020-66204-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/15/2020] [Indexed: 11/30/2022] Open
Abstract
Ros/MucR is a widespread family of bacterial zinc-finger (ZF) containing proteins that integrate multiple functions such as virulence, symbiosis and/or cell cycle transcription. NMR solution structure of Ros DNA-binding domain (region 56–142, i.e. Ros87) has been solved by our group and shows that the prokaryotic ZF domain shows interesting structural and functional features that differentiate it from its eukaryotic counterpart as it folds in a significantly larger zinc-binding globular domain. We have recently proposed a novel functional model for this family of proteins suggesting that they may act as H-NS-‘like’ gene silencers. Indeed, the N-terminal region of this family of proteins appears to be responsible for the formation of functional oligomers. No structural characterization of the Ros N-terminal domain (region 1–55) is available to date, mainly because of serious solubility problems of the full-length protein. Here we report the first structural characterization of the N-terminal domain of the prokaryotic ZF family examining by means of MD and NMR the structural preferences of the full-length Ros protein from Agrobacterium tumefaciens.
Collapse
|
8
|
Grasso G. Mass spectrometry is a multifaceted weapon to be used in the battle against Alzheimer's disease: Amyloid beta peptides and beyond. MASS SPECTROMETRY REVIEWS 2019; 38:34-48. [PMID: 29905953 DOI: 10.1002/mas.21566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Amyloid-β peptide (Aβ) accumulation and aggregation have been considered for many years the main cause of Alzheimer's disease (AD), and therefore have been the principal target of investigation as well as of the proposed therapeutic approaches (Grasso [2011] Mass Spectrom Rev. 30: 347-365). However, the amyloid cascade hypothesis, which considers Aβ accumulation the only causative agent of the disease, has proven to be incomplete if not wrong. In recent years, actors such as metal ions, oxidative stress, and other cofactors have been proposed as possible co-agents or, in some cases, main causative factors of AD. In this scenario, MS investigation has proven to be fundamental to design possible diagnostic strategies of this elusive disease, as well as to understand the biomolecular mechanisms involved, in the attempt to find a possible therapeutic solution. We review the current applications of MS in the search for possible Aβ biomarkers of AD to help the diagnosis of the disease. Recent examples of the important contributions that MS has given to prove or build theories on the molecular pathways involved with such terrible disease are also reviewed.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
9
|
De Tommaso G, Malgieri G, De Rosa L, Fattorusso R, D'Abrosca G, Romanelli A, Iuliano M, D'Andrea LD, Isernia C. Coordination of a bis-histidine-oligopeptide to Re(i) and Ga(iii) in aqueous solution. Dalton Trans 2019; 48:15184-15191. [DOI: 10.1039/c9dt02406a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have spectroscopically analyzed the chemistry in aqueous solution and the properties of the histidine-based chelator pHis2 complexed to the fac-[Re(H2O)3(CO)3]+ and Ga(iii) to unveil the molecular determinants of their coordination.
Collapse
Affiliation(s)
- Gaetano De Tommaso
- Department of Chemical Sciences
- University of Naples “Federico II” Cupa Nuova Cintia
- 21-80126 Naples
- Italy
| | - Gaetano Malgieri
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| | - Lucia De Rosa
- Institute of Biostructure and Bioimaging
- CNR
- 16-80134 Naples
- Italy
| | - Roberto Fattorusso
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| | - Gianluca D'Abrosca
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| | | | - Mauro Iuliano
- Department of Chemical Sciences
- University of Naples “Federico II” Cupa Nuova Cintia
- 21-80126 Naples
- Italy
| | | | - Carla Isernia
- Department of Environmental
- Biological and Pharmaceutical
- Sciences and Technologies
- University of Campania “L. Vanvitelli”
- 43-81100 Caserta
| |
Collapse
|
10
|
Abstract
Zinc ion binding is a principal event in the achievement of the correct fold in classical zinc finger domains since the motif is largely unfolded in the absence of metal. In the case of a prokaryotic zinc finger, the larger βββαα domain contributes to the folding mechanism with a larger hydrophobic core. For these reasons, following the great amount of attention devoted to unveiling the effect of xenobiotic metal ion replacement in zinc fingers and in zinc-containing proteins in general, the prokaryotic zinc finger domain appears to be an interesting model for studying metal ion interaction with metalloproteins. Here, we explore the binding of Ni(II), Hg(II), and Pb(II) to Ros87, the DNA binding domain of the prokaryotic zinc finger protein Ros. We measured Ros87-metal ion dissociation constants and monitored the effects on the structure and function of the domain. Interestingly, we found that the protein folds in the presence of Ni(II) with important structural perturbations, while in the presence of Pb(II) and Hg(II) it does not appear to be significantly folded. Accordingly, an overall strong reduction in the DNA binding capability is observed for all of the examined proteins. Our data integrate and complement the information collected in the past few years concerning the functional and structural effects of metal ion substitution in classical zinc fingers in order to contribute to a better comprehension of the toxicity of these metals in biological systems.
Collapse
|
11
|
Mazmanian K, Dudev T, Lim C. How First Shell–Second Shell Interactions and Metal Substitution Modulate Protein Function. Inorg Chem 2018; 57:14052-14061. [DOI: 10.1021/acs.inorgchem.8b01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- Taiwan and Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
12
|
Malgieri G, D'Abrosca G, Pirone L, Toto A, Palmieri M, Russo L, Sciacca MFM, Tatè R, Sivo V, Baglivo I, Majewska R, Coletta M, Pedone PV, Isernia C, De Stefano M, Gianni S, Pedone EM, Milardi D, Fattorusso R. Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins. Chem Sci 2018; 9:3290-3298. [PMID: 29780459 PMCID: PMC5933289 DOI: 10.1039/c8sc00166a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding the molecular determinants of fibrillogenesis by studying the aggregation propensities of high homologous proteins with different folding pathways.
Significant advances in the understanding of the molecular determinants of fibrillogenesis can be expected from comparative studies of the aggregation propensities of proteins with highly homologous structures but different folding pathways. Here, we fully characterize, by means of stopped-flow, T-jump, CD and DSC experiments, the unfolding mechanisms of three highly homologous proteins, zinc binding Ros87 and Ml153–149 and zinc-lacking Ml452–151. The results indicate that the three proteins significantly differ in terms of stability and (un)folding mechanisms. Particularly, Ros87 and Ml153–149 appear to be much more stable to guanidine denaturation and are characterized by folding mechanisms including the presence of an intermediate. On the other hand, metal lacking Ml452–151 folds according to a classic two-state model. Successively, we have monitored the capabilities of Ros87, Ml452–151 and Ml153–149 to form amyloid fibrils under native conditions. Particularly, we show, by CD, fluorescence, DLS, TEM and SEM experiments, that after 168 hours, amyloid formation of Ros87 has started, while Ml153–149 has formed only amorphous aggregates and Ml452–151 is still monomeric in solution. This study shows how metal binding can influence protein folding pathways and thereby control conformational accessibility to aggregation-prone states, which in turn changes aggregation kinetics, shedding light on the role of metal ions in the development of protein deposition diseases.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging , CNR , Via Mezzocannone 16 , 80134 Naples , Italy
| | - Angelo Toto
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , 00185 , Roma , Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | | | - Rosarita Tatè
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" , CNR , Via P. Castellino 111 , 80131 Napoli , Italy
| | - Valeria Sivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Roksana Majewska
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine , University of Rome "Tor Vergata" , Via Montpellier 1 , 00133 , Roma , Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Mario De Stefano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| | - Stefano Gianni
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" , University of Rome "La Sapienza" , Piazzale Aldo Moro 5 , 00185 , Roma , Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging , CNR , Via Mezzocannone 16 , 80134 Naples , Italy
| | - Danilo Milardi
- Institute of Biostructures and Bioimaging , CNR , Viale A. Doria 6 , 95125 Catania , Italy .
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy .
| |
Collapse
|
13
|
Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy. Bioinorg Chem Appl 2017; 2017:1527247. [PMID: 29386985 PMCID: PMC5745721 DOI: 10.1155/2017/1527247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/03/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022] Open
Abstract
Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.
Collapse
|
14
|
Naletova I, Nicoletti VG, Milardi D, Pietropaolo A, Grasso G. Copper, differently from zinc, affects the conformation, oligomerization state and activity of bradykinin. Metallomics 2017; 8:750-61. [PMID: 27328010 DOI: 10.1039/c6mt00067c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sole role of bradykinin (BK) as an inflammatory mediator is controversial, as recent data also support an anti-inflammatory role for BK in Alzheimer's disease (AD). The involvement of two different receptors (B1R and B2R) could be a key to understand this issue. However, although copper and zinc dyshomeostasis has been demonstrated to be largely involved in the development of AD, a detailed study of the interaction of BK with these two metal ions has never been addressed. In this work, we have applied mass spectrometry, circular dichroism as well as computational methods in order to assess if copper and zinc have the ability to modulate the conformation and oligomerization of BK. In addition, we have correlated the chemical data with the effect of metals on the activity of BK analyzed in cell cultures by biochemical procedures. The biochemical analyses on monocyte/macrophage cell culture (THP-1 Cell Line human) in line with the effect of metals on the conformation of BK showed that the presence of copper can affect the signaling cascade mediated by the BK receptors. The results obtained show a further role of metal ions, particularly copper, in the development and outcome of neuroinflammatory diseases. The possible implications in AD are discussed.
Collapse
Affiliation(s)
- Irina Naletova
- Dipartimento di Scienze Biomediche e Biotecnologiche "BIOMETEC", Università degli Studi di Catania, Via S. Sofia 64, 95125 Catania, Italy. and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.), Piazza Umberto I, 1-70121 Bari, Italy
| | - Vincenzo G Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche "BIOMETEC", Università degli Studi di Catania, Via S. Sofia 64, 95125 Catania, Italy. and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.), Piazza Umberto I, 1-70121 Bari, Italy
| | - Danilo Milardi
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Campus Universitario, Viale Europa, 88100 Catanzaro, Italy
| | - Giuseppe Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
15
|
Grasso G, Santoro AM, Lanza V, Sbardella D, Tundo GR, Ciaccio C, Marini S, Coletta M, Milardi D. The double faced role of copper in Aβ homeostasis: A survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
De Tommaso G, Celentano V, Malgieri G, Fattorusso R, Romanelli A, D'Andrea LD, Iuliano M, Isernia C. fac-[Re(H2O)3(CO)3]+Complexed with Histidine and Imidazole in Aqueous Solution: Speciation, Affinity and Binding Features. ChemistrySelect 2016. [DOI: 10.1002/slct.201600817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gaetano De Tommaso
- Department of Chemical Sciences; University of Naples “Federico II”; Cupa Nuova Cintia 21- 80126 Naples ITALY
| | - Veronica Celentano
- Institute of Biostructure and Bioimaging CNR; Via Mezzocannone 16-80134 Naples ITALY
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences; Technologies, Second University of Naples; Via Vivaldi 43-81100 Caserta Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences; Technologies, Second University of Naples; Via Vivaldi 43-81100 Caserta Italy
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| | - Alessandra Romanelli
- Department of Pharmacy; University of Naples “Federico II”; Via Mezzocannone 16-80134 Naples Italy
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| | - Luca Domenico D'Andrea
- Institute of Biostructure and Bioimaging CNR; Via Mezzocannone 16-80134 Naples ITALY
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| | - Mauro Iuliano
- Department of Chemical Sciences; University of Naples “Federico II”; Cupa Nuova Cintia 21- 80126 Naples ITALY
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences; Technologies, Second University of Naples; Via Vivaldi 43-81100 Caserta Italy
- Interuniversity Research Centre on Bioactive Peptides; Via Mezzocannone 16-80134 Naples Italy
| |
Collapse
|
17
|
D'Abrosca G, Russo L, Palmieri M, Baglivo I, Netti F, de Paola I, Zaccaro L, Farina B, Iacovino R, Pedone PV, Isernia C, Fattorusso R, Malgieri G. The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain. J Inorg Biochem 2016; 161:91-8. [PMID: 27238756 DOI: 10.1016/j.jinorgbio.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 11/29/2022]
Abstract
The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties.
Collapse
Affiliation(s)
- Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fortuna Netti
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ivan de Paola
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Laura Zaccaro
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Biancamaria Farina
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
18
|
Lyons B, Kwan AH, Truscott RJ. Spontaneous cleavage of proteins at serine and threonine is facilitated by zinc. Aging Cell 2016; 15:237-44. [PMID: 26751411 PMCID: PMC4783340 DOI: 10.1111/acel.12428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2015] [Indexed: 11/29/2022] Open
Abstract
Old proteins are widely distributed in the body. Over time, they deteriorate and many spontaneous reactions, for example isomerisation of Asp and Asn, can be replicated by incubation of peptides under physiological conditions. One of the signatures of long‐lived proteins that has proven to be difficult to replicate in vitro is cleavage on the N‐terminal side of Ser residues, and this is important since cleavage at Ser, and also Thr, has been observed in a number of human proteins. In this study, the autolysis of Ser‐ and Thr‐containing peptides was investigated with particular reference to discovering factors that promote cleavage adjacent to Ser/Thr at neutral pH. It was found that zinc catalyses cleavage of the peptide bond on the N‐terminal side of Ser residues and further that this process is markedly accelerated if a His residue is adjacent to the Ser. NMR analysis indicated that the imidazole group co‐ordinates zinc and that once zinc is co‐ordinated, it can polarize the carbonyl group of the peptide bond in a manner analogous to that observed in the active site of the metalloexopeptidase, carboxypeptidase A. The hydroxyl side chain of Ser/Thr is then able to cleave the adjacent peptide bond. These observations enable an understanding of the origin of common truncations observed in long‐lived proteins, for example truncation on the N‐terminal side of Ser 8 in Abeta, Ser 19 in alpha B crystallin and Ser 66 in alpha A crystallin. The presence of zinc may therefore significantly affect the long‐term stability of cellular proteins.
Collapse
Affiliation(s)
- Brian Lyons
- Illawarra Health and Medical Research Institute University of Wollongong Northfields Ave Wollongong NSW 2522 Australia
- Save Sight Institute University of Sydney Sydney Eye Hospital 8 Macquarie St Sydney NSW 2000 Australia
| | - Ann H. Kwan
- School of Molecular Bioscience University of Sydney Sydney NSW 2006 Australia
| | - Roger J.W. Truscott
- Illawarra Health and Medical Research Institute University of Wollongong Northfields Ave Wollongong NSW 2522 Australia
| |
Collapse
|
19
|
Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6724585. [PMID: 27123155 PMCID: PMC4829717 DOI: 10.1155/2016/6724585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/23/2016] [Accepted: 03/08/2016] [Indexed: 01/28/2023]
Abstract
We report the molecular mechanism for zinc depletion caused by TPEN (N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine) in neuroblastoma cells. The activation of p38 MAP kinase and subsequently caspase 3 is not due to or followed by redox imbalance or ROS generation, though these are commonly observed in literature. We found that TPEN is not responsible for ROS generation and the mechanism involves essentially lysosomal disruption caused by intracellular zinc depletion. We also observed a modest activation of Bax and no changes in the Bcl-2 proteins. As a result, we suggest that TPEN causes intracellular zinc depletion which can influence the breakdown of lysosomes and cell death without ROS generation.
Collapse
|
20
|
Malgieri G, Palmieri M, Russo L, Fattorusso R, Pedone PV, Isernia C. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart. FEBS J 2015; 282:4480-96. [PMID: 26365095 DOI: 10.1111/febs.13503] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/23/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023]
Abstract
Classical zinc finger (ZF) domains were thought to be confined to the eukaryotic kingdom until the transcriptional regulator Ros protein was identified in Agrobacterium tumefaciens. The Ros Cys2 His2 ZF binds DNA in a peculiar mode and folds in a domain significantly larger than its eukaryotic counterpart consisting of 58 amino acids (the 9-66 region) arranged in a βββαα topology, and stabilized by a conserved, extensive, 15-residue hydrophobic core. The prokaryotic ZF domain, then, shows some intriguing new features that make it interestingly different from its eukaryotic counterpart. This review will focus on the prokaryotic ZFs, summarizing and discussing differences and analogies with the eukaryotic domains and providing important insights into their structure/function relationships.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
21
|
Grasso G, Bonnet S. Metal complexes and metalloproteases: targeting conformational diseases. Metallomics 2015; 6:1346-57. [PMID: 24870829 DOI: 10.1039/c4mt00076e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years many metalloproteases (MPs) have been shown to play important roles in the development of various pathological conditions. Although most of the literature is focused on matrix MPs (MMPs), many other MPs have been demonstrated to be involved in the degradation of peptides or proteins whose accumulation and dyshomeostasis are considered as being responsible for the development of conformational diseases, i.e., diseases where non-native protein conformations lead to protein aggregation. It seems clear that, at least in principle, it must be possible to control the levels of many aggregation-prone proteins not only by reducing their production, but also by enhancing their catabolism. Metal complexes that can perform this function were designed and tested according to at least two different strategies: (i) intervening on the endogenous MPs by directly or indirectly modulating their activity; (ii) acting as artificial MPs, replacing or synergistically functioning with endogenous MPs. These two different bioinorganic approaches are widely represented in the current literature and the aim of this review is to rationally organize and discuss both of them so as to give a critical insight into these approaches and highlighting their limitations and future perspectives.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Chemistry Department, Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | | |
Collapse
|
22
|
Grasso G. Monitoring the biomolecular interactions and the activity of Zn-containing enzymes involved in conformational diseases: experimental methods for therapeutic purposes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:115-42. [PMID: 25458357 DOI: 10.1016/bs.apcsb.2014.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc metalloproteases (ZnMPs) participate in diverse biological reactions, encompassing the synthesis and degradation of all the major metabolites in living organisms. In particular, ZnMPs have been recognized to play a very important role in controlling the concentration level of several peptides and/or proteins whose homeostasis has to be finely regulated for the correct physiology of cells. Dyshomeostasis of aggregation-prone proteins causes pathological conditions and the development of several different diseases. For this reason, in recent years, many analytical approaches have been applied for studying the interaction between ZnMPs and their substrates/inhibitors and how environmental factors can affect enzyme activities. In this scenario, nuclear magnetic resonance, X-ray diffraction, mass spectrometric (MS), and optical methods occupy a very important role in elucidating different aspects of the ZnMPs-substrates/inhibitors interaction, ranging from identification of cleavage sites to quantitation of kinetic parameters and inhibition constants. Here, an overview of all the main achievements in the application of different experimental approaches with special attention to MS methods to the investigation of ZnMPs-substrates/inhibitors interaction is given. A general MS experimental protocol which has been proved to be useful to study such interactions is also described.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
23
|
Lillo V, Galán-Mascarós JR. Transition metal complexes with oligopeptides: single crystals and crystal structures. Dalton Trans 2014; 43:9821-33. [PMID: 24874062 DOI: 10.1039/c4dt00650j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The coordination chemistry of short chain peptides with transition metals is described in terms of the available crystal structures. Despite their high interest as synthetic models for metalloproteins and as building blocks for molecular materials based on the tuneable properties of oligopeptides, single crystal X-ray diffraction studies are scarce. A perusal of the most relevant results in this field allows us to define the main characteristics of oligopeptide-metal interactions, the fundamental problems for the crystallization of these complexes, and some hints to identify future promising approaches to advance the development of metallopeptide chemistry.
Collapse
Affiliation(s)
- Vanesa Lillo
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans, 16. E-43007, Tarragona, Spain.
| | | |
Collapse
|
24
|
Deshapriya IK, Kim CS, Novak MJ, Kumar CV. Biofunctionalization of α-zirconium phosphate nanosheets: toward rational control of enzyme loading, affinities, activities and structure retention. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9643-9653. [PMID: 24853777 DOI: 10.1021/am502070w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Controlling the properties of enzymes bound to solid surfaces in a rational manner is a grand challenge. Here we show that preadsorption of cationized bovine serum albumin (cBSA) to α-Zr(IV) phosphate (α-ZrP) nanosheets promotes enzyme binding in a predictable manner, and surprisingly, the enzyme binding is linearly proportional to the number of residues present in the enzyme or its volume, providing a powerful, new predictable tool. The cBSA loaded α-ZrP (denoted as bZrP) was tested for the binding of pepsin, glucose oxidase (GOX), tyrosinase, catalase, myoglobin and laccase where the number of residues increased from the lowest value of ∼153 to the highest value of 2024. Loading depended linearly on the number of residues, rather than enzyme charge or its isoelectric point. No such correlation was seen for the binding of these enzymes to α-ZrP nanosheets without the preadsorption of cBSA, under similar conditions of pH and buffer. Enzyme binding to bZrP was supported by centrifugation studies, powder X-ray diffraction and scanning electron microscopy/energy-dispersive X-ray spectroscopy. All the bound enzymes retained their secondary structure and the extent of structure retention depended directly on the amount of cBSA preadsorbed on α-ZrP, prior to enzyme loading. Except for tyrosinase, all enzyme/bZrP biocatalysts retained their enzymatic activities nearly 90-100%, and biofunctionalization enhanced the loading, improved structure retention and supported higher enzymatic activities. This approach of using a chemically modified protein to serve as a glue, with a predictable affinity/loading of the enzymes, could be useful to rationally control enzyme binding for applications in advanced biocatalysis and biomedical applications.
Collapse
Affiliation(s)
- Inoka K Deshapriya
- Department of Chemistry, ‡Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|
25
|
Bellia F, Grasso G. The role of copper(II) and zinc(II) in the degradation of human and murine IAPP by insulin-degrading enzyme. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:274-279. [PMID: 24719342 DOI: 10.1002/jms.3338] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/20/2013] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
Amylin or islet amyloid polypeptide (IAPP) is a 37-residue peptide hormone secreted from the pancreatic islets into the blood circulation and is cleared by peptidases in the kidney. IAPP aggregates are strongly associated with β-cell degeneration in type 2 diabetes, as demonstrated by the fact that more than 95% of patients exhibit IAPP amyloid upon autopsy. Recently, it has been reported that metal ions such as copper(II) and zinc(II) are implicated in the aggregation of IAPP as well as able to modulate the proteolytic activity of IAPP degrading enzymes. For this reason, in this work, the role of the latter metal ions in the degradation of IAPP by insulin-degrading enzyme (IDE) has been investigated by a chromatographic and mass spectrometric combined method. The latter experimental approach allowed not only to assess the overall metal ion inhibition of the human and murine IAPP degradation by IDE but also to have information on copper- and zinc-induced changes in IAPP aggregation. In addition, IDE cleavage site preferences in the presence of metal ions are rationalized as metal ion-induced changes in substrate accessibility.
Collapse
Affiliation(s)
- Francesco Bellia
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy
| | | |
Collapse
|
26
|
Baglivo I, Palmieri M, Rivellino A, Netti F, Russo L, Esposito S, Iacovino R, Farina B, Isernia C, Fattorusso R, Pedone PV, Malgieri G. Molecular strategies to replace the structural metal site in the prokaryotic zinc finger domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:497-504. [PMID: 24389235 DOI: 10.1016/j.bbapap.2013.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 11/18/2022]
Abstract
The specific arrangement of secondary elements in a local motif often totally relies on the formation of coordination bonds between metal ions and protein ligands. This is typified by the ~30 amino acid eukaryotic zinc finger motif in which a β-sheet and an α-helix are clustered around a zinc ion by various combinations of four ligands. The prokaryotic zinc finger domain (found in the Ros protein from Agrobacterium tumefaciens) is different from the eukaryotic counterpart as it consists of 58 amino acids arranged in a βββαα topology stabilized by a 15-residue hydrophobic core. Also, this domain tetrahedrally coordinates zinc and unfolds in the absence of the metal ion. The characterization of proteins belonging to the Ros homologs family has however shown that the prokaryotic zinc finger domain can overcome the metal requirement to achieve the same fold and DNA-binding activity. In the present work, two zinc-lacking Ros homologs (Ml4 and Ml5 proteins) have been thoroughly characterized using bioinformatics, biochemical and NMR techniques. We show how in these proteins a network of hydrogen bonds and hydrophobic interactions surrogate the zinc coordination role in the achievement of the same functional fold.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessia Rivellino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fortuna Netti
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sabrina Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy
| | - Biancamaria Farina
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|