1
|
Yang M, An S, Gao H, Du Z, Zhang X, Nghiem LD, Liu Q. Selective adsorption of copper by amidoxime modified low-temperature biochar: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178072. [PMID: 39689469 DOI: 10.1016/j.scitotenv.2024.178072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Biochars prepared at 300-700 °C were functionalized with amidoxime groups to evaluate their selective adsorptive removal capabilities towards Cu(II), Cd(II), and Pb(II). The results show that the amidoxime modification significantly enhanced the the Cu(II) adsorption capacity of the biochar prepared at 300 °C (AOBC300) by 1.6 times, reaching 0.61 mmol/g. In binary and ternary heavy metal solutions, AOBC300 exhibited preferential adsorption of Cu(II), followed by Pb(II) and Cd(II). High salinity, alkaline earth metal ions, humic substances, and other metal cations had minimal interference on the adsorption of heavy metals by AOBC300. Sample characterization revealed that amidoxime modification reduced the zeta potential and increased the hydrophilicity of the biochar. XPS analysis demonstrated that both N and O atoms of the amidoxime group are involved in the adsorption process, contributing to AOBC300's strong affinity for heavy metal ions. DFT calculations further confirmed the adsorption preference of different heavy metals on AOBC300. This study demonstrates that amidoxime grafting is an effective protocol for refining low-temperature biochar, aimed at efficiently eliminating heavy metals from waste streams.
Collapse
Affiliation(s)
- Min Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shumeng An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haibo Gao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhongcheng Du
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaolei Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental, Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Wang M, Ren HY, Pu XY, Zhang XL, Zhu HY, Wu AX, Zhao BT. Rongalite/iodine-mediated C(sp 3)-H bond oximation and thiomethylation reaction of methyl ketones using copper nitrate as the [NO] reagent: synthesis of thiohydroximic acids. Org Biomol Chem 2024; 22:7623-7627. [PMID: 39222034 DOI: 10.1039/d4ob01217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this work, a highly efficient rongalite/iodine-mediated oxime formation reaction for the preparation of thiohydroximic acids from methyl ketones by employing copper nitrate as the [NO] reagent has been developed. Notably, copper nitrate participated as both a catalyst and the mild oximation reagent in the transformation. This reaction is highly efficient and facile, with a broad substrate scope, especially for fused ring skeleton substrates, heterocyclic skeleton substrates, and acetyl-substituted natural products. Mechanistic studies revealed that copper nitrate might be converted into a NO2 radical or the NO2 radical dimeric forms as an ion-pair equivalent to participate in the transformation.
Collapse
Affiliation(s)
- Miao Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - Hui-Ying Ren
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiao-Yu Pu
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - Xiao-Lu Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - He-Ying Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Bang-Tun Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.
| |
Collapse
|
3
|
Tarai A, Nath B. A review on oxime functionality: an ordinary functional group with significant impacts in supramolecular chemistry. Chem Commun (Camb) 2024; 60:7266-7287. [PMID: 38916274 DOI: 10.1039/d4cc01397b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The oxime functional group is pivotal in chemistry, finding extensive applications in medical science, catalysis, organic functional group transformations, and the recognition of essential and toxic analytes. While the coordination chemistry of oxime derivatives has been thoroughly explored and several reviews have been published on this topic in reputable journals, a comprehensive review encompassing various aspects such as crystal engineering, cation and anion recognition, as well as coordination chemistry activities, is still in demand. This feature article highlights the diverse applications of oxime derivatives across multiple domains of chemistry, including medicine, agriculture, crystal engineering, coordination chemistry, and molecular recognition studies. Each of the oxime derivatives in this feature article are meticulously described in terms of their medicinal applications, crop protection, crystal engineering attributes, analyte recognition capabilities, and coordination chemistry aspects. By providing a comprehensive overview of their versatile applications, this article aims to inspire researchers to explore and develop novel oxime-based derivatives for future applications.
Collapse
Affiliation(s)
- Arup Tarai
- School of Advanced Sciences and Languages (SASL), VIT Bhopal University, Bhopal-466114, Madya Pradesh, India.
| | - Bhaskar Nath
- Department of Educational Sciences, Assam University Silchar, Assam-788011, India.
| |
Collapse
|
4
|
Zhao D, Wang H, Wang Z, Lu S. Understanding competitive Cu 2+ and Zn 2+ adsorption onto functionalized cellulose fiber via experimental and theoretical approach. Int J Biol Macromol 2024; 273:132782. [PMID: 38825284 DOI: 10.1016/j.ijbiomac.2024.132782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Amidoxime groups were successfully introduced to develop a novel amidoxime-functionalized cellulose fiber (AO-Cell) for absorptive removal of heavy metal ions in wastewater. The chemical structure, and the competitive adsorption of Cu2+ and Zn2+ by AO-Cell were investigated by experiments study, Density functional theory (DFT) and molecular dynamic (MD) simulation. The results showed the N and O atoms in the amidoxime group can spontaneously interact with Cu2+ and Zn2+ through sharing long pair electrons to generate stable coordination structure, which was the dominant adsorption mechanism. Besides, the enlarged surface area, improved hydrophilicity and dispersion offered by AO-Cell facilitate the adsorption process by increasing the accessibility of absorption sites. As results of these synergetic modification, AO-Cell can remain effective in a wide pH range (1-6) and reach adsorption equilibrium within 60 min. At optimal conditions, the achieved theoretical adsorption capacity is as high as 84.81 mg/g for Cu2+ and 61.46 mg/g for Zn2+ in the solution with multiple ions. The competition between Cu2+ and Zn2+ in occupying the absorption sites arises from the difference in the metallic ion affinity and covalent index with the adsorbent as demonstrated by the MD analysis. Importantly, AO-Cell demonstrated favorable recyclability after up to 10 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Dezhi Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066000, China.
| | - Hexiang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066000, China
| | - Zheng Wang
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Lu
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Ferreira JGL, Orth ES. Amidoxime-derived rice husk as biocatalyst and scavenger for organophosphate neutralization and removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121802. [PMID: 37169239 DOI: 10.1016/j.envpol.2023.121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Organophosphates are a worldwide threat because of their presence in agrochemicals and chemical warfare. Situations of misuse, apprehensions of prohibited chemicals (e.g. pesticides), undesired stockpiles and chemical attacks require effective measures for neutralization and removal. Herein, a green approach is shown by functionalizing the agricultural waste rice husk with amidoximes leading to heterogeneous catalysts that were applied in the degradation/scavenging of toxic organophosphates. In aqueous medium, the waste-derived catalyst was efficient in the catalytic neutralization of a phosphotriester (increments up to 1 × 104-fold), while allying important features: selective, recyclable and lead to less toxic products. Curiously, the amidoximated rice husk behaved as a scavenger in the aprotic polar solvents MeCN and acetone by covalently bonding to the phosphoryl moiety. Upon addition of water, this bond is broken and the phosphoryl liberated (hydrolyzed) to the aqueous medium. Thus, the scavenging process is reversible and can be used to remove toxic organophosphates. 31P nuclear magnetic resonance spectroscopy was crucial for confirming the overall mechanisms involved. In summary, a sustainable material was synthetized from a waste source and employed as catalyst and scavenger for eliminating threatening organophosphates. This is promising for assuring chemical security such as in chemical emergencies.
Collapse
Affiliation(s)
- José G L Ferreira
- Department of Chemistry, Universidade Federal do Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Elisa S Orth
- Department of Chemistry, Universidade Federal do Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
6
|
Gan J, Zhang L, Wang Q, Xin Q, Xiong Y, Hu E, Lei Z, Wang H, Wang H. Phosphorylation improved the competitive U/V adsorption on chitosan-based adsorbent containing amidoxime for rapid uranium extraction from seawater. Int J Biol Macromol 2023; 238:124074. [PMID: 36934816 DOI: 10.1016/j.ijbiomac.2023.124074] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
A novel chitosan-based porous composite adsorbent with multifunctional groups, such as phosphoric acid, amidoxime, and quaternary ammonium groups, was prepared to improve the adsorption rate and competitive uranium‑vanadium adsorption of amidoxime group adsorbents. The maximum uranium adsorption capacity of PACNC was 962.226 mg g-1 at 308 K and pH = 7. The maximum adsorption rate constant of PACNC for uranium was 2.83E-2 g mg-1 min-1, which is 2.38 times that of ACNC (1.19E-2 g mg-1 min-1). Moreover, the adsorption equilibrium time was shortened from 300 (ACNC) to 50 (PACNC) min. In simulated and real seawater, the Kd and adsorption capacity of PACNC for uranium were approximately 8 and 6.62 times those for vanadium, respectively. These results suggest that phosphorylation significantly improved the competitive adsorption of uranium‑vanadium and uranium adsorption rate. PACNC also exhibited good recycling performance and maintained stable adsorption capacity after five cycles. DFT calculations were used to analyze and calculate the possible co-complex structure of PACNC and uranium. The binding structure of phosphate and amidoxime is the most stable, and its synergistic effect effectively improves the competitive adsorption of uranium-vanadium of amidoxime. All the results demonstrated that PACNC has substantial application potential for uranium extraction from seawater.
Collapse
Affiliation(s)
- Jiali Gan
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingliang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Xin
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Ying Xiong
- Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Eming Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhiwu Lei
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hongqiang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
7
|
Experimental study on evaluation and optimization of heavy metals adsorption on a novel amidoximated silane functionalized Luffa cylindrica. Sci Rep 2023; 13:3670. [PMID: 36871018 PMCID: PMC9985649 DOI: 10.1038/s41598-023-30634-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to synthesize an amidoximated Luffa cylindrica (AO-LC) bioadsorbent, and evaluate its efficiency in the adsorption of heavy metals from the aqueous solutions. For this purpose, NaOH solution was used to alkaline treatment of Luffa cylindrica (LC) fibers. The silane modification of LC was performed using 3-(trimethoxysilyl)propyl methacrylate (MPS). Polyacrylonitrile (PAN)/LC biocomposite (PAN-LC) was synthesized by PAN grafting onto the MPS-modified LC (MPS-LC). Finally, the AO-LC was obtained by the amidoximation of PAN-LC. The chemical structures, morphology, and thermal properties of biocomposites were characterized by the infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and field emission scanning electron microscopy. The results showed a successful grafting of MPS and PAN on the surface of LC. The order of heavy metals adsorption on AO-LC was: Pb2+ > Ag+ > Cu2+ > Cd2+ > Co2+ > Ni2+. The effects of operational parameters on the Pb2+ adsorption were studied using Taguchi experimental design method. Statistical analysis of the results showed that the initial Pb2+ concentration and the bioadsorbent dosage significantly affect the adsorption efficiency. The adsorption capacity and removal percentage of Pb2+ ions were obtained as 18.88 mg/g and 99.07%, respectively. The Langmuir isotherm and Pseudo-second order kinetics models were found to be better compatible with experimental data as a consequence of the isotherm and kinetics analysis.
Collapse
|
8
|
Trypsin-modified amidoxime improves the adsorption selectivity of uranium. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Beniwal S, Gaur S, Sharma J. Syntheses and characterization of some homodimer complexes of bismuth(III) having a Bi…Bi linkage along with molecular modeling, antimicrobial, antioxidant and cytotoxic studies. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2156787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Savita Beniwal
- Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Seema Gaur
- Department of Computer Science, Birla Institute of Technology, Jaipur, India
| | - Jyoti Sharma
- Department of Chemistry, University of Rajasthan, Jaipur, India
| |
Collapse
|
10
|
Presnukhina SI, Tarasenko MV, Geyl KK, Baykova SO, Baykov SV, Shetnev AA, Boyarskiy VP. Unusual Formation of 1,2,4-Oxadiazine Core in Reaction of Amidoximes with Maleic or Fumaric Esters. Molecules 2022; 27:molecules27217508. [PMID: 36364335 PMCID: PMC9655267 DOI: 10.3390/molecules27217508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
We have developed a simple and convenient method for the synthesis of 3-aryl- and 3-hetaryl-1,2,4-oxadiazin-5-ones bearing an easily functionalizable (methoxycarbonyl)methyl group at position 6 via the reaction of aryl or hetaryl amidoximes with maleates or fumarates. The conditions for this reaction were optimized. Different products can be synthesized selectively in good yields depending on the base used and the ratio of reactants: substituted (1,2,4-oxadiazin-6-yl)acetic acids, corresponding methyl esters, or hybrid 3-(aryl)-6-((3-(aryl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadiazin-5(6H)-ones. The reaction is tolerant to substituents’ electronic and steric effects in amidoximes. As a result, a series of 2-(5-oxo-3-(p-tolyl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acids, their methyl esters, and 1,2,4-oxadiazoles based on them were prepared and characterized by HRMS, 1H, and 13C NMR spectroscopy. The structures of three of them were elucidated with X-ray diffraction.
Collapse
Affiliation(s)
- Sofia I. Presnukhina
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Marina V. Tarasenko
- Pharmaceutical Technology Transfer Centre, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia
| | - Kirill K. Geyl
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Svetlana O. Baykova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Centre, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia
| | - Vadim P. Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
11
|
Zuo L, Peng W, Xu Z, Guo H, Luo M. Selective adsorption of uranyl by glutamic acid-modified amidoxime fiber. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Li Z, Wang S, Dong Y, Miao X, Xiao B, Yang J, Zhao J, Huang R. Amidoxime functionalized chitosan for uranium sequestration in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113636. [PMID: 35588624 DOI: 10.1016/j.ecoenv.2022.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Amidoxime functionalized chitosan (AC) was recommended as a chelator for uranium sequestration in vivo in this study, and the structure-activity relationship was also explored. Compared with ZnNa3-DTPA, which was a commercial uranium mobilization drug, AC exhibited excellent biocompatibility and uranium removal efficiency, whether by injection or orally, which could reduce the amounts of uranium deposited in kidneys and femurs by up to 43.6% and 32.3%. In particular, ACs still possessed the ability to mobilize uranium in vivo even if administration was delayed for 72 h.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Siyi Wang
- School of Pharmacy, Henan University, Henan 475000, China
| | - Yipu Dong
- Guangdong Pharmaceutical University, Guangdong 511436, China
| | - Xiaoyao Miao
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bingkun Xiao
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jianyun Yang
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jianfeng Zhao
- China Ocean Aviation Group, Ltd., Beijing 100070, China
| | - Rongqing Huang
- Department of Pharmaceutical Science, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
13
|
Synthesis, structural elucidation, in vitro antibacterial activity, DFT calculations, and molecular docking aspects of mixed-ligand complexes of a novel oxime and phenylalanine. Bioorg Chem 2022; 121:105685. [DOI: 10.1016/j.bioorg.2022.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022]
|
14
|
Tu Y, Ren LF, Lin Y, Shao J, He Y. Restricted fiber contraction during amidoximation process for reinforced-concrete structured nanofiber sphere with superior Sb(V) adsorption capacity. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127835. [PMID: 34839981 DOI: 10.1016/j.jhazmat.2021.127835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Amidoxime-polyacrylonitrile (APAN) nanofiber possesses advantages of adsorbing heavy metals for abundant amidoxime groups. However, it easily suffers from poor mechanical property caused by fiber contraction during amidoximation process. Inspired by high mechanical strength of reinforced concrete, we embedded stiff polylactic acid (PLA) skeletons into PAN matrix to prepare reinforced-concrete structured nanofiber sphere (APAN/PLA NFS) through solution blending. Preparation parameters including polymer concentration and PAN/PLA ratio were optimized as 4.0% and 1:1, and coarse sphere surface, numerous mesopores and large pore volume (19.3 mL/g) were endowed. Scanning electron microscope results showed restricted fiber contraction with nitrile conversion of 58.1%. APAN/PLA NFS showed robust compressive strength of 3.28 MPa with strain of 80%, and X-ray diffraction and differential scanning calorimeter analysis revealed that crystalline PLA reinforced non-crystalline PAN through molecule-level compatibility. Compared with plain APAN sphere, Sb(V) adsorption from water for APAN/PLA NFS showed better performance with superhigh capacity of 949.7 mg/g and fast rate (equilibrium time of 2 h), which was owing to abundant mesopores preserved by PLA skeletons. These findings indicated that PLA was a promising skeletal candidate which could protect APAN from fiber contraction during amidoximation process and could strongly expand adsorption capacity of APAN for heavy metals.
Collapse
Affiliation(s)
- Yonghui Tu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, PR China
| | - Yuanxin Lin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, PR China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, PR China.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, PR China
| |
Collapse
|
15
|
Routzomani A, Lada ZG, Angelidou V, P. Raptopoulou C, Psycharis V, Konidaris KF, Chasapis CT, Perlepes SP. Confirming the Molecular Basis of the Solvent Extraction of Cadmium(II) Using 2-Pyridyl Oximes through a Synthetic Inorganic Chemistry Approach and a Proposal for More Efficient Extractants. Molecules 2022; 27:1619. [PMID: 35268720 PMCID: PMC8911866 DOI: 10.3390/molecules27051619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The present work describes the reactions of CdI2 with 2-pyridyl aldoxime (2paoH), 3-pyridyl aldoxime (3paoH), 4-pyridyl aldoxime (4paoH), 2-6-diacetylpyridine dioxime (dapdoH2) and 2,6-pyridyl diamidoxime (LH4). The primary goal was to contribute to understanding the molecular basis of the very good liquid extraction ability of 2-pyridyl ketoximes with long aliphatic chains towards toxic Cd(II) and the inability of their 4-pyridyl isomers for this extraction. Our systematic investigation provided access to coordination complexes [CdI2(2paoH)2] (1), {[CdI2(3paoH)2]}n (2), {[CdI2(4paoH)2]}n (3) and [CdI2(dapdoH2)] (4). The reaction of CdI2 and LH4 in EtOH resulted in a Cd(II)-involving reaction of the bis(amidoxime) and isolation of [CdI2(L'H2)] (5), where L'H2 is the new ligand 2,6-bis(ethoxy)pyridine diimine. A mechanism of this transformation has been proposed. The structures of 1, 2, 3, 4·2EtOH and 5 were determined by single-crystal X-ray crystallography. The complexes have been characterized by FT-IR and FT-Raman spectra in the solid state and the data are discussed in terms of structural features. The stability of the complexes in DMSO was investigated by 1H NMR spectroscopy. Our studies confirm that the excellent extraction ability of 2-pyridyl ketoximes is due to the chelating nature of the extractants leading to thermodynamically stable Cd(II) complexes. The monodentate coordination of 4-pyridyl ketoximes (as confirmed in our model complexes with 4paoH and 3paoH) seems to be responsible for their poor performance as extractants.
Collapse
Affiliation(s)
- Anastasia Routzomani
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
| | - Zoi G. Lada
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Platani, P.O. Box 1414, 265 04 Patras, Greece
| | - Varvara Angelidou
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
| | - Catherine P. Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, Attikis, 153 10 Athens, Greece;
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, Attikis, 153 10 Athens, Greece;
| | - Konstantis F. Konidaris
- Department of Science and High Technology and INSTM, University of Insubria, 22 100 Como, Italy
| | - Christos T. Chasapis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Platani, P.O. Box 1414, 265 04 Patras, Greece
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 265 04 Patras, Greece
| | - Spyros P. Perlepes
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Platani, P.O. Box 1414, 265 04 Patras, Greece
| |
Collapse
|
16
|
de la Cueva-Alique I, de la Torre-Rubio E, Muñoz L, Calvo-Jareño A, Perez-Redondo A, Gude L, Cuenca T, Royo E. Stereoselective synthesis of oxime containing Pd(II) compounds: Highly effective, selective and stereo-regulated cytotoxicity against carcinogenic PC-3 cells. Dalton Trans 2022; 51:12812-12828. [DOI: 10.1039/d2dt01403c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New palladium compounds [Pd{(1S,4R)-NOH^NH(R)}Cl2] (R = Ph 1a or Bn 1b), [Pd{(1S,4R)-NOH^NH(R)}{(1S,4R)-NO^NH(R)}][Cl] (R = Ph 2a or Bn 2b) and corresponding [Pd{(1R,4S)-NOH^NH(R)}Cl2] (R = Ph 1a’ or Bn 1b’) and...
Collapse
|
17
|
Zhang X, Rovis T. Photocatalyzed Triplet Sensitization of Oximes Using Visible Light Provides a Route to Nonclassical Beckmann Rearrangement Products. J Am Chem Soc 2021; 143:21211-21217. [PMID: 34905347 PMCID: PMC8862120 DOI: 10.1021/jacs.1c10148] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oximes are valuable synthetic intermediates for the preparation of a variety of functional groups. To date, the stereoselective synthesis of oximes remains a major challenge, as most current synthetic methods either provide mixtures of E and Z isomers or furnish the thermodynamically preferred E isomer. Herein we report a mild and general method to achieve Z isomers of aryl oximes by photoisomerization of oximes via visible-light-mediated energy transfer (EnT) catalysis. Facile access to (Z)-oximes provides opportunities to achieve regio- and chemoselectivity complementary to those of widely used transformations employing oxime starting materials. We show an enhanced one-pot protocol for photocatalyzed oxime isomerization and subsequent Beckmann rearrangement that enables novel reactivity with alkyl groups migrating preferentially over aryl groups, reversing the regioselectivity of the traditional Beckmann reaction. Chemodivergent N- or O- cyclizations of alkenyl oximes are also demonstrated, leading to nitrones or cyclic oxime ethers, respectively.
Collapse
|
18
|
Abstract
Natural occurrence and anthropogenic practices contribute to the release of pollutants, specifically heavy metals, in water over the years. Therefore, this leads to a demand of proper water treatment to minimize the harmful effects of the toxic heavy metals in water, so that a supply of clean water can be distributed into the environment or household. This review highlights several water treatment methods that can be used in removing heavy metal from water. Among various treatment methods, the adsorption process is considered as one of the highly effective treatments of heavy metals and the functionalization of adsorbents can fully enhance the adsorption process. Therefore, four classes of adsorbent sources are highlighted: polymeric, natural mineral, industrial by-product, and carbon nanomaterial adsorbent. The major purpose of this review is to gather up-to-date information on research and development on various adsorbents in the treatment of heavy metal from water by emphasizing the adsorption capability, effect of pH, isotherm and kinetic model, removal efficiency and the contact of time of every adsorbent.
Collapse
|
19
|
Abstract
Herein we report the first synthesis of borylfuroxans via the reaction of sulfonylfuroxans with Lewis base-ligated boranes under radical conditions. As a synthetic application, the transformation of borylfuroxans to a range of 1,2-dioximes and their derivatives is demonstrated.
Collapse
Affiliation(s)
- Weibin Xie
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
20
|
Rahman ML, Wong ZJ, Sarjadi MS, Joseph CG, Arshad SE, Musta B, Abdullah MH. Waste Fiber-Based Poly(hydroxamic acid) Ligand for Toxic Metals Removal from Industrial Wastewater. Polymers (Basel) 2021; 13:polym13091486. [PMID: 34066308 PMCID: PMC8124426 DOI: 10.3390/polym13091486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Toxic metals in the industrial wastewaters have been liable for drastic pollution hence a powerful and economical treatment technology is needed for water purification. For this reason, some pure cellulosic materials were derived from waste fiber to obtain an economical adsorbent for wastewater treatment. Conversion of cellulose into grafting materials such as poly(methyl acrylate)-grafted cellulose was performed by free radical grafting process. Consequently, poly(hydroxamic acid) ligand was produced from the grafted cellulose. The intermediate products and poly(hydroxamic acid) ligand were analyzed by FT-IR, FE-SEM, TEM, EDX, and XPS spectroscopy. The adsorption capacity (qe) of some toxic metals ions by the polymer ligand was found to be excellent, e.g., copper capacity (qe) was 346.7 mg·g−1 at pH 6. On the other hand, several metal ions such as cobalt chromium and nickel also demonstrated noteworthy sorption capacity at pH 6. The adsorption mechanism obeyed the pseudo second-order rate kinetic model due to the satisfactory correlated experimental sorption values (qe). Langmuir model isotherm study showed the significant correlation coefficient with all metal ions (R2 > 0.99), indicating that the single or monolayer adsorption was the dominant mode on the surface of the adsorbent. This polymer ligand showed good properties on reusability. The result shows that the adsorbent may be recycled for 6 cycles without any dropping of starting sorption capabilities. This polymeric ligand showed outstanding toxic metals removal magnitude, up to 90–99% of toxic metal ions can be removed from industrial wastewater.
Collapse
Affiliation(s)
- Md. Lutfor Rahman
- Faculty of Science and Natural Resources, Universiti Sabah Malaysia, Kota Kinabalu 88400, Malaysia; (Z.-J.W.); (M.S.S.); (C.G.J.); (S.E.A.); (B.M.); (M.H.A.)
- Seaweed Research Unit, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence:
| | - Zhi-Jian Wong
- Faculty of Science and Natural Resources, Universiti Sabah Malaysia, Kota Kinabalu 88400, Malaysia; (Z.-J.W.); (M.S.S.); (C.G.J.); (S.E.A.); (B.M.); (M.H.A.)
| | - Mohd Sani Sarjadi
- Faculty of Science and Natural Resources, Universiti Sabah Malaysia, Kota Kinabalu 88400, Malaysia; (Z.-J.W.); (M.S.S.); (C.G.J.); (S.E.A.); (B.M.); (M.H.A.)
| | - Collin G. Joseph
- Faculty of Science and Natural Resources, Universiti Sabah Malaysia, Kota Kinabalu 88400, Malaysia; (Z.-J.W.); (M.S.S.); (C.G.J.); (S.E.A.); (B.M.); (M.H.A.)
| | - Sazmal E. Arshad
- Faculty of Science and Natural Resources, Universiti Sabah Malaysia, Kota Kinabalu 88400, Malaysia; (Z.-J.W.); (M.S.S.); (C.G.J.); (S.E.A.); (B.M.); (M.H.A.)
| | - Baba Musta
- Faculty of Science and Natural Resources, Universiti Sabah Malaysia, Kota Kinabalu 88400, Malaysia; (Z.-J.W.); (M.S.S.); (C.G.J.); (S.E.A.); (B.M.); (M.H.A.)
| | - Mohd Harun Abdullah
- Faculty of Science and Natural Resources, Universiti Sabah Malaysia, Kota Kinabalu 88400, Malaysia; (Z.-J.W.); (M.S.S.); (C.G.J.); (S.E.A.); (B.M.); (M.H.A.)
| |
Collapse
|
21
|
Heavy Metals Removal from Electroplating Wastewater by Waste Fiber-Based Poly(amidoxime) Ligand. WATER 2021. [DOI: 10.3390/w13091260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An efficient and economical treatment technology for heavy metal removal from the electroplating wastewaters is needed for the water purification. Therefore, pure cellulosic materials were derived from two waste fiber (pandanus fruit and durian rind) and conversion of the cellulose into the poly(acrylonitrile)-grafted material was accomplished by free radical grafting system. Thereafter, poly(amidoxime) ligand was produced from the grafted materials. Sorption capacity (qe) of several toxic metals ions was found to be high, e.g., copper capacity (qe) was 298.4 mg g−1 at pH 6. In fact, other metal ions, such as cobalt chromium and nickel also demonstrated significant sorption capacity at pH 6. Sorption mechanism played acceptable meet with pseudo second-order rate of kinetic pattern due to the satisfactory correlation with the experimental sorption values. A significant correlation coefficient (R2 > 0.99) with Langmuir model isotherm showed the single or monolayer sorption occurred on the surfaces. The reusability study showed that the polymer ligand can be useful up to six cycles with minimum loss (7%) of efficiency and can be used in the extraction of toxic metal ions present in the wastewaters. Therefore, two types of electroplating wastewater were used in this study, one containing high concentration of copper (23 ppm) and iron (32 ppm) with trace level of others heavy metals (IWS 1) and another containing high concentration of copper (85.7 ppm) only with trace level of others heavy metals (IWS 2). This polymeric ligand showed acceptable removal magnitude, up to 98% of toxic metal ions can be removed from electroplating wastewater.
Collapse
|
22
|
Hu Q, Zhang W, Yin Q, Wang Y, Wang H. A conjugated fluorescent polymer sensor with amidoxime and polyfluorene entities for effective detection of uranyl ion in real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118864. [PMID: 32889338 DOI: 10.1016/j.saa.2020.118864] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/02/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
It is an important challenge to develop a chemosensor for trace uranyl ion in an aqueous medium for sustainable development of nuclear energy and environmental conservation. A conjugated fluorescent polymer sensor P2 based on amidoxime groups and polyfluorene, which showed good hydrophilous resulting adequate contact with uranyl ions and selectivity and sensitivity even in the presence of other metal ions in DMA/H2O (v/v = 20:80, pH = 6.0) solution, for uranyl ion was designed and prepared in this work. And it possesses good thermal stability and a larger Stokes shift (108 nm). Importantly, the fluorescence quenching occurred when P2 combining uranium. It had a good linear relationship with UO22+ concentration in the range of 10 to 200 nM with a fairly low LOD 7.4 × 10-9 M. Interaction properties between the sensor P2 and UO22+ and the fluorescent mechanism were investigated by density functional theory (DFT). More importantly, the sensor can be successfully used for the detection of uranyl ion in environmental solutions. This work suggests that conjugated fluorescent polymer with amidoxime groups will be a prospective sensor of uranyl ion in the environmental sample.
Collapse
Affiliation(s)
- Qinghua Hu
- School of Chemistry and Chemical Engineering, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Wenfeng Zhang
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Qiang Yin
- School of Chemistry and Chemical Engineering, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Yuyuan Wang
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Hongqing Wang
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
23
|
Staszak K, Wojciechowska I, Staszak M, Wieszczycka K. Surface activity measurements and quantum molecular modeling – The way to extraction behavior knowledge? J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Baxendale IR, Griffiths OM, Ruggeri M. Photochemical Flow Oximation of Alkanes. Synlett 2020. [DOI: 10.1055/s-0040-1707281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe nitrosation of several alkanes using tert-butyl nitrite has been performed in flow showing a remarkable reduction in the reaction time compared with batch processing. Due to the necessity for large excesses of the alkane component a continuous recycling process was devised for the preparation of larger quantities of material.
Collapse
Affiliation(s)
| | - Oliver M. Griffiths
- Department of Chemistry, University of Durham
- Department of Chemistry, Cambridge University
| | | |
Collapse
|
25
|
Electrical, and Magnetic Characteristics of Homo- and Hetero-Bimetallic Macromolecular Complexes with π-Conjugated Imine-oxime Backbone. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Rahman ML, Fui CJ, Ting TX, Sarjadi MS, Arshad SE, Musta B. Polymer Ligands Derived from Jute Fiber for Heavy Metal Removal from Electroplating Wastewater. Polymers (Basel) 2020; 12:E2521. [PMID: 33137923 PMCID: PMC7692318 DOI: 10.3390/polym12112521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
Industrial operations, domestic and agricultural activities worldwide have had major problems with various contaminants caused by environmental pollution. Heavy metal pollution in wastewater also a prominent issue; therefore, a well built and economical treatment technology is demanded for pollution-free wastewater. The present work emphasized pure cellulose extracted from jute fiber and further modification was performed by a free radical grafting reaction, which resulted in poly(methyl acrylate) (PMA)-grafted cellulose and poly(acrylonitrile)-grafted cellulose. Subsequently, poly(hydroxamic acid) and poly(amidoxime) ligands were prepared from the PMA-grafted cellulose and PAN-grafted cellulose, respectively. An adsorption study was performed using the desired ligands with heavy metals such as copper, cobalt, chromium and nickel ions. The binding capacity (qe) with copper ions for poly(hydroxamic acid) is 352 mg g-1 whereas qe for poly(amidoxime) ligand it was exhibited as 310 mg g-1. Other metal ions (chromium, cobalt and nickel) show significance binding properties at pH 6. The Langmuir and Freundlich isotherm study was also performed. The Freundlich isotherm model showed good correlation coefficients for all metal ions, indicating that multiple-layers adsorption was occurred by the polymer ligands. The reusability was evaluated and the adsorbents can be reused for 7 cycles without significant loss of removal performance. Both ligands showed outstanding metals removal capacity from the industrial wastewater as such 98% of copper can be removed from electroplating wastewater and other metals (cobalt, chromium, nickel and lead) can also be removed up to 90%.
Collapse
Affiliation(s)
- Md Lutfor Rahman
- Faculty of Science and Nature Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (C.J.F.); (T.X.T.); (M.S.S.); (S.E.A.); (B.M.)
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Perontsis S, Geromichalos GD, Pekou A, Hatzidimitriou AG, Pantazaki A, Fylaktakidou KC, Psomas G. Structure and biological evaluation of pyridine-2-carboxamidine copper(II) complex resulting from N′-(4-nitrophenylsulfonyloxy)2-pyridine-carboxamidoxime. J Inorg Biochem 2020; 208:111085. [DOI: 10.1016/j.jinorgbio.2020.111085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
|
29
|
Easy Ligand Activation in the Coordination Sphere of Ru inside the [PW 11O 39] 7- Backbone. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25081859. [PMID: 32316614 PMCID: PMC7221517 DOI: 10.3390/molecules25081859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022]
Abstract
Irradiation of the Keggin-type [PW11O39{Ru(NO)}]4− (Ru-NO) polyoxometalate in CH3CN results in rapid NO ligand elimination with the formation of [PW11O39{RuIII(CH3CN)}]4− (Ru-CH3CN). This complex offers an easy entry into the Ru-based chemistry of the {PW11Ru} complex. Attempts to substitute N3− for CH3CN in the presence of an NaN3 excess lead a variety of products: (i) [PW11O39{RuIII(N3)}]4− (Ru-N3); (ii) [PW11O39{RuIII(N4HC-CH3)}]4− (Ru-Tz) as a click-reaction product; and (iii) [PW11O39{RuII(N2)}]5− (Ru-N2). UV-VIS, CV, and HR-ESI-MS techniques were used for the reaction monitoring and characterization of the products.
Collapse
|
30
|
Albayati MR, Mohamed MFA, Moustafa AH. Optimization of the synthesis of het/aryl-amidoximes using an efficient green chemistry. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1735443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mustafa R. Albayati
- Department of Chemistry, College of Education, Kirkuk University, Kirkuk, Iraq
| | - Mamdouh F. A. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Amr H. Moustafa
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
31
|
Efimenko ZM, Novikov AS, Ivanov DM, Piskunov AV, Vereshchagin AA, Levin OV, Bokach NA, Kukushkin VY. The (Dioximate)Ni II/I 2 System: Ligand Oxidation and Binding Modes of Triiodide Species. Inorg Chem 2020; 59:2316-2327. [PMID: 32027131 DOI: 10.1021/acs.inorgchem.9b03132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reinvestigation of (o-benzoquinonedioximate)2Ni/I2 systems demonstrated that the reaction itself and also the crystallization conditions dramatically affect the identity of generated species. Crystallization (CHCl3, 20-25 °C) of the nickel(II) dioximate complex [Ni(bqoxH)2] (bqoxH2 = o-benzoquinonedioxime) with I2 in the 1:(1-10) molar ratios of the reactants led to several (o-benzoquinonedioximate)2Ni derivatives and/or iodine adducts [Ni(I)(bqoxH)(bqoxH2)]·3/2I2, [Ni(I3)(bqoxH)(bqoxH2)]·[Ni(bqoxH)2], and [Ni(I3)(bqox•-)(bqoxH2)]·I2; the latter one, featuring the anion-radical bqox•- ligand, is derived from the formal (-2H+/1e-)-oxidation of bqoxH2. In these three adducts, various types of noncovalent interactions were identified experimentally and their existence was supported theoretically. The [Ni(I3)(bqox•-)(bqoxH2)]·I2 adduct exhibits simultaneous semicoordination and coordination patterns of the triiodide ligand; this is the first recognition of the semicoordination of any polyiodide ligand to a metal center. The semicoordination noncovalent contact Ni···I3 (3.7011(10) Å) is substantially longer that the Ni-I3 coordination bond (2.8476(9) Å), and the difference in energies between these two types of linkages is 8-12 kcal/mol.
Collapse
Affiliation(s)
- Zarina M Efimenko
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Alexandr V Piskunov
- G.A. Razuvaev Institute of Organometallic Chemistry , Russian Academy of Sciences , Tropinina Str. 49 , 603950 Nizhny Novgorod , Russian Federation
| | - Anatoly A Vereshchagin
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Oleg V Levin
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| |
Collapse
|
32
|
Zelenkov LE, Kuznetsov ML, Andrusenko EV, Avdontceva MS, Starova GL, Bokach NA, Kukushkin VY. Nickel( ii)-mediated cyanamide–pyrazole coupling highlights distinct reactivity of NCNR 2 and NCR nitrile ligands. NEW J CHEM 2020. [DOI: 10.1039/d0nj00704h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nickel(ii) center efficiently promotes the cyanamide–pyrazole coupling to give bis-chelate and tris-chelate products. The formation of the tris-chelate product for dialkylcyanamides is thermodynamically favorable.
Collapse
Affiliation(s)
- Lev E. Zelenkov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Maxim L. Kuznetsov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
- Centro de Química Estrutural
| | - Elena V. Andrusenko
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Margarita S. Avdontceva
- Institute of Earth Sciences
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Galina L. Starova
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Nadezhda A. Bokach
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| |
Collapse
|
33
|
Il’in MV, Lesnikova LA, Bolotin DS, Novikov AS, Suslonov VV, Kukushkin VY. A one-pot route to N-acyl ureas: a formal four-component hydrolytic reaction involving aminonitrones and isocyanide dibromides. NEW J CHEM 2020. [DOI: 10.1039/c9nj05445f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A one-pot route to N-acyl ureas proceeds via generation of electrophilically activated 2-substituted 1,2,4-oxadiazolium salts. The conformation of the N-acyl ureas is stabilized via moderate strength (6.2–7.8 kcal mol−1) resonance-assisted hydrogen bonds.
Collapse
Affiliation(s)
- Mikhail V. Il’in
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Liana A. Lesnikova
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Dmitrii S. Bolotin
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Alexander S. Novikov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Vitalii V. Suslonov
- Center for X-ray Diffraction Studies
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| |
Collapse
|
34
|
Stasevych M, Zvarych V, Novikov V, Vovk M. Amidoxime-Functionalized (9,10-Dioxoantracen-1-yl)hydrazones. CHEMISTRY & CHEMICAL TECHNOLOGY 2019. [DOI: 10.23939/chcht13.04.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Takamura T, Harada T, Furuta T, Ikariya T, Kuwata S. Half-Sandwich Iridium Complexes Bearing a Diprotic Glyoxime Ligand: Structural Diversity Induced by Reversible Deprotonation. Chem Asian J 2019; 15:72-78. [PMID: 31577045 DOI: 10.1002/asia.201901276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/25/2019] [Indexed: 12/23/2022]
Abstract
Synthesis and deprotonation reactions of half-sandwich iridium complexes bearing a vicinal dioxime ligand were studied. Treatment of [{Cp*IrCl(μ-Cl)}2 ] (Cp*=η5 -C5 Me5 ) with dimethylglyoxime (LH2 ) at an Ir:LH2 ratio of 1:1 afforded the cationic dioxime iridium complex [Cp*IrCl(LH2 )]Cl (1). The chlorido complex 1 undergoes stepwise and reversible deprotonation with potassium carbonate to give the oxime-oximato complex [Cp*IrCl(LH)] (2) and the anionic dioximato(2-) complex K[Cp*IrCl(L)] (3) sequentially. Meanwhile, twofold deprotonation of the sulfato complex [Cp*Ir(SO4 )(LH2 )] (4) resulted in the formation of the oximato-bridged dinuclear complex [{Cp*Ir(μ-L)}2 ] (5). X-ray analyses disclosed their supramolecular structures with one-dimensional infinite chain (1 and 2), hexagonal open channels (3), and a tetrameric rhomboid (4) featuring multiple intermolecular hydrogen bonds and electrostatic interactions.
Collapse
Affiliation(s)
- Taishin Takamura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Takuya Harada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tatsuro Furuta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Takao Ikariya
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Shigeki Kuwata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
36
|
Bliznyuk VN, Kołacińska K, Pud AA, Ogurtsov NA, Noskov YV, Powell BA, DeVol TA. High effectiveness of pure polydopamine in extraction of uranium and plutonium from groundwater and seawater. RSC Adv 2019; 9:30052-30063. [PMID: 35530251 PMCID: PMC9072137 DOI: 10.1039/c9ra06392g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Sorption properties of polydopamine (PDA) for uranium and plutonium from an aqueous environment are reported at three different pH values (2, 4 and 6.5–7). In addition to deionized (DI) water, artificial groundwater (GW) and seawater (SW) were used with U uptake close to 100% in each case. PDA polymer has been identified as a material with extremely high sorption capacity Qmax ∼500 mg g−1 of the polymer at pH 6.5 and high selectivity for uranium. Similar high sorption properties are revealed for plutonium uptake. PDA-uranyl and PDA-plutonium interactions responsible for the observed adsorption processes have been addressed with a set of experimental techniques including FTIR spectroscopy, electron microscopy and cyclic voltammetry. We demonstrate that complexation of pure polydopamine with uranium and plutonium species allows efficient retention of these actinides from groundwater and seawater.![]()
Collapse
Affiliation(s)
- Valery N Bliznyuk
- Department of Environmental Engineering and Earth Sciences, Clemson University Clemson SC 29634-0919 USA .,Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM) Center, Clemson University Clemson SC 29634-0942 USA
| | | | - Alexander A Pud
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 50 Kharkivske Shose Kyiv 02160 Ukraine
| | - Nikolay A Ogurtsov
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 50 Kharkivske Shose Kyiv 02160 Ukraine
| | - Yuriy V Noskov
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 50 Kharkivske Shose Kyiv 02160 Ukraine
| | - Brian A Powell
- Department of Environmental Engineering and Earth Sciences, Clemson University Clemson SC 29634-0919 USA .,Department of Chemistry, Clemson University Clemson SC 29634 USA.,Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM) Center, Clemson University Clemson SC 29634-0942 USA
| | - Timothy A DeVol
- Department of Environmental Engineering and Earth Sciences, Clemson University Clemson SC 29634-0919 USA .,Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM) Center, Clemson University Clemson SC 29634-0942 USA
| |
Collapse
|
37
|
Sahyoun T, Arrault A, Schneider R. Amidoximes and Oximes: Synthesis, Structure, and Their Key Role as NO Donors. Molecules 2019; 24:molecules24132470. [PMID: 31284390 PMCID: PMC6651102 DOI: 10.3390/molecules24132470] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/26/2023] Open
Abstract
Nitric oxide (NO) is naturally synthesized in the human body and presents many beneficial biological effects; in particular on the cardiovascular system. Recently; many researchers tried to develop external sources to increase the NO level in the body; for example by using amidoximes and oximes which can be oxidized in vivo and release NO. In this review; the classical methods and most recent advances for the synthesis of both amidoximes and oximes are presented first. The isomers of amidoximes and oximes and their stabilities will also be described; (Z)-amidoximes and (Z)-oximes being usually the most energetically favorable isomers. This manuscript details also the biomimetic and biological pathways involved in the oxidation of amidoximes and oximes. The key role played by cytochrome P450 or other dihydronicotinamide-adenine dinucleotide phosphate (NADPH)-dependent reductase pathways is demonstrated. Finally, amidoximes and oximes exhibit important effects on the relaxation of both aortic and tracheal rings alongside with other effects as the decrease of the arterial pressure and of the thrombi formation
Collapse
Affiliation(s)
- Tanya Sahyoun
- Laboratoire de Chimie Physique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Axelle Arrault
- Laboratoire de Chimie Physique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | - Raphaël Schneider
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| |
Collapse
|
38
|
Gupta S, Guedes da Silva MFC, Pombeiro AJL. Distinctive coordination behavior of a pyrazole imine-oxime compound towards Co(II) and Ni(II). Heliyon 2019; 5:e01623. [PMID: 31193104 PMCID: PMC6517534 DOI: 10.1016/j.heliyon.2019.e01623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/22/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022] Open
Abstract
The polytopic Schiff base 5-methyl-1H-pyrazole-3-carboxylic acid 2-(hydroxyimino-1-methyl-propylidene)-hydrazide (H2L)was synthesized by the condensation of 5-methyl pyrazole-3-carbohydrazide and 3-(hydroxyimino)butan-2-one and its coordination ability was tested against cobalt (II) and nickel (II) nitrates. The ligand exhibited two different binding modes to form a unique binuclear triply bridged Co(III) cationic complex [Co2(1κN2:2κN2-L) (1κN3:2κO1-HL)2](NO3)2 (1). With the Ni(II) precursor, H2L was hydrolyzed to N′,N˝-butane-2,3-diylidenebis (5-methyl-1H-pyrazole-3-carbohydrazide) (H2L1) which bound the metal cation in a tetradentate N3O1 fashion leading to the neutral square planar complex [Ni(κN3O1-L1)]·MeOH (2·MeOH). Complexes 1 and 2 were characterized by IR, NMR, UV-Vis and single crystal X-ray crystallography. The probable mechanism for the Ni(II) mediated transformation of H2L into H2L1 has been investigated by ESI-MS.
Collapse
Affiliation(s)
- Samik Gupta
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Department of Chemistry, Sambhu Nath College, Labpur, Birbhum, West Bengal, PIN-731303, India
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
39
|
Demakova MY, Islamova RM, Suslonov VV. Palladium-Catalyzed Synthesis of 4-Aminoquinazolines from Amide Oxime Ethers and 2-Iodobenzonitrile. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219040054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Platinum(II)-mediated aminonitrone–isocyanide interplay: A new route to acyclic diaminocarbene complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Decato DA, Berryman OB. Structural and Computational Characterization of a Bridging Zwitterionic-Amidoxime Uranyl Complex. Org Chem Front 2019; 6:1038-1043. [PMID: 31086674 DOI: 10.1039/c9qo00267g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bridging (μ2) neutral zwitterionic amidoxime binding mode previously unobserved between amidoximes and uranyl is reported and compared to other uranyl amidoxime complexes. Density functional theory computations show the dinuclear complex exhibits a shallow potential energy surface allowing for facile inclusion of a nonbonding water molecule in the solid-state.
Collapse
Affiliation(s)
- Daniel A Decato
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana, United States, 59812
| | - Orion B Berryman
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana, United States, 59812
| |
Collapse
|
42
|
Jianfui C, Sarjadi MS, Musta B, Sarkar MS, Rahman ML. Synthesis of Sawdust‐based Poly(amidoxime) Ligand for Heavy Metals Removal from Wastewater. ChemistrySelect 2019. [DOI: 10.1002/slct.201803437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Choong Jianfui
- Faculty of Science and Natural ResourcesUniversiti Malaysia Sabah 88400 Kota Kinabalu Sabah Malaysia
| | - Mohd Sani Sarjadi
- Faculty of Science and Natural ResourcesUniversiti Malaysia Sabah 88400 Kota Kinabalu Sabah Malaysia
| | - Baba Musta
- Faculty of Science and Natural ResourcesUniversiti Malaysia Sabah 88400 Kota Kinabalu Sabah Malaysia
| | - Md Shaheen Sarkar
- Bernal InstituteDepartment of Chemical SciencesUniversity of Limerick, Castletroy Limerick Ireland
| | - Md Lutfor Rahman
- Faculty of Science and Natural ResourcesUniversiti Malaysia Sabah 88400 Kota Kinabalu Sabah Malaysia
| |
Collapse
|
43
|
Il’in MV, Sysoeva AA, Bolotin DS, Novikov AS, Suslonov VV, Rogacheva EV, Kraeva LA, Kukushkin VY. Aminonitrones as highly reactive bifunctional synthons. An expedient one-pot route to 5-amino-1,2,4-triazoles and 5-amino-1,2,4-oxadiazoles – potential antimicrobials targeting multi-drug resistant bacteria. NEW J CHEM 2019. [DOI: 10.1039/c9nj04529e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A four-component one-pot reaction proceeds very rapidly under mild conditions and gives the heterocyclic systems in good yields.
Collapse
Affiliation(s)
- Mikhail V. Il’in
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Alexandra A. Sysoeva
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Dmitrii S. Bolotin
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Alexander S. Novikov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Vitalii V. Suslonov
- Center for X-ray Diffraction Studies
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | | | - Liudmila A. Kraeva
- Saint Petersburg Pasteur Institute
- Saint Petersburg
- Russian Federation
- S. M. Kirov Military Medical Academy
- Saint Petersburg
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| |
Collapse
|
44
|
Zuo J. Crystal structure of bis(acetato-κ 1
O)-bis(1-(pyridin-2-yl)ethan-1-one oxime-κ 2
N, N′)zinc(II), C 18H 22N 4O 6Zn. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2018-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C18H22N4O6Zn, monoclinic, P21/c (no. 14), a = 9.9422(18) Å, b = 16.904(3) Å, c = 15.5509(19) Å, β = 128.569(7)°, V = 2043.4(6) Å3, Z = 4, R
gt(F) = 0.0347, wR
ref(F
2) = 0.0663, T = 293(2) K.
Collapse
Affiliation(s)
- Jian Zuo
- College of Chemistry and Chemical Engineering, Taishan University , Taian 271000, Shandong , P.R. China
| |
Collapse
|
45
|
Guo S, Dan Z, Duan N, Chen G, Gao W, Zhao W. Zn(II), Pb(II), and Cd(II) adsorption from aqueous solution by magnetic silica gel: preparation, characterization, and adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30938-30948. [PMID: 30178416 DOI: 10.1007/s11356-018-3050-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
A novel magnetic silica gel adsorbent (Fe3O4-Si-COOH) was successfully prepared by introducing carboxyl group in situ to improve the performance for Pb(II), Zn(II), and Cd(II) adsorption. Infrared spectroscopy (IR), scanning electron microscope (SEM), transmission electron microscope (TEM), thermo-gravimetric analyzer (TGA), the Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), and vibrating sample magnetometer (VSM) characterizations suggested that Fe3O4-Si-COOH has been successfully prepared. The adsorption performance was evaluated by batch experiments with different initial concentrations, ionic strength, contact time, and pH. The adsorption kinetics data followed pseudo-second-order model and exhibited a three-stage intraparticle diffusion mode. Isothermal adsorption equilibrium data were best fitted by the Freundlich model and the adsorption capacity were 155, 110, and 93 mg/g (initial concentration 210 mg/L) for Pb(II), Zn(II), and Cd(II), respectively. The result of X-ray photoelectron spectroscopy (XPS) survey spectrum suggested that the main adsorption mechanism is that the H+ of carboxyl groups exchanged with heavy metal ions in the adsorption processes. In addition, the adsorbed Fe3O4-Si-COOH could be regenerated and the adsorption capacity of reused Fe3O4-Si-COOH could maintain 80.3% after five cycles. Hence, the Fe3O4-Si-COOH could be a kind of potential material for removing Pb(II), Zn(II), and Cd(II) from wastewater. Graphical abstract.
Collapse
Affiliation(s)
- Shuangzhen Guo
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhigang Dan
- Chinese Research Academy of Environmental Sciences, 8 Dayangfang BeiYuan Road, Beijing, 100012, China.
| | - Ning Duan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
- Chinese Research Academy of Environmental Sciences, 8 Dayangfang BeiYuan Road, Beijing, 100012, China.
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wubin Gao
- Chinese Research Academy of Environmental Sciences, 8 Dayangfang BeiYuan Road, Beijing, 100012, China
| | - Weijie Zhao
- Beijing Metallurgical Equipment Research Design Institute Co. Ltd, 2 Anwaisheng Road, Beijing, 100029, China
| |
Collapse
|
46
|
Selective copper extraction from sulfate media with N,N-dihexyl-N′-hydroxypyridine-carboximidamides as extractants. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.02.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Francos J, Borge J, Conejero S, Cadierno V. Platinum Complexes with a Phosphino-Oxime/Oximate Ligand. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Javier Francos
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC); Centro de Innovación en Química Avanzada (ORFEO-CINQA); Departamento de Química Orgánica e Inorgánica; Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; Julián Clavería 8, E -33006 Oviedo Spain
| | - Javier Borge
- Departamento de Química Física y Analítica; Centro de Innovación en Química Avanzada (ORFEO-CINQA); Facultad de Química; Universidad de Oviedo; Julián Clavería 8, E -33006 Oviedo Spain
| | - Salvador Conejero
- Instituto de Investigaciones Químicas (IIQ); Departamento de Química Inorgánica; Centro de Innovación en Química Avanzada (ORFEO-CINQA); CSIC and Universidad de Sevilla; Avda. Américo Vespucio 49, E -41092 Sevilla Spain
| | - Victorio Cadierno
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC); Centro de Innovación en Química Avanzada (ORFEO-CINQA); Departamento de Química Orgánica e Inorgánica; Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; Julián Clavería 8, E -33006 Oviedo Spain
| |
Collapse
|
48
|
Preparation and adsorption properties of nano magnetite silica gel for methylene blue from aqueous solution. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Tian K, Wu J, Wang J. Adsorptive extraction of uranium (VI) from seawater using dihydroimidazole functionalized multiwalled carbon nanotubes. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2017-2913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The adsorptive extraction of uranium (VI) was investigated using multiwalled carbon nanotubes functionalized with dihydroimidazole (DIM-MWCNTs). Dihydroimidazole was grafted onto the surface of MWCNTs via silane coupling agent, N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole. The new adsorbent was characterized using Fourier transform infrared, scanning electron microscope and X-ray Photoelectron Spectroscopy. DIM-MWCNTs were compared with MWCNTs and amidoxime modified MWCNTs (AO-MWCNTs) for uranium adsorption under seawater conditions. The adsorption capacity of uranium onto DIM-MWCNTs was 54.9 mg g−1 at 298 K, which was about 4 times of MWCNTs and similar to that of AO-MWCNTs. Compared with AO-MWCNTs, DIM-MWCNTs were more suitable for seawater pH, and less affected by vanadium. Although DIM-MWCNTs were more affected by carbonate than AO-MWCNTs, DIM-MWCNTs maintained a higher adsorption capacity than AO-MWCNTs due to its alkali resistance. Pyridine-like nitrogen (CH=N–CH) contributed to the adsorption of uranium. The results suggested that DIM-MWCNTs were a potential effective adsorbent for the separation of uranium under seawater condition.
Collapse
Affiliation(s)
- Kun Tian
- Tsinghua University , Beijing , China
| | | | | |
Collapse
|
50
|
Gentili P, Nardi M, Antignano I, Cambise P, D'Abramo M, D'Acunzo F, Pinna A, Ussia E. 2-(Hydroxyimino)aldehydes: Photo- and Physicochemical Properties of a Versatile Functional Group for Monomer Design. Chemistry 2018. [PMID: 29528510 DOI: 10.1002/chem.201800059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the context of our research on stimuli-responsive polymers bearing the 2-(hydroxyimino)aldehyde (HIA) group, we have explored the photochemical behavior and physicochemical properties of a number of HIAs. Interpretation of the experimental data is supported by quantum mechanical calculations. HIAs are expected to undergo photoisomerization, chelate metal ions, yield hydrogen-bonded dimers or oligomers, exhibit relatively low pKa s, and form >C=NO. radicals through OH hydrogen abstraction or oxidation of the oximate ion. Besides the well-established E/Z oxime photoisomerism, we observed a Norrish-Yang cyclization resulting in cyclobutanol oximes, to our knowledge not previously described in the literature. The acidity, bond dissociation enthalpies, and electrochemical properties of the HIAs are compared with literature data of simple oximes. The results are discussed in relation to the many potential applications for HIAs, with emphasis on the synthesis of novel HIA-containing responsive polymers.
Collapse
Affiliation(s)
- Patrizia Gentili
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.,CNR, Istituto di Metodologie Chimiche, Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Roma, Italy
| | - Martina Nardi
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.,CNR, Istituto di Metodologie Chimiche, Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Roma, Italy
| | - Irene Antignano
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Paolo Cambise
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Marco D'Abramo
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Francesca D'Acunzo
- CNR, Istituto di Metodologie Chimiche, Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Roma, Italy
| | - Alessandro Pinna
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Emanuele Ussia
- Dipartimento di Chimica, Università degli Studi "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|