1
|
Pattanayak PD, Banerjee A, Sahu G, Das S, Lima S, Akintola O, Buchholz A, Görls H, Plass W, Reuter H, Dinda R. Insights into the Theranostic Activity of Nonoxido V IV: Lysosome-Targeted Anticancer Metallodrugs. Inorg Chem 2024; 63:19418-19438. [PMID: 39340532 DOI: 10.1021/acs.inorgchem.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Developing new anticancer agents can be useful, with the ability to diagnose and treat cancer worldwide. Previously, we focused on examining the effects of nonoxidovanadium(IV) complexes on insulin mimetic and cytotoxicity activity. In this study, in addition to the cytotoxic activity, we evaluated their bioimaging properties. This study investigates the synthesis of four stable nonoxido VIV complexes [VIV(L1-4)2] (1-4) using aroylhydrazone ligands (H2L1-4) and their full characterization in solid state and the solution phase stability using various physicochemical techniques. The biomolecular (DNA/HSA) interaction of the complexes was evaluated by using conventional methods. The in vitro cytotoxicity of 1-4 was studied against A549 and LN-229 cancer cell lines and found that drug 2 displayed the highest activity among the four. Since 1-4 are fluorescently active, live cell imaging was used to evaluate their cellular localization activity. Complexes specifically target the lysosome and damage lysosome integrity by producing an excessive amount (9.7-fold) of reactive oxygen species (ROS) compared to the control, which may cause cell apoptosis. Overall, this study indicates that 2 has the greatest potential for the development of multifunctional theranostic agents that combine imaging capabilities and anticancer properties of nonoxidovanadium(IV)-based metallodrugs.
Collapse
Affiliation(s)
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Oluseun Akintola
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, 49067 Osnabrück, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| |
Collapse
|
2
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
3
|
Roth E, Listyarini RV, Hofer TS, Cziferszky M. Host-Guest Interactions of Ruthenium(II) Arene Complexes with Cucurbit[7/8]uril. Inorg Chem 2024; 63:14021-14031. [PMID: 39016439 PMCID: PMC11289748 DOI: 10.1021/acs.inorgchem.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Cucurbit[n]urils (CB[n]s) have been recognized for their chemical and thermal stability, and their ability to bind many neutral and cationic guest molecules makes them excellent hosts in a range of supramolecular applications. In drug delivery, CB[n]s can enhance drug solubility, improve chemical and physical drug stability, and allow for triggered and controlled release. This study aimed to investigate the ability of CB[7] and CB[8] as molecular hosts to bind ruthenium(II) arene complexes that are current anticancer lead structures in the area of metallodrugs. Both, experimental and computational methods, led to insights into the binding preferences and geometries of [RuII(cym)Cl2]2 (1; cym = η6-p-cymene), [RuII(cym)(dmb)Cl2]) (2; cym = η6-p-cymene; dmb = 1,3-dimethylbenzimidazol-2-ylidene), and [RuII(cym)(pta)Cl2] (3, RAPTA-C; cym = η6-p-cymene; pta = 1,3,5-triaza-7-phospha-adamantane) with CB[7] and CB[8]. Competition experiments by mass spectrometry revealed clear preferences of 2 for CB[8] and 3 for CB[7]. Based on a comparison of the associated interaction energies from quantum chemical calculations as well as experimental data, 3@CB[7] clearly prefers a binding mode, where the pta ligand is located inside the cavity of the host, and the metal ion interacts with two of the carbonyl groups on the rim of CB[7]. In contrast, complex 2 binds in two different orientations with interaction energies similar to those of both CB[n]s, with the cym ligand being either inside or outside of the cavity. These findings suggest that ruthenium(II) arene complexes are able to form stable host-guest interactions with CB[n]s, which can be exploited as drug delivery vehicles in further metallodrug development to improve their chemical stability.
Collapse
Affiliation(s)
- Elisa Roth
- Institute
for Pharmacy, Pharmaceutical Chemistry, Department of Chemistry and
Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Risnita Vicky Listyarini
- Institute
of General, Inorganic and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
- Chemistry
Education Study Program, Sanata Dharma University, Yogyakarta 55282, Indonesia
| | - Thomas S. Hofer
- Institute
of General, Inorganic and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Monika Cziferszky
- Institute
for Pharmacy, Pharmaceutical Chemistry, Department of Chemistry and
Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Yang J, Wang MM, Deng DP, Lin H, Su Y, Shao CX, Li SH, Yu ZH, Liu HK, Su Z. Consolidating Organometallic Complex Ir-CA Empowers Mitochondria-Directed Chemotherapy against Resistant Cancer via Stemness and Metastasis Inhibition. Inorg Chem 2024; 63:5235-5245. [PMID: 38452249 DOI: 10.1021/acs.inorgchem.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Cancer treatment has faced severe obstacles due to the smart biological system of cancer cells. Herein, we report a three-in-one agent Ir-CA via attenuation of cancer cell stemness with the down-regulated biomarker CD133 expression from the mitochondria-directed chemotherapy. Over 80% of Ir-CA could accumulate in mitochondria, result in severe mitochondrial dysfunctions, and subsequently initiate mitophagy and cell cycle arrest to kill cisplatin-resistant A549R cells. In vitro and in vivo antimetastatic experiments demonstrated that Ir-CA can effectively inhibit metastasis with down-regulated MMP-2/MMP-9. RNA seq analysis and Western blotting indicated that Ir-CA also suppresses the GSTP1 expression to decrease the intracellular Pt-GS adducts, resulting in the detoxification and resensitization to cisplatin of A549R cells. In vivo evaluation indicated that Ir-CA restrains the tumor growth and has minimal side effects and superior biocompatibility. This work not only provides the first three-in-one agent to attenuate cancer cell stemness and simultaneously realize anticancer, antimetastasis, and conquer metallodrug resistance but also demonstrates the effectiveness of the mitochondria-directed strategy in cancer treatment.
Collapse
Affiliation(s)
- Jin Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dong-Ping Deng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hai Lin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Chen-Xu Shao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Si-Hui Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
5
|
Iorhemba MA, Álvarez-Conde J, Díaz-García D, Méndez-Arriaga JM, García-Almodóvar V, Ovejero-Paredes K, Idris SO, Shallangwa GA, Abdulkadir I, Prashar S, Filice M, Gómez-Ruiz S. Vanadocene-functionalized mesoporous silica nanoparticles: platforms for the development of theranostic materials against breast cancer. Biomed Mater 2024; 19:035005. [PMID: 38387062 DOI: 10.1088/1748-605x/ad2c1c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Nanoscale materials have demonstrated a very high potential in anticancer therapy by properly adjusting their functionalization and physicochemical properties. Herein, we report the synthesis of some novel vanadocene-loaded silica-based nanomaterials incorporating four different S-containing amino acids (penicillamine, methionine, captopril, and cysteine) and different fluorophores (rhodamine B, coumarin 343 or Alexa Fluor™ 647), which have been characterized by diverse solid-state spectroscopic techniques viz; FTIR, diffuse reflectance spectroscopies,13C and51V solid-state NMR spectroscopy, thermogravimetry and TEM. The analysis of the biological activity of the novel vanadocene-based nanostructured silicas showed that the materials containing cysteine and captopril aminoacids demonstrated high cytotoxicity and selectivity against triple negative breast cancer cells, making them very promising antineoplastic drug candidates. According to the biological results it seems that vanadium activity is connected to its incorporation through the amino acid, resulting in synergy that increases the cytotoxic activity against cancer cells of the studied materials presumably by increasing cell internalization. The results presented herein hold significant potential for future developments in mesoporous silica-supported metallodrugs, which exhibit strong cytotoxicity while maintaining low metal loading. They also show potential for theranostic applications highlighted by the analysis of the optical properties of the studied systems after incorporating rhodamine B, coumarin 343 (possible)in vitroanticancer analysis, or Alexa Fluor™ 647 (in vivostudies of cancer models).
Collapse
Affiliation(s)
- Michael Aondona Iorhemba
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B., 1045 Zaria, Kaduna State, Nigeria
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, P.M.B., Makurdi, Benue, 2373, Nigeria
| | - Javier Álvarez-Conde
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - José Manuel Méndez-Arriaga
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Victoria García-Almodóvar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit. Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Sulaiman Ola Idris
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B., 1045 Zaria, Kaduna State, Nigeria
| | - Gideon Adamu Shallangwa
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B., 1045 Zaria, Kaduna State, Nigeria
| | - Ibrahim Abdulkadir
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B., 1045 Zaria, Kaduna State, Nigeria
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit. Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
6
|
Troisi R, Tito G, Ferraro G, Sica F, Massai L, Geri A, Cirri D, Messori L, Merlino A. On the mechanism of action of arsenoplatins: arsenoplatin-1 binding to a B-DNA dodecamer. Dalton Trans 2024; 53:3476-3483. [PMID: 38270175 DOI: 10.1039/d3dt04302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The reaction of Pt-based anticancer agents with arsenic trioxide affords robust complexes known as arsenoplatins. The prototype of this family of anticancer compounds is arsenoplatin-1 (AP-1) that contains an As(OH)2 fragment linked to a Pt(II) moiety derived from cisplatin. Crystallographic and spectrometric studies of AP-1 binding to a B-DNA double helix dodecamer are presented here, in comparison with cisplatin and transplatin. Results reveal that AP-1, cisplatin and transplatin react differently with the DNA model system. Notably, in the AP-1/DNA systems, the Pt-As bond can break down with time and As-containing fragments can be released. These results have implications for the understanding of the mechanism of action of arsenoplatins.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126, Naples, Italy.
- Institute of Biostructures and Bioimaging, CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Gabriella Tito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126, Naples, Italy.
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126, Naples, Italy.
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126, Naples, Italy.
| | - Lara Massai
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Andrea Geri
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Luigi Messori
- Department of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126, Naples, Italy.
| |
Collapse
|
7
|
Ishaniya W, Sumithaa C, Subramani M, Karanath-Anilkumar A, Munuswamy-Ramanujam G, Madan Kumar A, Rajendran S, Ganeshpandian M. Polydiacetylene/lipid-coated red-emissive silica nanorods for the sustained release and ameliorated anticancer efficacy of a Ru(arene) complex bearing piperlongumine natural product. Dalton Trans 2024; 53:1616-1629. [PMID: 38165714 DOI: 10.1039/d3dt02940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A suitable drug delivery strategy for metallodrugs is as significant as the strategies adopted for an efficient metallodrug design. In this study, piperlongumine, which is isolated from long pepper, is coordinated with a Ru(II)-p-cymene moiety to obtain an organoruthenated complex containing the natural product (Ru(pip)). The isolated complex shows higher cytotoxicity in MCF-7 breast cancer cells than in THP-1 leukemia and HepG2 liver cancer cells. The IC50 value of the complex in non-cancerous HEK-239 cells is also almost equal to that in MCF-7 cells. Next, with an aim to modulate the antiproliferative activity of Ru(pip) using a drug delivery strategy, the complex is loaded into mesoporous silica nanorods (MSNRs), which have a higher surface area than spherical silica nanoparticles. Furthermore, the outer surface of the loaded nanorods is covered with a polydiacetylene-lipid (PL) hybrid bilayer. Given the unique optical properties of polydiacetylene, the PL coating modifies non-fluorescent MSNRs into red-emissive particles (PL-Ru(pip)@MSNRs), which can be useful for diagnostic applications. The release profile studies reveal that the ene-yne conjugation in the PL coating ensures the sustained release of the complex from nanoparticles in both physiological and simulated cancer cell media. While Ru(pip) exhibits both necrotic and apoptotic modes of cell death, PL-Ru(pip)@MSNRs preferably induce the apoptotic mode of cell death in MCF-7 and THP-1 cells. Also, the nanoformulation exhibits a higher percentage of cell cycle arrest in the G0/G1 phase than Ru(pip), as measured by flow cytometry analysis. In contrast, the in vitro antioxidant potency of the complex is decreased after being loaded into PL-coated silica nanoparticles.
Collapse
Affiliation(s)
- Wickneswaran Ishaniya
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Muthuraman Subramani
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai-600127, Tamilnadu, India
| | - Aswathy Karanath-Anilkumar
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ganesh Munuswamy-Ramanujam
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Arumugam Madan Kumar
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai-600119, Tamil Nadu, India
| | - Saravanakumar Rajendran
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai-600127, Tamilnadu, India
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
8
|
Pongchaikul P, Hajidariyor T, Khetlai N, Yu YS, Arjfuk P, Khemthong P, Wanmolee W, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Nanostructured N/S doped carbon dots/mesoporous silica nanoparticles and PVA composite hydrogel fabrication for anti-microbial and anti-biofilm application. Int J Pharm X 2023; 6:100209. [PMID: 37711848 PMCID: PMC10498006 DOI: 10.1016/j.ijpx.2023.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
Regarding the convergence of the worldwide epidemic, the appearance of bacterial infection has occasioned in a melodramatic upsurge in bacterial pathogens with confrontation against one or numerous antibiotics. The implementation of engineered nanostructured particles as a delivery vehicle for antimicrobial agent is one promising approach that could theoretically battle the setbacks mentioned. Among all nanoparticles, silica nanoparticles have been found to provide functional features that are advantageous for combatting bacterial contagion. Apart from that, carbon dots, a zero-dimension nanomaterial, have recently exhibited their photo-responsive property to generate reactive oxygen species facilitating to enhance microorganism suppression and inactivation ability. In this study, potentials of core/shell mesoporous silica nanostructures (MSN) in conjugation with carbon dots (CDs) toward antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli have been investigated. Nitrogen and sulfur doped CDs (NS/CDs) conjugated with MSN which were cost effective nanoparticles exhibited much superior antimicrobial activity for 4 times as much as silver nanoparticles against all bacteria tested. Among all nanoparticles tested, 0.40 M NS/CDs@MSN showed the greatest minimal biofilm inhibitory at very low concentration (< 0.125 mg mL-1), followed by 0.20 M NS/CDs@MSN (0.5 mg mL-1), CD@MSN (25 mg mL-1), and MSN (50 mg mL-1), respectively. Immobilization of NS/CDs@MSN in polyvinyl alcohol (PVA) hydrogel was performed and its effect on antimicrobial activity, biofilm controlling efficiency, and cytotoxicity toward fibroblast (NIH/3 T3 and L-929) cells was additionally studied for further biomedical applications. The results demonstrated that 0.40 M NS/CDs-MSN@PVA hydrogel exhibited the highest inhibitory effect on S. aureus > P. aeruginosa > E. coli. In addition, MTT assay revealed some degree of toxicity of 0.40 M NS/CDs-MSN@PVA hydrogel against L-929 cells by a slight reduction of cell viability from 100% to 81.6% when incubated in the extract from 0.40 M NS/CDs-MSN@PVA hydrogel, while no toxicity of the same hydrogel extract was detected toward NIH/3 T3 cells.
Collapse
Affiliation(s)
- Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn 10540, Thailand
| | - Tasnim Hajidariyor
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Navarat Khetlai
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Yu-Sheng Yu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei 10617, Taiwan
| | - Pariyapat Arjfuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn 10540, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok 10140, Thailand
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- National Health Research Institute, Zhunan: 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
9
|
Gómez IJ, Ovejero-Paredes K, Méndez-Arriaga JM, Pizúrová N, Filice M, Zajíčková L, Prashar S, Gómez-Ruiz S. Organotin(IV)-Decorated Graphene Quantum Dots as Dual Platform for Molecular Imaging and Treatment of Triple Negative Breast Cancer. Chemistry 2023; 29:e202301845. [PMID: 37540499 DOI: 10.1002/chem.202301845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
The pharmacological activity of organotin(IV) complexes in cancer therapy is well recognized but their large applicability is hampered by their poor water solubility. Hence, carbon dots, in particular nitrogen-doped graphene quantum dots (NGQDs), may be a promising alternative for the efficient delivery of organotin(IV) compounds as they have a substantial aqueous solubility, a good chemical stability, and non-toxicity as well as a bright photoluminescence that make them ideal for theranostic applications against cancer. Two different multifunctional nanosystems have been synthesized and fully characterized based on two fragments of organotin-based cytotoxic compounds and 4-formylbenzoic acid (FBA), covalently grafted onto the NGQDs surface. Subsequently, an in vitro determination of the therapeutic and theranostic potential of the achieved multifunctional systems was carried out. The results showed a high cytotoxic potential of the NGQDs-FBA-Sn materials against breast cancer cell line (MDA-MB-231) and a lower effect on a non-cancer cell line (kidney cells, HEK293T). Besides, thanks to their optical properties, the dots enabled their fluorescence molecular imaging in the cytoplasmatic region of the cells pointing towards a successful cellular uptake and a release of the metallodrug inside cancer cells (NGQDs-FBA-Sn).
Collapse
Affiliation(s)
- I Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
- Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña, Rúa as Carballeiras, 15071 A, Coruña, Spain
| | - Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - José Manuel Méndez-Arriaga
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Naděžda Pizúrová
- Institute of Physics of Materials, Czech Academy of Sciences, 61662, Brno, Czech Republic
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040, Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Lenka Zajíčková
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
- Central European Institute of Technology - CEITEC, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles, Madrid, Spain
| |
Collapse
|
10
|
Jasim Al-Khafaji HH, Alsalamy A, Abed Jawad M, Ali Nasser H, Dawood AH, Hasan SY, Ahmad I, Gatea MA, Younis Albahadly WK. Synthesis of a novel Cu/DPA-MOF/OP/CS hydrogel with high capability in antimicrobial studies. Front Chem 2023; 11:1236580. [PMID: 37638100 PMCID: PMC10450620 DOI: 10.3389/fchem.2023.1236580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Today, with the indiscriminate use of antibiotics, we face the resistance of some bacterial strains against some antibiotics. Therefore, it is essential to report and synthesize new compounds with antimicrobial properties. A novel copper/dipicolinic acid-metal-organic framework cross-linked oxidized pectin and chitosan (Cu/DPA-MOF/OP/CS) hydrogel polymer was synthesized under environmental conditions with the controllable process, which uses biodegradable polymer compounds such as pectin and chitosan in its structure. The efficient physicochemical features of the synthesized Cu/DPA-MOF/OP/CS hydrogel using SEM, FT-IR, TGA, BET, XRD, and EDS/mapping were identified and confirmed. The newly synthesized Cu/DPA-MOF/OP/CS hydrogel showed activity against Gram-positive and Gram-negative bacterial strains and fungal species, and significant antibacterial and antifungal properties were observed. In antibacterial activity, the MIC against Gram-positive species was in the range of 16-128 mg/mL, the MIC against Gram-negative species was in the range of 64-256 mg/mL, and the MIC against fungal species was in the range of 128-512 mg/mL. In antimicrobial evaluations, in addition to the MIC test, the MBC test, the MFC test, and the IZD test were performed, and the results were reported. The results were compared with commercial antibiotics in the market. Development of novel nanostructures based on hydrogel polymers with distinctive functionality can affect the performance of these nanostructures in different areas.
Collapse
Affiliation(s)
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al-Sadiq University, Al-Muthanna, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Al-Mansour, Iraq
| | - Hind Ali Nasser
- College of Pharmacy, Al-Ayen University, Nasiriyah, Thi-Qar, Iraq
| | - Ashour H. Dawood
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq
| | - Saif Yaseen Hasan
- College of Health and Medical Technology, National University of Science and Technology, Nasiriyah, Thi-Qar, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - M. Abdulfadhil Gatea
- Technical Engineering Department College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Physics, College of Science, University of Kufa, Kufa, Iraq
| | | |
Collapse
|
11
|
Marinescu G, Culita DC, Mocanu T, Mitran RA, Petrescu S, Stan MS, Chifiriuc MC, Popa M. New Nanostructured Materials Based on Mesoporous Silica Loaded with Ru(II)/Ru(III) Complexes with Anticancer and Antimicrobial Properties. Pharmaceutics 2023; 15:pharmaceutics15051458. [PMID: 37242698 DOI: 10.3390/pharmaceutics15051458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
A new series of nanostructured materials was obtained by functionalization of SBA-15 mesoporous silica with Ru(II) and Ru(III) complexes bearing Schiff base ligands derived from salicylaldehyde and various amines (1,2-diaminocyclohexane, 1,2-phenylenediamine, ethylenediamine, 1,3-diamino-2-propanol, N,N-dimethylethylenediamine, 2-aminomethyl-pyridine, and 2-(2-aminoethyl)-pyridine). The incorporation of ruthenium complexes into the porous structure of SBA-15 and the structural, morphological, and textural features of the resulting nanostructured materials were investigated by FTIR, XPS, TG/DTA, zeta potential, SEM, and N2 physisorption. The ruthenium complex-loaded SBA-15 silica samples were tested against A549 lung tumor cells and MRC-5 normal lung fibroblasts. A dose-dependent effect was observed, with the highest antitumoral efficiency being recorded for the material containing [Ru(Salen)(PPh3)Cl] (50%/90% decrease in the A549 cells' viability at a concentration of 70 μg/mL/200 μg/mL after 24 h incubation). The other hybrid materials have also shown good cytotoxicity against cancer cells, depending on the ligand included in the ruthenium complex. The antibacterial assay revealed an inhibitory effect for all samples, the most active being those containing [Ru(Salen)(PPh3)Cl], [Ru(Saldiam)(PPh3)Cl], and [Ru(Salaepy)(PPh3)Cl], especially against Staphylococcus aureus and Enterococcus faecalis Gram-positive strains. In conclusion, these nanostructured hybrid materials could represent valuable tools for the development of multi-pharmacologically active compounds with antiproliferative, antibacterial, and antibiofilm activity.
Collapse
Affiliation(s)
- Gabriela Marinescu
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Daniela C Culita
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Teodora Mocanu
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Raul-Augustin Mitran
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Simona Petrescu
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Miruna S Stan
- Faculty of Biology, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| | - Mariana C Chifiriuc
- Faculty of Biology, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| | - Marcela Popa
- Faculty of Biology, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| |
Collapse
|
12
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
13
|
Boztepe T, Scioli-Montoto S, Gambaro RC, Ruiz ME, Cabrera S, Alemán J, Islan GA, Castro GR, León IE. Design, Synthesis, Characterization, and Evaluation of the Anti-HT-29 Colorectal Cell Line Activity of Novel 8-Oxyquinolinate-Platinum(II)-Loaded Nanostructured Lipid Carriers Targeted with Riboflavin. Pharmaceutics 2023; 15:pharmaceutics15031021. [PMID: 36986881 PMCID: PMC10056074 DOI: 10.3390/pharmaceutics15031021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Colorectal cancer is occasionally called colon or rectal cancer, depending on where cancer begins to form, and is the second leading cause of cancer death among both men and women. The platinum-based [PtCl(8-O-quinolinate)(dmso)] (8-QO-Pt) compound has demonstrated encouraging anticancer activity. Three different systems of 8-QO-Pt-encapsulated nanostructured lipid carriers (NLCs) with riboflavin (RFV) were investigated. NLCs of myristyl myristate were synthesized by ultrasonication in the presence of RFV. RFV-decorated nanoparticles displayed a spherical shape and a narrow size dispersion in the range of 144-175 nm mean particle diameter. The 8-QO-Pt-loaded formulations of NLC/RFV with more than 70% encapsulation efficiency showed sustained in vitro release for 24 h. Cytotoxicity, cell uptake, and apoptosis were evaluated in the HT-29 human colorectal adenocarcinoma cell line. The results revealed that 8-QO-Pt-loaded formulations of NLC/RFV showed higher cytotoxicity than the free 8-QO-Pt compound at 5.0 µM. All three systems exhibited different levels of cellular internalization. Moreover, the hemotoxicity assay showed the safety profile of the formulations (less than 3.7%). Taken together, RFV-targeted NLC systems for drug delivery have been investigated for the first time in our study and the results are promising for the future of chemotherapy in colon cancer treatment.
Collapse
Affiliation(s)
- Tugce Boztepe
- Laboratorio de Nanobiomateriales, CINDEFI-Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, La Plata B1900, Argentina
| | - Sebastián Scioli-Montoto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata B1904, Argentina
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Rocio C Gambaro
- Instituto de Genética Veterinaria (IGEVET, UNLP-CONICET La Plata), Facultad de Ciencias Veterinarias Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - María Esperanza Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata B1904, Argentina
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Silvia Cabrera
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Germán A Islan
- Laboratorio de Nanobiomateriales, CINDEFI-Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, La Plata B1900, Argentina
| | - Guillermo R Castro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Rosario S2000, Argentina
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina
| |
Collapse
|
14
|
Reis Nascimento R, Pauline Gaitan Tabares J, Marques Dos Anjos PN, Santos LN, de Oliveira Silva D, Silva Ribeiro Santos RL. Poly(lactic acid)/β-cyclodextrin based nanoparticles bearing ruthenium(II)-arene naproxen complex: preparation and characterisation. Analytical validation for metal determination by microwave-induced plasma optical emission spectrometry. J Microencapsul 2023; 40:67-81. [PMID: 36722704 DOI: 10.1080/02652048.2023.2172469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objectives of this work are to develop nanocarrier systems for the Ru(II)-p-cymene naproxen antitumor metallodrug, [Ru(η6-p-cymene)(npx)Cl] or Rupcy, based on polymeric nanoparticles (NPs) composed by the biodegradable poly(lactic acid) (PLA) and the hydrophilic polymerised β-cyclodextrin (PolyCD); to validate an analytical method for determination of Ru incorporated into the metallodrug loaded-NPs. The PolyCD was prepared by single step condensation and polymerisation reaction and incorporated as a polymer blend during the fabrication of PLA/PolyCD blends NPs and also as a core/shell structure built by adsorption of the PolyCD onto the surface of PLA NPs to give PLA(core)/PolyCD(shell) NPs. Three different loaded-systems incorporating the metallodrug (Rupcy-PLA NPs (1), Rupcy-PLA/PolyCD blends (2), and Rupcy-PLA(core)/PolyCD(shell) NPs (3)) were prepared by nanoprecipitation. The characterisation was performed by Proton Nuclear Magnetic Resonance, Matrix Assisted Laser Desorption/Ionization Time-of-Flight, Fourier-Transform Infra-red and UV-VIS Electronic Absorption Spectroscopies, Thermogravimetric Analysis, Differential Scanning Calorimetry, Dynamic Light Scattering, and Electrophoretic Light Scattering. Ru was determined by Microwave Induced Plasma Optical Emission Spectrometry (MIP-OES) with validation of the method. The metallodrug entrapment efficiency was around 90% (w/w) and drug loading was at 3-4% (w/w). The characterised metallodrug-loaded systems exhibited monomodal size distributions and appropriate hydrodynamic diameters [218.3 ± 13.5 (1), 205.4 ± 14.4 (2), 231.5 ± 22.0 (3) nm] and zeta potential values [-31.5 ± 2.2 (1), -26.1 ± 4.5 (2), -28.8 ± 6.1 (3) mV]. The validation of the MIP-OES method by evaluating selectivity, linearity, precision, accuracy, and limits of detection and quantification succeeded. The NPs parameters are compatible with colloidally stable systems. The MIP-OES method showed to be simple, reliable, and feasible to quantify indirectly the amount of the metallodrug-loaded into the PLA NPs.
Collapse
Affiliation(s)
- Ruan Reis Nascimento
- Department of Exact and Technological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | | | | | - Luana Novaes Santos
- Department of Exact and Technological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Denise de Oliveira Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
15
|
Ugalde-Arbizu M, Aguilera-Correa JJ, García-Almodóvar V, Ovejero-Paredes K, Díaz-García D, Esteban J, Páez PL, Prashar S, San Sebastian E, Filice M, Gómez-Ruiz S. Dual Anticancer and Antibacterial Properties of Silica-Based Theranostic Nanomaterials Functionalized with Coumarin343, Folic Acid and a Cytotoxic Organotin(IV) Metallodrug. Pharmaceutics 2023; 15:pharmaceutics15020560. [PMID: 36839883 PMCID: PMC9962538 DOI: 10.3390/pharmaceutics15020560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Five different silica nanoparticles functionalized with vitamin B12, a derivative of coumarin found in green plants and a minimum content of an organotin(IV) fragment (1-MSN-Sn, 2-MSN-Sn, 2-SBA-Sn, 2-FSPm-Sn and 2-FSPs-Sn), were identified as excellent anticancer agents against triple negative breast cancer, one of the most diagnosed and aggressive cancerous tumors, with very poor prognosis. Notably, compound 2-MSN-Sn shows selectivity for cancer cells and excellent luminescent properties detectable by imaging techniques once internalized. The same compound is also able to interact with and nearly eradicate biofilms of Staphylococcus aureus, the most common bacteria isolated from chronic wounds and burns, whose treatment is a clinical challenge. 2-MSN-Sn is efficiently internalized by bacteria in a biofilm state and destroys the latter through reactive oxygen species (ROS) generation. Its internalization by bacteria was also efficiently monitored by fluorescence imaging. Since silica nanoparticles are particularly suitable for oral or topical administration, and considering both its anticancer and antibacterial activity, 2-MSN-Sn represents a new dual-condition theranostic agent, based primarily on natural products or their derivatives and with only a minimum amount of a novel metallodrug.
Collapse
Affiliation(s)
- Maider Ugalde-Arbizu
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Victoria García-Almodóvar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Paulina L. Páez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| |
Collapse
|
16
|
Kuznetsova OV, Kolotilina NK, Dolgonosov AM, Khamizov RK, Timerbaev AR. A de novo nanoplatform for the delivery of metal-based drugs studied with high-resolution ICP-MS. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Synthesis, characterization, X-ray crystal structure, antioxidant, antimicrobial, and DNA binding interaction studies of novel Copper (II)-isoxazole binary complexes. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
18
|
Cu (II)-coordinated silica based mesoporous inorganic-organic hybrid material: synthesis, characterization and evaluation for drug delivery, antibacterial, antioxidant and anticancer activities. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Biological Use of Nanostructured Silica-Based Materials Functionalized with Metallodrugs: The Spanish Perspective. Int J Mol Sci 2023; 24:ijms24032332. [PMID: 36768659 PMCID: PMC9917151 DOI: 10.3390/ijms24032332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Since the pioneering work of Vallet-Regí's group on the design and synthesis of mesoporous silica-based materials with therapeutic applications, during the last 15 years, the potential use of mesoporous silica nanostructured materials as drug delivery vehicles has been extensively explored. The versatility of these materials allows the design of a wide variety of platforms that can incorporate numerous agents of interest (fluorophores, proteins, drugs, etc.) in a single scaffold. However, the use of these systems loaded with metallodrugs as cytotoxic agents against different diseases and with distinct therapeutic targets has been studied to a much lesser extent. This review will focus on the work carried out in this field, highlighting both the pioneering and recent contributions of Spanish groups that have synthesized a wide variety of systems based on titanium, tin, ruthenium, copper and silver complexes supported onto nanostructured silica. In addition, this article will also discuss the importance of the structural features of the systems for evaluating and modulating their therapeutic properties. Finally, the most interesting results obtained in the study of the potential therapeutic application of these metallodrug-functionalized silica-based materials against cancer and bacteria will be described, paying special attention to preclinical trials in vivo.
Collapse
|
20
|
Al-Anazi M. Synthesis, anticancer, and docking of new thiadiazolyl-triazole analogues hybridized with thiazolidinone/thiophene. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Recent advances on organelle specific Ru(II)/Ir(III)/Re(I) based complexes for photodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Díaz-García D, Ferrer-Donato Á, Méndez-Arriaga JM, Cabrera-Pinto M, Díaz-Sánchez M, Prashar S, Fernandez-Martos CM, Gómez-Ruiz S. Design of Mesoporous Silica Nanoparticles for the Treatment of Amyotrophic Lateral Sclerosis (ALS) with a Therapeutic Cocktail Based on Leptin and Pioglitazone. ACS Biomater Sci Eng 2022; 8:4838-4849. [PMID: 36240025 PMCID: PMC9667463 DOI: 10.1021/acsbiomaterials.2c00865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Amyotrophic lateral sclerosis (ALS) is a devasting neurodegenerative
disease with no cure to date. Therapeutic agents used to treat ALS
are very limited, although combined therapies may offer a more effective
treatment strategy. Herein, we have studied the potential of nanomedicine
to prepare a single platform based on mesoporous silica nanoparticles
(MSNs) for the treatment of an ALS animal model with a cocktail of
agents such as leptin (neuroprotective) and pioglitazone (anti-inflammatory),
which have already demonstrated promising therapeutic ability in other
neurodegenerative diseases. Our goal is to study the potential of
functionalized mesoporous materials as therapeutic agents against
ALS using MSNs as nanocarriers for the proposed drug cocktail leptin/pioglitazone
(MSN-LEP-PIO). The nanostructured materials have been
characterized by different techniques, which confirmed the incorporation
of both agents in the nanosystem. Subsequently, the effect, in vivo, of the proposed drug cocktail, MSN-LEP-PIO, was used in the murine model of TDP-43 proteinopathy (TDP-43A315T mice). Body weight loss was studied, and using the rotarod
test, motor performance was assessed, observing a continuous reduction
in body weight and motor coordination in TDP-43A315T mice
and wild-type (WT) mice. Nevertheless, the disease progression was
slower and showed significant improvements in motor performance, indicating
that TDP-43A315T mice treated with MSN-LEP-PIO seem to have less energy demand in the late stage of the symptoms
of ALS. Collectively, these results seem to indicate the efficiency
of the systems in vivo and the usefulness of their
use in neurodegenerative models, including ALS.
Collapse
Affiliation(s)
- Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Águeda Ferrer-Donato
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - José M Méndez-Arriaga
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Marta Cabrera-Pinto
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Miguel Díaz-Sánchez
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Carmen M Fernandez-Martos
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain.,Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
23
|
Patra SA, Sahu G, Pattanayak PD, Sasamori T, Dinda R. Mitochondria-Targeted Luminescent Organotin(IV) Complexes: Synthesis, Photophysical Characterization, and Live Cell Imaging. Inorg Chem 2022; 61:16914-16928. [PMID: 36239464 DOI: 10.1021/acs.inorgchem.2c02959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Five fluorescent ONO donor-based organotin(IV) complexes, [SnIV(L1-5)Ph2] (1-5), were synthesized by the one-pot reaction method and fully characterized spectroscopically including the single-crystal X-ray diffraction studies of 2-4. Detailed photophysical characterization of all compounds was performed. All the compounds exhibited high luminescent properties with a quantum yield of 17-53%. Additionally, the results of cellular permeability analysis suggest that they are lipophilic and easily absorbed by cells. Confocal microscopy was used to examine the live cell imaging capability of 1-5, and the results show that the compounds are mostly internalized in mitochondria and exhibit negligible cytotoxicity at imaging concentration. Also, 1-5 exhibited high photostability as compared to the commercial dye and can be used in long-term real-time tracking of cell organelles. Also, it is found that the probes (1-5) are highly tolerable during the changes in mitochondrial morphology. Thus, this kind of low-toxic organotin-based fluorescent probe can assist in imaging of mitochondria within living cells and tracking changes in their morphology.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | | | - Takahiro Sasamori
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
24
|
Bensing C, Mojić M, Bulatović M, Edeler D, Pérez-Quintanilla D, Gómez-Ruiz S, Maksimović-Ivanić D, Mijatović S, Kaluđerović GN. Effect of chain length on the cytotoxic activity of (alkyl-ω-ol)triphenyltin(IV) loaded into SBA-15 nanostructured silica and in vivo study of SBA-15~Cl|Ph 3Sn(CH 2) 8OH. BIOMATERIALS ADVANCES 2022; 140:213054. [PMID: 35964389 DOI: 10.1016/j.bioadv.2022.213054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A series of nanostructured SBA-15-based materials functionalized with the tetraorganotin(IV) metallodrugs Ph3Sn(CH2)nOH (n = 3, 4, 6, 8 and 11) are synthesized and structurally characterized by different techniques used in solid-state chemistry. The cytotoxicity of both the organotin(IV) compounds and the tin-functionalized SBA-15 materials are studied against different cancer cell lines observing that the materials have similar cytotoxic activity in comparison with the free organotin compounds in terms of mass. However, considering that the percentage of active metal compound loaded into material is low, the utilization of mesoporous silica as drug vehicle clearly improves the cytotoxic effectiveness of metal-based drugs against cancer cells. One of the most potent between all tested systems is material SBA-15~Cl|Ph3Sn(CH2)8OH. Its cytotoxicity seems to come from additional mechanisms apart from apoptosis provoking cell reprogram in B16 melanoma into more mature and less aggressive phenotype. Moderated production of ROS/RNS is probably in the background of observed phenomenon. Obtained results are further confirmed in syngeneic mouse model of melanoma in C57BL6 mice. The in vivo results show that SBA-15 do not disturb tumor growth, while both Ph3Sn(CH2)8OH and SBA-15~Cl|Ph3Sn(CH2)8OH significantly decreases tumor volume with an enhancement of the antitumor potential of the tetraorganotin(IV) compound upon immobilization in SBA-15.
Collapse
Affiliation(s)
- Christian Bensing
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle, Germany
| | - Marija Mojić
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Mirna Bulatović
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - David Edeler
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle, Germany
| | - Damian Pérez-Quintanilla
- Departamento de Tecnología Química y Ambiental, E.S.C.E.T., Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain.
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Goran N Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Strasse 2, DE-06217 Merseburg, Germany.
| |
Collapse
|
25
|
Gutiérrez de la Rosa SY, Muñiz Diaz R, Villalobos Gutiérrez PT, Patakfalvi R, Gutiérrez Coronado Ó. Functionalized Platinum Nanoparticles with Biomedical Applications. Int J Mol Sci 2022; 23:9404. [PMID: 36012670 PMCID: PMC9409011 DOI: 10.3390/ijms23169404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/21/2022] Open
Abstract
Functionalized platinum nanoparticles have been of considerable interest in recent research due to their properties and applications, among which they stand out as therapeutic agents. The functionalization of the surfaces of nanoparticles can overcome the limits of medicine by increasing selectivity and thereby reducing the side effects of conventional drugs. With the constant development of nanotechnology in the biomedical field, functionalized platinum nanoparticles have been used to diagnose and treat diseases such as cancer and infections caused by pathogens. This review reports on physical, chemical, and biological methods of obtaining platinum nanoparticles and the advantages and disadvantages of their synthesis. Additionally, applications in the biomedical field that can be utilized once the surfaces of nanoparticles have been functionalized with different bioactive molecules are discussed, among which antibodies, biodegradable polymers, and biomolecules stand out.
Collapse
Affiliation(s)
| | | | | | | | - Óscar Gutiérrez Coronado
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Jalisco, Mexico
| |
Collapse
|
26
|
Ovejero-Paredes K, Díaz-García D, Mena-Palomo I, Marciello M, Lozano-Chamizo L, Morato YL, Prashar S, Gómez-Ruiz S, Filice M. Synthesis of a theranostic platform based on fibrous silica nanoparticles for the enhanced treatment of triple-negative breast cancer promoted by a combination of chemotherapeutic agents. BIOMATERIALS ADVANCES 2022; 137:212823. [PMID: 35929238 DOI: 10.1016/j.bioadv.2022.212823] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
A new series of theranostic silica materials based on fibrous silica particles acting as nanocarriers of two different cytotoxic agents, namely, chlorambucil and an organotin metallodrug have been prepared and structurally characterized. Besides the combined therapeutic activity, these platforms have been decorated with a targeting molecule (folic acid, to selectively target triple negative breast cancer) and a molecular imaging agent (Alexa Fluor 647, to enable their tracking both in vitro and in vivo). The in vitro behaviour of the multifunctional silica systems showed a synergistic activity of the two chemotherapeutic agents in the form of an enhanced cytotoxicity against MDA-MB-231 cells (triple negative breast cancer) as well as by a higher cell migration inhibition. Subsequently, the in vivo applicability of the siliceous nanotheranostics was successfully assessed by observing with in vivo optical imaging techniques a selective tumour accumulation (targeting ability), a marked inhibition of tumour growth paired to a marked antiangiogenic ability after 13 days of systemic administration, thus, confirming the enhanced theranostic activity. The systemic nanotoxicity was also evaluated by analyzing specific biochemical markers. The results showed a positive effect in form of reduced cytotoxicity when both chemotherapeutics are administered in combination thanks to the fibrous silica nanoparticles. Overall, our results confirm the promising applicability of these novel silica-based nanoplatforms as advanced drug-delivery systems for the synergistic theranosis of triple negative breast cancer.
Collapse
Affiliation(s)
- Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Irene Mena-Palomo
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain.
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| |
Collapse
|
27
|
Complex of alkylated derivative of 1,4-diazabicyclo[2.2.2]octane with palladium dichloride: synthesis, self-association, and biological activity. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3413-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
29
|
Biswas S, Karim S, Zangrando E, Chandra A. An effortless approach to synthesize two structurally diverse nano copper (II) materials and assessment of their apoptosis inducing ability on lung cancer cell line. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sneha Biswas
- Department of Chemistry University of Calcutta Kolkata India
| | - Suhana Karim
- Department of Chemistry University of Calcutta Kolkata India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences University of Trieste Trieste Italy
| | - Arpita Chandra
- Department of in Vitro Carcinogenesis and Cellular Chemotherapy Chittaranjan National Cancer Institute Kolkata West Bengal India
| |
Collapse
|
30
|
Gabano E, Ferraris C, Osella D, Battaglia LS, Ravera M. Formulations of highly antiproliferative hydrophobic Pt(IV) complexes into lipidic nanoemulsions as delivery vehicles. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Zakharova L, Voloshina AD, Ibatullina MR, Zhiltsova EP, Lukashenko SS, Kuznetsova DA, Kutyreva MP, Sapunova AS, Kufelkina AA, Kulik NV, Kataeva O, Ivshin KA, Gubaidullin AT, Salnikov VV, Nizameev IR, Kadirov MK, Sinyashin OG. Self-Assembling Metallocomplexes of the Amphiphilic 1,4-Diazabicyclo[2.2.2]octane Derivative as a Platform for the Development of Nonplatinum Anticancer Drugs. ACS OMEGA 2022; 7:3073-3082. [PMID: 35097302 PMCID: PMC8793087 DOI: 10.1021/acsomega.1c06465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
New 1-cetyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide complexes with copper(II) bromide and lanthanum(III) nitrate were characterized using dynamic light scattering and transmission electron microscopy, with self-assembly and the morphological behavior elucidated. For the lanthanum(III) nitrate complex, the 3D crystal structure was characterized using X-ray diffractometry. These metallosurfactants were tested as antitumor agents, and a high cytotoxic effect comparable with doxorubicin was revealed against the M-HeLa and A-549 cell lines. Both complexes were 2 times more active toward the MCF-7 cell line than the breast cancer drug tamoxifen. The cytotoxic mechanism of complexes is assumed to be related to the induction of apoptosis through the mitochondrial pathway.
Collapse
Affiliation(s)
- Lucia
Ya. Zakharova
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Alexandra D. Voloshina
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Marina R. Ibatullina
- A.M.
Butlerov Chemistry Institute, Kazan Federal
University, Kremlevskaya
Str. 18, Kazan 420008, Russia
| | - Elena P. Zhiltsova
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Svetlana S. Lukashenko
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Darya A. Kuznetsova
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Marianna P. Kutyreva
- A.M.
Butlerov Chemistry Institute, Kazan Federal
University, Kremlevskaya
Str. 18, Kazan 420008, Russia
| | - Anastasiia S. Sapunova
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Anna A. Kufelkina
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Natalia V. Kulik
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Olga Kataeva
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Kamil A. Ivshin
- A.M.
Butlerov Chemistry Institute, Kazan Federal
University, Kremlevskaya
Str. 18, Kazan 420008, Russia
| | - Aidar T. Gubaidullin
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Vadim V. Salnikov
- Kazan
Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Street 2/31, Kazan 420111, Russia
| | - Irek R. Nizameev
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Marsil K. Kadirov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| | - Oleg G. Sinyashin
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan 420088, Russia
| |
Collapse
|
32
|
Alavi N, Rezaei M, Maghami P, Fanipakdel A, Avan A. Nanocarrier System for Increasing the Therapeutic Efficacy of Oxaliplatin. Curr Cancer Drug Targets 2022; 22:361-372. [PMID: 35048809 DOI: 10.2174/1568009622666220120115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
The application of Oxaliplatin (OxPt) in different malignancies is reported to be accompanied by several side effects including neuropathy, nausea, vomiting, diarrhea, mouth sores, low blood counts, loss of appetite, etc. The passive or active targeting of different tumors can improve OxPt delivery. Considering the demand for novel systems meant to improve the OxPt efficacy and define the shortcomings, we provided an overview of different approaches regarding the delivery of OxPt. There is an extending body of data that exhibits the value of Liposomes and polymer-based drug delivery systems as the most successful systems among the OxPt drug delivery procedures. Several clinical trials have been carried out to investigate the side effects and dose-limiting toxicity of liposomal oxaliplatin such as the assessment on Safety Study of MBP-426 (Liposomal Oxaliplatin Suspension for Injection) to Treat Advanced or Metastatic Solid Tumors. In addition, several studies indicated the biocompatibility and biodegradability of this product, as well as its option for being fictionalized to derive specialized smart nanosystems for the treatment of cancer. The better delivery of OxPt with weaker side effects could be generated by the exertion of Oxaliplatin, which involves the aggregation of new particles and multifaceted nanocarriers to compose a nanocomposite with both inorganic and organic nanoparticles.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azar Fanipakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Karim S, Dasgupta S, Parveen R, Biswas S, Das D. A mechanistic approach for in‐vitro anticancer activity via nucleic acid fragmentation by copper(II) complex anchored on MCM‐41. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Suhana Karim
- Department of Chemistry University of Calcutta Kolkata India
| | | | - Rumana Parveen
- Department of Chemistry University of Calcutta Kolkata India
| | - Subhendu Biswas
- Department of Chemistry University of Calcutta Kolkata India
| | - Debasis Das
- Department of Chemistry University of Calcutta Kolkata India
| |
Collapse
|
34
|
Jiang W, Zhang Z, Ni P, Tan Y. OUP accepted manuscript. Metallomics 2022; 14:6585273. [PMID: 35556135 DOI: 10.1093/mtomcs/mfac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 11/14/2022]
Abstract
Fourteen new organotin(IV) complexes were successfully synthesized and characterized by elemental analyses, Fourier transform infrared spectroscopy (FT-IR), multinuclear (1H, 13C, and 119Sn) NMR spectroscopy, high-resolution mass spectrometry (HRMS), and X-ray single-crystal techniques. Crystallographic data showed that the complexes 1b, 2b, 3b, and 5b were macrocyclic compounds, 4b exhibited a one-dimensional spiral chain structure with distorted trigonal bipyramidal geometry, other complexes were centrosymmetric dimers, and there was an Sn2O2 four-membered ring in the middle of the molecule. In-vitro anticancer activity against the three human tumor cell lines NCI-H460, MCF-7, and HepG2 was studied, and the dibutyltin complex 5a is a more potent antitumor agent than other complexes and cisplatin. Cell apoptosis study of 5a with the highest activity on HepG2 cancer cell lines was done by flow cytometry; it was shown that the antitumor activity of 5a was related to apoptosis, and it inhibited proliferation by blocking cells in the G2/M phase. The single-cell gel electrophoresis assay results show that 5a induces DNA damage. 5a interacts with ct-DNA by intercalating the mode of interaction. UV-visible absorption spectrometry, fluorescence competitive, viscosity measurements, and gel electrophoresis results also support the intercalative mode of interaction for 5a with DNA.
Collapse
Affiliation(s)
- Wujiu Jiang
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Organometallic New Materials, College of Hunan Province, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of XiangJiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, China
| | - Zhijian Zhang
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Organometallic New Materials, College of Hunan Province, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of XiangJiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, China
| | - Penghui Ni
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Organometallic New Materials, College of Hunan Province, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of XiangJiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, China
| | - Yuxing Tan
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Organometallic New Materials, College of Hunan Province, Hunan Provincial Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of XiangJiang River, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, China
| |
Collapse
|
35
|
Zhiltsova EP, Ibatullina MR, Kuznetsova DA, Gabdrakhmanov DR, Lukashenko SS, Voloshina AD, Sapunova AS, Lenina OA, Faizullin DA, Zuev YF, Ya. Zakharova L. Complexes of 1-alkyl-4-aza-1-azoniabicyclo[2.2.2]octane bromides with lanthanum nitrate: Aggregation and interaction with biomolecules. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Elsayed SA, Badr HE, di Biase A, El-Hendawy AM. Synthesis, characterization of ruthenium(II), nickel(II), palladium(II), and platinum(II) triphenylphosphine-based complexes bearing an ONS-donor chelating agent: Interaction with biomolecules, antioxidant, in vitro cytotoxic, apoptotic activity and cell cycle analysis. J Inorg Biochem 2021; 223:111549. [PMID: 34315119 DOI: 10.1016/j.jinorgbio.2021.111549] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023]
Abstract
Four new transition metal complexes, [M(PPh3)(L)].CH3OH (M = Ni(II) (1), Pd(II) (2)) [Pt (PPh3)2(HL)]Cl (3) and [Ru(CO)(PPh3)2(L)] (4) (H2L = 2,4-dihydroxybenzaldehyde-S-methyldithiocarbazate, PPh3 = triphenylphosphine) have been synthesized and characterized by elemental analyses (C, H, N), FTIR, NMR (1H, 31P), ESI-MS and UV-visible spectroscopy. The molecular structure of (1) and (2) complexes was confirmed by single-crystal X-ray crystallography. It showed a distorted square planar geometry for both complexes around the metal center, and the H2L adopt a bi-negative tridentate chelating mode. The interaction with biomolecules viz., calf thymus DNA (ct DNA), yeast RNA (tRNA), and BSA (bovine serum albumin) was examined by both UV-visible and fluorescence spectroscopies. The antioxidant activity of all compounds is discussed on basis of DPPH• (2,2-diphenyl-1-picrylhydrazyl) scavenging activity and showed better antioxidant activity for complexes compared to the ligand. The in vitro cytotoxicity of the compounds was tested on human (breast cancer (MCF7), colon cancer (HCT116), liver cancer (HepG2), and normal lung fibroblast (WI38)) cell lines, showing that complex (1) the most potent against MCF7 and complex (4) against HCT116 cell lines based on IC50 and selective indices (SI) values. So, both complexes were chosen for further studies such as DNA fragmentation, cell apoptosis, and cell cycle analyses. Complex (1) induced MCF7 cell death by cellular apoptosis and arrest cells at S phase. Complex (4) induced HCT116 cell death predominantly by cellular necrosis and arrested cell division at G2/M phase due to DNA damage.
Collapse
Affiliation(s)
- Shadia A Elsayed
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| | - Hagar E Badr
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Armando di Biase
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Ahmed M El-Hendawy
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| |
Collapse
|
37
|
Boztepe T, Castro GR, León IE. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. Int J Pharm 2021; 605:120788. [PMID: 34116182 DOI: 10.1016/j.ijpharm.2021.120788] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
The three main FDA-approved platinum drugs in chemotherapy such as carboplatin, cisplatin, and oxaliplatin are extensively applied in cancer treatments. Although the clinical applications of platinum-based drugs are extremely effective, their toxicity profile restricts their extensive application. Therefore, recent studies focus on developing new platinum drug formulations, expanding the therapeutic aspect. In this sense, recent advances in the development of novel drug delivery carriers will help with the increase of drug stability and biodisponibility, concomitantly with the reduction of drug efflux and undesirable secondary toxic effects of platinum compounds. The present review describes the state of the art of platinum drugs with their biological effects, pre- and clinical studies, and novel drug delivery nanodevices based on lipids, polymers, and inorganic.
Collapse
Affiliation(s)
- Tugce Boztepe
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv. 120 1465, La Plata, Argentina.
| |
Collapse
|
38
|
Zafar W, Sumrra SH, Chohan ZH. A review: Pharmacological aspects of metal based 1,2,4-triazole derived Schiff bases. Eur J Med Chem 2021; 222:113602. [PMID: 34139626 DOI: 10.1016/j.ejmech.2021.113602] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
Clinical reports have highlighted the radical increase of antibiotic resistance. As a result, multidrug resistance has emerged as a serious threat to human health. Many organic compounds commonly used as drugs in the past, no longer have pure organic mode of action rather need bio-transformation or more activation. Bulk of research has shown that they need trace amount of metal ions incorporated within the chemistry of bioactive molecules for enhancement of their potentiality to fight aggressively against resistance. The deficiency of some metal ions can also be responsible for many diseases like growth retardation, pernicious anemia and heart diseases in infants. To overcome these problems, there is a need to introduce novel strategies which have new mechanism of action along with significant spectrum of biological activity, enhanced safety and efficacy. Bioinorganic compounds have played imperative role in developing the new strategy in the form of "Metal Based Drugs". In current years there have been momentous rise of interest in the application of metal based Schiff base compounds to treat various diseases which are difficult to be treated with conventional methodologies. The unique properties of metal chelates acting as an intermediate between conventional organic and inorganic compounds provided innovative opportunities in the field of pharmaceutical chemistry. In this review, we have exclusively focused on the search of metal based 1,2,4-triazole derived Schiff base compounds (synthesized, reported and reviewed in the past ten years) that possess various biological activities such as antifungal, antibacterial, antioxidant, antidiabetic, anthelmintic, anticancer, antiproliferative, cytotoxic and DNA-intercalation activity.
Collapse
Affiliation(s)
- Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Zahid H Chohan
- Department of Chemistry, Institute of Southern Punjab, Multan, Pakistan
| |
Collapse
|
39
|
Nahari G, Tshuva EY. Synthesis of asymmetrical diaminobis(alkoxo)-bisphenol compounds and their C 1-symmetrical mono-ligated titanium(iv) complexes as highly stable highly active antitumor compounds. Dalton Trans 2021; 50:6423-6426. [PMID: 33949509 PMCID: PMC8130176 DOI: 10.1039/d1dt00219h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Asymmetrical 2,2'-((ethane-1,2-diylbis((2-hydroxyethyl)azanediyl))bis(methylene))diphenol substituted compounds and their C1-symmetrical diaminobis(phenolato)-bis(alkoxo) titanium(iv) complexes were synthesized, with one symmetrical analogue. X-ray crystallography corroborated tight ligand binding. Different substitutions on the two aromatic rings enabled fine-tuning of the complex properties, giving enhanced solubility, high anticancer activity (IC50 < 4 μM), and significant hydrolytic stability.
Collapse
Affiliation(s)
- Gilad Nahari
- The Institute of Chemistry, The Hebrew University of JerusalemJerusalem 9190401Israel
| | - Edit Y. Tshuva
- The Institute of Chemistry, The Hebrew University of JerusalemJerusalem 9190401Israel
| |
Collapse
|
40
|
Karges J, Díaz-García D, Prashar S, Gómez-Ruiz S, Gasser G. Ru(II) Polypyridine Complex-Functionalized Mesoporous Silica Nanoparticles as Photosensitizers for Cancer Targeted Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:4394-4405. [PMID: 35006851 DOI: 10.1021/acsabm.1c00151] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer is the leading cause of death in the developed world. In the last few decades, photodynamic therapy (PDT) has augmented the number of medical techniques to treat this disease in the clinics. As the pharmacological active species to kill cancer cells are only generated upon light irradiation, PDT is associated with an intrinsic first level of selectivity. However, since PDT agents also accumulate in the surrounding, healthy tissue and since it is practically very challenging to only expose the tumor site to light, some side effects can be observed. Consequently, there is a need for a selective drug delivery system, which would give a second level of selectivity. In this work, a dual tumor targeting approach is presented based on mesoporous silica nanoparticles, which act by the enhanced permeability and retention effect, and the conjugation to folic acid, which acts as a targeting moiety for folate receptor-overexpressed cancer cells. The conjugates were found to be nontoxic in noncancerous human normal lung fibroblast cells while showing a phototoxic effect upon irradiation at 480 or 540 nm in the low nanomolar range in folate receptor overexpressing cancerous human ovarian carcinoma cells, demonstrating their potential for cancer targeted treatment.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University, Paris 75005, France
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid E-28933, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid E-28933, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid E-28933, Spain
| | - Gilles Gasser
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University, Paris 75005, France
| |
Collapse
|
41
|
Cirri D, Landini I, Massai L, Mini E, Maestrelli F, Messori L. Cyclodextrin Inclusion Complexes of Auranofin and Its Iodido Analog: A Chemical and Biological Study. Pharmaceutics 2021; 13:pharmaceutics13050727. [PMID: 34063389 PMCID: PMC8155929 DOI: 10.3390/pharmaceutics13050727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/25/2023] Open
Abstract
Auranofin (AF) and its iodido analog, i.e., Au(PEt3) I (AFI), were reported to exhibit very promising anticancer properties both in vitro and in vivo. However, both these gold compounds have a scarce aqueous solubility that hampers their pharmaceutical use. Here, we explore whether encapsulation of these metallodrugs inside hydroxypropyl-beta–cyclodextrin (HPβ–CD) may lead to an improved biopharmaceutical profile for the resulting adducts. Phase solubility studies, performed at 25 °C in an aqueous buffer, revealed, in both cases, the formation of a 1:1 drug to cyclodextrin complex; a far greater apparent stability constant (K1:1) was measured for AFI compared to AF (331 M−1 versus ca. 30 M−1). NMR studies conducted on the AFI/HPβ–CD system confirmed the formation of a stable 1:1 adduct. Then, binary systems of AF and AFI with HPβ–CD were prepared by colyophilization and characterized by DSC and PXRD. The results revealed the occurrence of drug complexation and/or amorphization for the AFI/HPβ–CD binary system. Afterwards, the antiproliferative properties of the two cyclodextrin adducts and of the corresponding free drugs were comparatively evaluated in vitro in three representative ovarian cancer cell lines, i.e., A2780, SKOV3, and IGROV-1. The results, in all cases, point out that CD complexation of the two gold drugs does not substantially affect their biological activity. The implications of these findings are discussed in the frame of the current knowledge of AF and its analogs.
Collapse
Affiliation(s)
- Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy;
| | - Ida Landini
- Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Lara Massai
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
- Correspondence: (E.M.); (F.M.); (L.M.)
| | - Francesca Maestrelli
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
- Correspondence: (E.M.); (F.M.); (L.M.)
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy;
- Correspondence: (E.M.); (F.M.); (L.M.)
| |
Collapse
|
42
|
Nahari G, Hoffman RE, Tshuva EY. From medium to endoplasmic reticulum: Tracing anticancer phenolato titanium(IV) complex by 19F NMR detection. J Inorg Biochem 2021; 221:111492. [PMID: 34051630 DOI: 10.1016/j.jinorgbio.2021.111492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023]
Abstract
Titanium(IV) complexes of diaminobis(phenolato)-bis(alkoxo) ligands are promising anticancer drugs, showing marked in-vivo efficacy with no toxic side-effects in mice, hence, it is of interest to elucidate their mechanism of action. Herein, we employed a fluoro-substituted derivative, FenolaTi, for mechanistic analysis of the active species and its cellular target by quantitative 19F NMR detection to reveal its biodistribution and reactivity in extracellular and intracellular matrices. Upon administration to the serum-containing medium, FenolaTi interacted with bovine serum albumin. 20 h post administration, the cellular accumulation of FenolaTi derivatives was estimated as 37% of the administered compound, in a concentration three orders-of-magnitude higher than the administered dose, implying that active membrane transportation facilitates cellular penetration. An additional 19% of the administered dose that was detected in the extracellular environment had originated from post-apoptotic cells. In the cell, interaction with cellular proteins was detected. Although some intact Ti(IV) complex localized in the nucleus, no signals for isolated DNA fractions were detected and no reactivity with nuclear proteins was observed. Interestingly, higher accumulation of FenolaTi-derived compounds in the endoplasmic reticulum (ER) and interaction with proteins therein were detected, supporting the role of the ER as a possible target for cytotoxic bis(phenolato)-bis(alkoxo) Ti(IV) complexes.
Collapse
Affiliation(s)
- Gilad Nahari
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Roy E Hoffman
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
43
|
pH-Responsive Release of Ruthenium Metallotherapeutics from Mesoporous Silica-Based Nanocarriers. Pharmaceutics 2021; 13:pharmaceutics13040460. [PMID: 33800647 PMCID: PMC8067187 DOI: 10.3390/pharmaceutics13040460] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
Ruthenium complexes are attracting interest in cancer treatment due to their potent cytotoxic activity. However, as their high toxicity may also affect healthy tissues, efficient and selective drug delivery systems to tumour tissues are needed. Our study focuses on the construction of such drug delivery systems for the delivery of cytotoxic Ru(II) complexes upon exposure to a weakly acidic environment of tumours. As nanocarriers, mesoporous silica nanoparticles (MSN) are utilized, whose surface is functionalized with two types of ligands, (2-thienylmethyl)hydrazine hydrochloride (H1) and (5,6-dimethylthieno[2,3-d]pyrimidin-4-yl)hydrazine (H2), which were attached to MSN through a pH-responsive hydrazone linkage. Further coordination to ruthenium(II) center yielded two types of nanomaterials MSN-H1[Ru] and MSN-H2[Ru]. Spectrophotometric measurements of the drug release kinetics at different pH (5.0, 6.0 and 7.4) confirm the enhanced release of Ru(II) complexes at lower pH values, which is further supported by inductively coupled plasma optical emission spectrometry (ICP-OES) measurements. Furthermore, the cytotoxicity effect of the released metallotherapeutics is evaluated in vitro on metastatic B16F1 melanoma cells and enhanced cancer cell-killing efficacy is demonstrated upon exposure of the nanomaterials to weakly acidic conditions. The obtained results showcase the promising capabilities of the designed MSN nanocarriers for the pH-responsive delivery of metallotherapeutics and targeted treatment of cancer.
Collapse
|
44
|
Wu H, Hu S, Nie C, Zhang J, Tian H, Hu W, Shen T, Wang J. Fabrication and characterization of antibacterial epsilon-poly-L-lysine anchored dicarboxyl cellulose beads. Carbohydr Polym 2021; 255:117337. [DOI: 10.1016/j.carbpol.2020.117337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
|
45
|
Tyszka-Czochara M, Adach A, Grabowski T, Konieczny P, Pasko P, Ortyl J, Świergosz T, Majka M. Selective Cytotoxicity of Complexes with N,N,N-Donor Dipodal Ligand in Tumor Cells. Int J Mol Sci 2021; 22:ijms22041802. [PMID: 33670389 PMCID: PMC7917659 DOI: 10.3390/ijms22041802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
The present article demonstrates selective cytotoxicity against cancer cells of the complexes [Co(LD)2]I2∙CH3OH (1), [CoLD(NCS)2] (2) and [VOLD(NCS)2]∙C6H5CH3 (3) containing the dipodal tridentate ligand LD = N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)amine), formed in situ. All tested complexes expressed greater anticancer activities and were less toxic towards noncancerous cells than cisplatin. Cobalt complexes (1 and 2) combined high cytotoxicity with selectivity towards cancer cells and caused massive tumour cell death. The vanadium complex (3) induced apoptosis specifically in cancer cells and targeted proteins, controlling their invasive and metastatic properties. The presented experimental data and computational prediction of drug ability of coordination compounds may be helpful for designing novel and less toxic metal-based anticancer species with high specificities towards tumour cells.
Collapse
Affiliation(s)
| | - Anna Adach
- Institute of Chemistry, Jan Kochanowski University, 25-406 Kielce, Poland;
| | | | - Paweł Konieczny
- Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (P.K.); (M.M.)
| | - Paweł Pasko
- Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland;
- Photo HiTech Ltd., Life Science Park, Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Tomasz Świergosz
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland;
| | - Marcin Majka
- Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (P.K.); (M.M.)
| |
Collapse
|
46
|
Gao H, Liu X, Yu X, Xu N, Chen X, Wang Y, Zhou D. Application of Nano-Carbon Tracing Technology in Thyroid Cancer and Its Relationship with Cytotoxic T Lymphocyte Antigen 4 Gene Polymorphism. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:949-954. [PMID: 33183429 DOI: 10.1166/jnn.2021.18635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The most common malignant tumor of the human endocrine system is thyroid cancer, most used surgical treatment for thyroid cancer is total thyroidectomy with central lymph node dissection. However, surgery and thorough lymph node dissection can easily damage the parathyroid glands and cause corresponding surgery. Symptoms such as permanent hyperparathyroidism, nano-carbon is a common type of new lymphoid tissue tracer, it is mainly used to trace lymphoid tissue in tumor surgery. With the continuous advancement of surgical technology, more and more scholars have used nano-carbon to trace lymphoid tissue during thyroid cancer surgery, and have achieved good results. The results of this study show that thyroid cancer surgery with nano-carbon to negatively develop the parathyroid glands significantly reduces the incidence of serum PTH and blood calcium decline, and largely protects the parathyroid glands. Practice has also shown that the use of nano-carbon tracers is more thorough in lymph node dissection than thyroid cancer surgery without nano-carbon tracers.
Collapse
Affiliation(s)
- Hengyuan Gao
- Department of Thyroid & Breast Surgery, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong Province, China
| | - Xinjie Liu
- Department of Thyroid & Breast Surgery, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong Province, China
| | - Xiaofang Yu
- Department of General Surgery, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong Province, China
| | - Nan Xu
- Department of Thyroid & Breast Surgery, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong Province, China
| | - Xiaobing Chen
- Department of General Practice, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong Province, China
| | - Yue Wang
- Department of Thyroid & Breast Surgery, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong Province, China
| | - Dongxian Zhou
- Department of Thyroid & Breast Surgery, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong Province, China
| |
Collapse
|
47
|
Karim S, Mukherjee S, Mahapatra S, Parveen R, Das D. Green facile synthesis to develop nanoscale coordination polymers as lysosome-targetable luminescent bioprobes. Biomater Sci 2021; 9:124-132. [PMID: 33107498 DOI: 10.1039/d0bm01328e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new coordination polymers (CPs), namely [{M(HL)(L)(H2O)}(ClO4)(H2O)]∞ (M = Zn for CP 1, Mn for CP 2, Cu for CP 3) were synthesized to explore their efficacy as lysosome-targetable luminescent bioprobes. The synthesized CPs were characterized by techniques including single-crystal X-ray analysis, FTIR spectroscopy and elemental analysis. Single-crystal analysis revealed the formation of iso-structural CPs displaying distorted adamantoid topology developed by bridging ligands and H-bonds connections and metals at the nodes. A green hand-grinding technique with a mortar and pestle resulted in nanoscale coordination polymers (NCPs) suitable for cell permeability and was further confirmed by SEM and DLS analyses. Two of these hand-ground nanoscale coordination polymers NCP 1 and NCP 2 showed excellent green luminescence and were explored as potential and selective long-time biotrackers towards lysosome using the human lung carcinoma cell line (A549). Strikingly, the developed bioprobe displayed excellent bio-availability, photostability and excellent selectivity towards lysosomes sustained by various in vitro cell imaging experiments. Moreover, the long-term probing ability of these NCPs turned out to be better than the commercially available lysosome tracker i.e. LysoTracker Red, indicating their potential real-life application in bio-imaging. To the best ofour knowledge, this is the first example of nonexpensive and less toxic essential transition metal-based nanoscale coordination polymers that can behave as effective lysosome-targetable luminescent bioprobes.
Collapse
Affiliation(s)
- Suhana Karim
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700109, India.
| | | | | | | | | |
Collapse
|
48
|
Xie P, Wang Y, Wei D, Zhang L, Zhang B, Xiao H, Song H, Mao X. Nanoparticle-based drug delivery systems with platinum drugs for overcoming cancer drug resistance. J Mater Chem B 2021; 9:5173-5194. [PMID: 34116565 DOI: 10.1039/d1tb00753j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum drugs are commonly used in cancer therapy, but their therapeutic outcomes have been significantly compromised by the drug resistance of cancer cells. To this end, intensive efforts have been made to develop nanoparticle-based drug delivery systems for platinum drugs, due to their multifunctionality in delivering drugs, in modulating the tumor microenvironment, and in integrating additional genes, proteins, and small molecules to overcome chemoresistance in cancers. To facilitate the clinical application of these promising nanoparticle-based platinum drug delivery systems, this paper summarizes the common mechanisms for chemoresistance towards platinum drugs, the advantages of nanoparticles in drug delivery, and recent strategies of nanoparticle-based platinum drug delivery. Furthermore, we discuss how to design delivery platforms more effectively to overcome chemoresistance in cancers, thereby improving the efficacy of platinum-based chemotherapy.
Collapse
Affiliation(s)
- Peng Xie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Bin Zhang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| | - Xinzhan Mao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
49
|
Boztepe T, Scioli-Montoto S, Ruiz ME, Alvarez VA, Castro GR, León IE. 8-Hydroxyquinoline platinum( ii) loaded nanostructured lipid carriers: synthesis, physicochemical characterization and evaluation of antitumor activity. NEW J CHEM 2021. [DOI: 10.1039/d0nj03940c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among nanosystems, nanostructured lipid carriers (NLC) are one of the most promising carriers for drug delivery.
Collapse
Affiliation(s)
- T. Boztepe
- Laboratorio de Nanobiomateriales
- CINDEFI – Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata-CONICET (CCT La Plata)
- B1900AJL La Plata
| | - S. Scioli-Montoto
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB)
- Departamento de Ciencias Biológicas
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata (UNLP)
- La Plata
| | - M. E. Ruiz
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB)
- Departamento de Ciencias Biológicas
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata (UNLP)
- La Plata
| | - V. A. Alvarez
- Materiales Compuestos Termoplásticos (CoMP)
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)
- CONICET-Universidad Nacional de Mar del Plata (UNMdP)
- Mar del Plata 7600
- Argentina
| | - G. R. Castro
- Laboratorio de Nanobiomateriales
- CINDEFI – Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata-CONICET (CCT La Plata)
- B1900AJL La Plata
| | - I. E. León
- Centro de Química Inorgánica
- CEQUINOR (CONICET-UNLP)
- La Plata
- Argentina
| |
Collapse
|
50
|
Ferreira BL, Martel F, Silva C, Santos T, Daniel-da-Silva A. Nanostructured functionalized magnetic platforms for the sustained delivery of cisplatin: Synthesis, characterization and in vitro cytotoxicity evaluation. J Inorg Biochem 2020; 213:111258. [DOI: 10.1016/j.jinorgbio.2020.111258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023]
|