1
|
You S, Shi W, Ouyang R, Wang Y, Shi X. Synthesis of bis(oxazoline)-based rare-earth metal complexes and their catalytic performance in the polymerization of isoprene and polar ortho-methoxystyrene. Dalton Trans 2024; 53:10563-10570. [PMID: 38853527 DOI: 10.1039/d4dt01036a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A series of bis(oxazoline) rare-earth metal dialkyl complexes [(L)Ln(CH2SiMe3)2(THF)n] (L = L1 (dimethyl-substituted bis(oxazoline) ligand), Ln = Y (1-Y), Lu (1-Lu), Sc (1-Sc), n = 1; L = L2 (phenyl-substituted bis(oxazoline) ligand), Ln = Y (2-Y), Lu (2-Lu), Sc (2-Sc), n = 2) was successfully prepared. NMR spectroscopy and X-ray diffraction indicated that all the complexes ligated with a C2 symmetric bis(oxazoline) and two trimethylsilylmethyl ligands. In the presence of borate and triisobutyl aluminium, these complexes exhibited high catalytic activity for the polymerization of isoprene, yielding the polymer with high cis-1,4-regularity (up to 99.9%) and high molecular weight. Moreover, these ternary catalytic systems also served as efficient initiators for the polymerization of polar ortho-methoxystyrene. However, atactic polymers in all the cases were isolated despite the C2 symmetric geometry of bis(oxazoline) ligands.
Collapse
Affiliation(s)
- Shuhao You
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China.
| | - Wenyu Shi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China.
| | - Ruoxue Ouyang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China.
| | - Yang Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China.
| | - Xiaochao Shi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China.
| |
Collapse
|
2
|
Huang D, Liu W, Zheng Y, Feng R, Chai Z, Wei J, Zhang WX. Nonplanar Aromaticity of Dinuclear Rare-Earth Metallacycles. J Am Chem Soc 2024; 146:15609-15618. [PMID: 38776637 DOI: 10.1021/jacs.4c04683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
While the concept of metalla-aromaticity has well been extended to transition organometallic compounds in diverse geometries, aromatic rare-earth organometallic complexes are rare due to the special (n - 1)d0 configuration and high-lying (n - 1)d orbitals of rare-earth centers. In particular, nonplanar cases of rare-earth complexes have not been reported so far. Here, we disclose the nonplanar aromaticity of dinuclear scandium and samarium metallacycles characterized by various aromaticity indices (nucleus-independent chemical shift, isochemical shielding surface, anisotropy of induced current density, and isomerization stabilization energy). Bonding analyses (Kohn-Sham molecular orbital, adaptive natural density partitioning, multicenter bond indices, and principal interacting orbital) reveal that three delocalized π orbitals, predominantly contributed by the 2-butene tetraanion ligand, result in the formation of six-electron conjugated systems. Guided by these findings, we predicted that the lutetium and gadolinium analogues of dinuclear rare-earth metallacycles should be aromatic, which have been verified by the successful synthesis of real molecules. This work extends the concept of nonplanar aromaticity to the field of rare-earth metallacycles and illuminates the path for designing and synthesizing various rare-earth metalla-aromatics.
Collapse
Affiliation(s)
- Dajiang Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengqi Chai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Zou H, Wang Z, Guo D, Zhang L, Wang S, Zhu X. Synthesis and catalytic activity of tetradentate β-diketiminato rare-earth metal monoalkyl complexes in tandem Oppenauer oxidation and cross-aldol condensation. Dalton Trans 2023; 53:267-275. [PMID: 38038403 DOI: 10.1039/d3dt03374k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A series of unsymmetric tetradentate β-diketiminato rare-earth metal monoalkyl complexes were synthesized, and their catalytic behavior has been well developed. Indole-incorporated β-diketiminato proligands H2L (L = MeC(NDipp)CHC(Me)NCH2CH2-3-(1-R-C8H4N), R = CH2-(2-C4H7O), L1; R = (CH2)2OMe, L2; Dipp = 2,6-iPr2C6H3) were prepared by the reaction of an arylamino-enone with 1-substituted-tryptamine in good yields. Treatment of the proligands with the rare-earth metal trialkyl complexes RE(CH2SiMe3)3(THF)2 generated the corresponding unsymmetric N,N,C,O-tetradentate β-diketiminato rare-earth metal monoalkyl complexes LRE(CH2SiMe3) (L1, RE = Y (1a), Gd (1b), Yb (1c), Lu (1d); L2, RE = Y (2a), Gd (2b), Yb (2c), and Lu(2d)). During the process, the activation of the sp2 C-H bond at the 2-position of the indole ring led to the formation of an unprecedented β-diketiminato dianion L2-, bonding to the rare-earth metal ions in a chelating N,N,C,O-tetradentate manner. Further studies indicated that these tetradentate rare-earth metal complexes could initiate the Oppenauer oxidation of secondary alcohols into the corresponding ketones in high yields. In the case of primary alcohols, a tandem Oppenauer oxidation and cross-aldol condensation occurred unexpectedly. Various α-mono-substituted benzylidene acetones, α,α'-bis-substituted benzylidene acetones and cyclohexanones were obtained under mild conditions only by controlling the molar ratio of alcohols to ketones. Notably, all these alkenylation ketones exhibited exclusive E configuration.
Collapse
Affiliation(s)
- Haiyan Zou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Ziqian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Dianjun Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Lijun Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xiancui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| |
Collapse
|
4
|
Videa H, Martínez-Martínez AJ. Revealing unbound β-diketiminate anions: structural dynamics from caesium complexes. Dalton Trans 2023; 52:13058-13062. [PMID: 37335258 DOI: 10.1039/d3dt01592k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
This study reports the first structural elucidation of β-diketiminate anions (BDI-), known for strong coordination, in their unbound form within caesium complexes. β-Diketiminate caesium salts (BDICs) were synthesised, and upon the addition of Lewis donor ligands, free BDI- anions and donor-solvated Cs+ cations were observed. Notably, the liberated BDI- anions exhibited an unprecedented dynamic cisoid-transoid exchange in solution.
Collapse
Affiliation(s)
- Hellen Videa
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva ES-21007, Spain.
| | - Antonio J Martínez-Martínez
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus El Carmen, Huelva ES-21007, Spain.
| |
Collapse
|
5
|
Low-Coordinate Mixed Ligand NacNac Complexes of Rare Earth Metals. Molecules 2023; 28:molecules28041994. [PMID: 36838980 PMCID: PMC9965685 DOI: 10.3390/molecules28041994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
We report the synthesis and characterization of two types of new mixed-ligand rare earth complexes: tetracoordinate (NacNacMes)Ln(BIANdipp) (Ln = Dy (1), Er (2) and Y (3)) and pentacoordinate (NacNacMes)Ln(APdipp)(THF) (Ln = Dy (4), Er (5) and Y (6)). The first three compounds were prepared by the reaction of [(BIANDipp)LnI] with potassium β-diketiminate. The salt metathesis of β-diketiminato-supported rare earth dichlorides (NacNacMes)LnCl2(THF)2 with sodium o-amidophenolate results in compounds 4-6. The crystal structures of complexes 1-6 were determined by single-crystal analysis. The combination of bulky monoanionic N-mesityl-substituted β-diketiminates with sterically hindered redox-active ligands led to the very low coordination numbers of rare earths and strong distortion of the chelate ligands.
Collapse
|
6
|
Pan Y, Jiang X, Kang X, Hou X, Wan C, Song X, Leung WH, So YM. Flexible Coordination of the Bis(amino-oxazoline) Ligand in Rare-Earth Metal Complexes: Synthesis, Structure, and Their Reactivity and Polymerization Performance. Inorg Chem 2022; 61:18828-18841. [DOI: 10.1021/acs.inorgchem.2c02057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yu Pan
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-textiles, Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xinxin Jiang
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xin Hou
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Chunteng Wan
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xuezhi Song
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Wa-Hung Leung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yat-Ming So
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Synthesis and characterization of Bis(β‐diketiminato) rare‐earth amido complexes, their activity for catalytic addition of amines to carbodiimides. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Zhu X, Wang Z, Zha L, Zhang Y, Qi Y, Yuan Q, Zhou S, Wang S. Synthesis and Characterization of N, N, C and N, N, O Tridentate β-Diketiminato Rare-Earth Metal Alkyl Complexes and Their Catalytic Performances on the Dimerization of Aldehydes or Terminal Alkynes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiancui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Ziqian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Ling Zha
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yiwei Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yawen Qi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
9
|
Mou Z, Xing F, Gu J. Halogenated
β‐diketiminato
magnesium complexes: Preparation, characterization, and catalysis for ring‐opening polymerization of aliphatic lactones. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zehuai Mou
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering Ningbo University Ningbo Zhejiang China
| | - Fangyu Xing
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering Ningbo University Ningbo Zhejiang China
| | - Jialu Gu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering Ningbo University Ningbo Zhejiang China
| |
Collapse
|
10
|
Zhu X, He J, Yang Y, Zhou S, Wei Y, Wang S. Synthesis of rare-earth metal complexes with a morpholine-functionalized β-diketiminato ligand and their catalytic activities towards C–O and C–N bond formation. Dalton Trans 2022; 51:13227-13235. [DOI: 10.1039/d2dt02053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unusual tridentate β-diketiminato rare-earth metal chlorides LRECl(µ-Cl)2Li(THF)2 (RE = Y (1a), Yb (1b), Lu (1c); L = MeC(NDipp)CHC(Me)N(CH2)2NC4H8O; Dipp = 2,6-iPr2C6H3) and the corresponding dialkyl complexes LRE(CH2SiMe3)2 (RE = Y...
Collapse
|
11
|
Huang Z, Wang R, Sheng T, Zhong X, Wang S, Zhu X, Yuan Q, Wei Y, Zhou S. Transformation of the sp 2 Carbanion to Carbene with Subsequent 1,1-Migratory Insertion and Nucleophilic Substitution in Rare-Earth Metal Chemistry. Inorg Chem 2021; 60:18843-18853. [PMID: 34846129 DOI: 10.1021/acs.inorgchem.1c02589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of Fischer-type electrophilic carbene chemistry with early transition metals has been a great challenge due to the fact that such metals in their high oxidation states lack the d electrons to stabilize the electrophilic carbene. Herein, we disclose the first experimental and theoretical findings of in situ transformation of an sp2 carbanion to a Fischer-type electrophilic carbene with rare-earth metals in their high oxidation state with a d0 electron via electron transfer. The carbene may undergo 1,1-migratory insertion into an adjacent RE-C(sp3) bond, and an unprecedented ring opening of the indole ring of the ligand occurs when the carbenes undergo nucleophilic substitution with a special organolithium reagent o-Me2NC6H4CH2Li. The key to success is the uniquely tailored novel ligand systems featuring a suitable conjugate building block (-C═C-C═N) bearing an sp2 carbanion connected to the rare-earth metal center.
Collapse
Affiliation(s)
- Zeming Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Ruru Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Tian Sheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Xiangyang Zhong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China.,Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xiancui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Yun Wei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| |
Collapse
|
12
|
Rad'kova NY, Kovylina TA, Cherkasov AV, Lyssenko KA, Ob'edkov AM, Trifonov AA. Coordination Features of the 1,3,5‐Triazapentadienyl Ligand in Alkyl Complexes of Rare‐Earth Metals. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Natalia Yu. Rad'kova
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP-445 603950 Nizhny Novgorod Russia
| | - Tatyana A. Kovylina
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP-445 603950 Nizhny Novgorod Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP-445 603950 Nizhny Novgorod Russia
| | - Konstantin A. Lyssenko
- Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova Street 28 119334 Moscow Russia
- M.V. Lomonosov Moscow State University Chemistry Department Leninskie Gory 119991 Moscow Russia
| | - Anatoly M. Ob'edkov
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP-445 603950 Nizhny Novgorod Russia
| | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP-445 603950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova Street 28 119334 Moscow Russia
| |
Collapse
|
13
|
Marlier EE, Seong CM, Brunclik SA, Nevins MH, Nolan EL, Olson AK, Osnaya M, Reuter A, Swanson ME, Wood OG, Janzen DE. Synthesis and structures of a family of hybrid donor N2P2 beta-diketiminate zinc complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Synthesis and structural characterization of lanthanide monoborohydride complexes supported by 2-tertbutylphenyl substituted β-diketiminate, and their application in the ring-opening polymerization of lactide. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Sheng W, Xu X, Zhou S, Zhang X, Huang Z, Du J, Zhang L, Wei Y, Zhu X, Cui P, Wang S. Synthesis and Reactivity of NNNNN-Pincer Multidentate Pyrrolyl Rare-Earth-Metal Amido-Chloride or Dialkyl Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weiming Sheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Xiaolong Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Shuangliu Zhou
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Xiuli Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Zeming Huang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Jun Du
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Lijun Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Yun Wei
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Xiancui Zhu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Peng Cui
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Shaowu Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
- Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People’s Republic of China
| |
Collapse
|
16
|
Liu X, Xiang L, Wang C, Wang B, Leng X, Chen Y. Divalent Ytterbium Iodide Supported by β‐Diketiminato Based Tridentate Ligand: Synthesis, Structure and Small Molecule Activation
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaojuan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Li Xiang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Chen Wang
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
17
|
Vasanthakumar A, Emslie DJ, Britten JF. Alkyl yttrium complexes of doubly cyclometallated xanthene- and naphthalene-backbone bis(phosphinimine) ligands. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Pan Y, Li W, Wei NN, So YM, Li Y, Jiang K, He G. Anilido-oxazoline-ligated rare-earth metal complexes: synthesis, characterization and highly cis-1,4-selective polymerization of isoprene. Dalton Trans 2019; 48:3583-3592. [PMID: 30681102 DOI: 10.1039/c8dt04647f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anilido-oxazoline-ligated rare-earth metal dialkyl complexes have been synthesized and structurally characterized. The complexes exhibited strong fluorescence emissions and good catalytic performance on isoprene polymerization with high cis-1,4-selectivity. The treatment of anilido-oxazoline precursors ortho-C6H4[NH(2,6-R12C6H3)][C[double bond, length as m-dash]NC(R2,R3)CH2O] (R1 = R2 = R3 = Me (HL1); R1 = iPr, R2 = R3 = Me (HL2); R1 = R2 = iPr, R3 = H (HL3); and R1 = iPr, R2 = R3 = H (HL4)) with an equimolar amount of Ln(CH2SiMe3)3(THF)2 (Ln = Sc, Y) afforded rare-earth metal complexes L1-4-Ln(CH2SiMe3)2(THF)n (L1-Sc (1), n = 1; L2-Sc (2), n = 0; L1-Y (3), n = 1; L2-Y (4), n = 1; L3-Y (5), n = 1; and L4-Y (6), n = 1) in good yields. The complexes are stable in both the solid state and solution. Single crystal X-ray diffraction study showed that complexes 1, 3 and 4 exhibit a distorted trigonal bipyramidal configuration, while complex 2 is pseudo-tetrahedral without coordinated THF. The luminescence properties of complexes 1-4 were investigated and the emission maxima were found in the range of 465-477 nm. DFT and TD-DFT studies were carried out to explore their characteristic electronic structures and gain insight into their optical properties. Upon activation with organic borates, the reported complexes exhibited high activity and cis-1,4-selectivity for isoprene polymerization. The nature of the central metal and substituent groups in oxazoline have an influence on the cis-1,4-selectivity.
Collapse
Affiliation(s)
- Yu Pan
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ying H, Gong M, Pi C. Generation and reactivity of neutral 1,3-benzazaphosphole and anionic 1,3-benzazaphospholide ytterbium(iii) complexes. Dalton Trans 2019; 48:2722-2729. [PMID: 30720828 DOI: 10.1039/c8dt04768e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of Cp3Ln (Ln = Yb, Y) with 5-R3-6-R1-2-R2-1H-1,3-benzazaphosphole (HBp) (HBp1 (1a): R1 = H, R2 = 2,4,6-Me3C6H2, R3 = Me; HBp2(1b): R1 = Me, R2 = C6H5, R3 = H; HBp3(1c): R1 = R3 = H, R2 = C6H5) at room temperature gives the crystalline 1 : 1 Lewis acid-base adducts [(η1(p)-HBp)LnCp3] (2a-d) [Ln = Yb: Bp = Bp1 (2a), Bp2 (2b), Bp3 (2c); Ln = Y: Bp2 (2d)] with Ln-P donor bonds in good yields. Heating 2a-c in toluene leads to the liberation of one molecule of CpH to afford the corresponding N-bonded complexes [Cp2YbBp] (Bp = Bp1 (3a), Bp2 (3b), Bp3 (3c)). Interestingly, the P atom of complexes 3a-c can also be further coordinated to another Lewis acid such as Cp3Yb and B(C6F5)3 to give the adducts [Cp2Yb(μ-η1(N):η2(C,C):η1(P)-Bp)YbCp3] (Bp = Bp1 (4a), Bp2 (4b), Bp3 (4c)) and [Cp2Yb(μ-η1(N):η2(C,C):η1(P)-Bp)B(C6F5)3] (Bp = Bp1 (5a), Bp2 (5b), Bp3 (5c)), respectively. The molecular structures of complexes 2a, 4b-4c and 5c are confirmed by X-ray diffraction analysis.
Collapse
Affiliation(s)
- Huacheng Ying
- School of Material and Chemical Engineering, Qianjiang College, Hangzhou Normal University, Xuelin Street 16, Hangzhou, Zhejiang Province 310036, China.
| | | | | |
Collapse
|
20
|
Yao T, Xu P, Xu X. Scandium complexes containing β-diketiminato ligands with pendant phosphanyl groups: competition between Sc/γ-C [4 + 2] cycloaddition and Sc/P frustrated Lewis pair reactions. Dalton Trans 2019; 48:7743-7754. [DOI: 10.1039/c9dt01035a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Scandium complexes based on β-diketimine bearing a phosphanyl group show divergent reaction pathways toward phenyl isocyanate, namely Sc/γ-C [4 + 2] cycloaddition and Sc/P FLP reactions.
Collapse
Affiliation(s)
- Tu Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- 215123 Suzhou
| | - Pengfei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- 215123 Suzhou
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- 215123 Suzhou
| |
Collapse
|
21
|
Krieck S, Kalden D, Oberheide A, Seyfarth L, Arndt HD, Görls H, Westerhausen M. Synthesis and catalytic activity of tridentate N-(2-pyridylethyl)-substituted bulky amidinates of calcium and strontium. Dalton Trans 2019; 48:2479-2490. [DOI: 10.1039/c8dt04905j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sterically protected tridentate amidinates of calcium have been prepared to study the intramolecular hydroamination of an aminoalkene.
Collapse
Affiliation(s)
- Sven Krieck
- Institute of Inorganic and Analytical Chemistry
- Friedrich Schiller University
- 07743 Jena
- Germany
| | - Diana Kalden
- Institute of Inorganic and Analytical Chemistry
- Friedrich Schiller University
- 07743 Jena
- Germany
| | - Ansgar Oberheide
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University
- 07743 Jena
- Germany
| | - Lydia Seyfarth
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University
- 07743 Jena
- Germany
| | - Hans-Dieter Arndt
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University
- 07743 Jena
- Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry
- Friedrich Schiller University
- 07743 Jena
- Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry
- Friedrich Schiller University
- 07743 Jena
- Germany
| |
Collapse
|
22
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Wang C, Mao W, Xiang L, Yang Y, Fang J, Maron L, Leng X, Chen Y. Monomeric Rare-Earth Metal Silyl-Thiophosphinoyl-Alkylidene Complexes: Synthesis, Structure, and Reactivity. Chemistry 2018; 24:13903-13917. [DOI: 10.1002/chem.201802791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Wang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Weiqing Mao
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Li Xiang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Yan Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization; Gansu Province School of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Jian Fang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization; Gansu Province School of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Laurent Maron
- LPCNO, CNRS, & INSA; Université Paul Sabatier; 135 Avenue de Rangueil 31077 Toulouse France
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| |
Collapse
|
24
|
Feng G, Du C, Xiang L, del Rosal I, Li G, Leng X, Chen EYX, Maron L, Chen Y. Side Arm Twist on Zn-Catalyzed Hydrosilylative Reduction of CO2 to Formate and Methanol Equivalents with High Selectivity and Activity. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01033] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guoqin Feng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Chongyang Du
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Li Xiang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Iker del Rosal
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Guangyu Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Eugene Y.-X. Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
25
|
Chand K, Tsai C, Chen H, Ching W, Hsu S, Carey JR, Hsu SCN. Improved Synthesis of Unsymmetrical
N
‐Aryl‐
N′
‐alkylpyridyl ß‐Diketimines Using Molecular Sieves and their Lithium Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kuldeep Chand
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 807 Kaohsiung Taiwan
| | - Cheng‐Long Tsai
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 807 Kaohsiung Taiwan
| | - Hsuan‐Ying Chen
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 807 Kaohsiung Taiwan
| | - Wei‐Min Ching
- Instrumentation Center National Taiwan Normal University 11677 Department of Chemistry Taiwan
| | - Sung‐Po Hsu
- Department of Physiology School of Medicine College of Medicine Taipei Medical University 110 Taipei Taiwan
| | - James R. Carey
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 807 Kaohsiung Taiwan
- Department of Applied Chemistry National University of Kaohsiung 804 Kaohsiung Taiwan
| | - Sodio C. N. Hsu
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 807 Kaohsiung Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital 807 Kaohsiung Taiwan
| |
Collapse
|
26
|
Beattie RJ, Sutton AD, Scott BL, Clark DL, Kiplinger JL, Gordon JC. Lutetium functionalities supported by a sterically encumbered β-diketiminate ligand. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.12.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Beh DW, Piers WE, del Rosal I, Maron L, Gelfand BS, Gendy C, Lin JB. Scandium alkyl and hydride complexes supported by a pentadentate diborate ligand: reactions with CO2 and N2O. Dalton Trans 2018; 47:13680-13688. [DOI: 10.1039/c8dt03313g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Alkyl and hydrido scandium complexes of the dianionic pentadentate ligand B2Pz4Py are reported.
Collapse
Affiliation(s)
- Daniel W. Beh
- Department of Chemistry
- University of Calgary
- Calgary
- Canada
| | | | | | | | | | - Chris Gendy
- Department of Chemistry
- University of Calgary
- Calgary
- Canada
| | - Jian-Bin Lin
- Department of Chemistry
- University of Calgary
- Calgary
- Canada
| |
Collapse
|
28
|
Zhu X, Li Y, Guo D, Wang S, Wei Y, Zhou S. Versatile reactivities of rare-earth metal dialkyl complexes supported by a neutral pyrrolyl-functionalized β-diketiminato ligand. Dalton Trans 2018; 47:3947-3957. [DOI: 10.1039/c7dt04410k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first unprecedented examples of S-β-diketiminato species were disclosed in the reactions of rare-earth dialkyl complexes with S8.
Collapse
Affiliation(s)
- Xiancui Zhu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yang Li
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Dianjun Guo
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yun Wei
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
29
|
Mou Z, Zhuang Q, Xie H, Luo Y, Cui D. Perfectly isoselective polymerization of 2-vinylpyridine promoted by β-diketiminato rare-earth metal cationic complexes. Dalton Trans 2018; 47:14985-14991. [DOI: 10.1039/c8dt03274b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly isotactic poly(2-vinylpyridine)s were produced with rare-earth metal complexes supported by a symmetric β-diketiminate ligand in the presence of borate.
Collapse
Affiliation(s)
- Zehuai Mou
- School of Material Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Qingxiang Zhuang
- School of Material Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Hongyan Xie
- China-Australia Institute for Advanced Materials and Manufacturing
- Jiaxing University
- Jiaxing 314000
- China
| | - Yunjie Luo
- School of Material Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|