1
|
Zhang G, Yu C, Dong Y, Su W, Xue R, Zhang P, Li Y, Wan G, Tang K, Fan X. Self-expanding cellulose sponge with enhanced hemostatic ability by tannic acid/metal ion composite coating for highly effective hemostasis of difficult-to-control bleeding wounds. BIOMATERIALS ADVANCES 2025; 166:214025. [PMID: 39244828 DOI: 10.1016/j.bioadv.2024.214025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Refractory bleeding presents a critical, life-threatening challenge, and the goal of medical professionals and researchers has always been to achieve safe and effective hemostasis for bleeding wounds. In this study, we utilized the benefits of a self-expanding cellulose sponge to control incompressible bleeding, which is achieved this by creating a tannic acid/metal ion coating on the surface and within the pores of the sponge to improve its hemostatic effectiveness. The effects of various types and concentrations of metal ions (calcium, magnesium, iron, and zinc) on hemostatic efficiency and biosafety is systematically investigated. The results from bacteriostasis and in vitro coagulation experiments identified 0.3 wt% Fe3+ as the optimal metal ion coating. Scanning electron microscope energy spectrum analysis confirmed the uniform distribution of Fe3+ within the cellulose sponge. Furthermore, the in vivo and in vitro results demonstrated that the prepared tannic acid/Fe3+ coated composite hemostatic sponge exhibits excellent coagulation ability and biocompatibility. Both the bleeding time and theblood loss in two bleeding models are significantly reduced, showing promising potential for treating extensive surface bleeding and deep penetrating wounds. Furthermore, the straightforward preparation method for this composite hemostatic sponge facilitates additional research towards market application.
Collapse
Affiliation(s)
- Guorui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chuan Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Yi Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Weiguo Su
- Vascular Surgery of Nankai university affiliated NanKai hospital, Tianjin 300110, China
| | - Rong Xue
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Pengcheng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yijin Li
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China.
| | - Xialian Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China; Zhengzhou Aifuen Biotechnology Co., LTD, Zhengzhou 451100, China.
| |
Collapse
|
2
|
Abellanas P, de Andrades D, Alcántara AR, de Lourdes Teixeira de Moraes Polizeli M, Rocha-Martin J, Fernandez-Lafuente R. Optimizing the activation of agarose beads with divinyl sulfone for enzyme immobilization and stabilization. Int J Biol Macromol 2024; 282:136812. [PMID: 39490861 DOI: 10.1016/j.ijbiomac.2024.136812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The focus of the present work is to find the optimal conditions for the activation of agarose beads with divinyl sulfone (DVS). The reactivity of the vinyl sulfone groups in the support was checked by the support capacity to react with ethylamine; via elemental analysis. In addition, trypsin was used as a model enzyme to test the immobilization and stabilization capabilities of the different supports. The higher the pH, the more vinyl sulfone groups are incorporated into the support, but lower reactivity versus ethylamine is observed. Too long activation times led to similar results. A N/S ratio of 1 means that all vinyl sulfone groups were reactive, and it was always lower than tis figure. The N in the support was 50 % of the amount observed for glyoxyl supports activated with ethylenediamine, suggesting the VS polymerization may be a likely explanation for this result. The higher N/S ratio in the support (modified with ethylamine), the higher the obtained stabilization, very likely by the lower polymerization of the vinyl sulfone on the support. We propose 360 mM divinyl sulfone, at pH 11.5 and 2 h as optimal conditions to reach the highest enzyme stabilization by immobilization in this support.
Collapse
Affiliation(s)
- Pedro Abellanas
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Madrid, 28040, Spain
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid, 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
3
|
Elsby MR, Kumar A, Daniels LM, Ertem MZ, Hazari N, Mercado BQ, Paulus AH. Linear Free Energy Relationships Associated with Hydride Transfer From [(6,6'-R 2-bpy)Re(CO) 3H]: A Cautionary Tale in Identifying Hydrogen Bonding Effects in the Secondary Coordination Sphere. Inorg Chem 2024; 63:19396-19407. [PMID: 39344157 DOI: 10.1021/acs.inorgchem.4c03365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Six rhenium hydride complexes, [(6,6'-R2-bpy)Re(CO)3H] (bpy = 2,2'-bipyridine, R = OEt, OMe, NHMe, Me, F, Br), were synthesized. These complexes insert CO2 to form rhenium formate complexes of the type [(6,6'-R2-bpy)Re(CO)3{OC(O)H}]. All the rhenium formate species were characterized using X-ray crystallography, which revealed that the bpy ligand is not coplanar with the metal coordination plane containing the two nitrogen donors of the bpy ligand but tilted. A solid-state structure of [(6,6'-Me2-bpy)Re(CO)3H] determined using MicroED also featured a tilted bpy ligand. The kinetics of CO2 insertion into complexes of the type [(6,6'-R2-bpy)Re(CO)3H] were measured experimentally and the thermodynamic hydricities of [(6,6'-R2-bpy)Re(CO)3H] species were determined using theoretical calculations. A Brønsted plot constructed using the experimentally determined rate constants for CO2 insertion and the calculated thermodynamic hydricities for [(6,6'-R2-bpy)Re(CO)3H] revealed a linear free energy relationship (LFER) between thermodynamic and kinetic hydricity. This LFER is different to the previously determined relationship for CO2 insertion into complexes of the type [(4,4'-R2-bpy)Re(CO)3H]. At a given thermodynamic hydricity, CO2 insertion is faster for complexes containing a 6,6'-substituted bpy ligand. This is likely in part due to the tilting observed for systems with 6,6'-substituted bpy ligands. Notably, the 6,6'-(NHMe)2-bpy ligand could in principle stabilize the transition state for CO2 insertion via hydrogen bonding. This work shows that if only the rate of CO2 insertion into [(6,6'-(NHMe)2-bpy)Re(CO)3H] is compared to [(4,4'-R2-bpy)Re(CO)3H] systems, the increase in rate could be easily attributed to hydrogen bonding, but in fact all 6,6'-substituted systems lead to faster than expected rates.
Collapse
Affiliation(s)
- Matthew R Elsby
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abhishek Kumar
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Lee M Daniels
- Rigaku Oxford Diffraction, The Woodlands, Texas 77381, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alexandra H Paulus
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Pandey P, Ramniwas S, Pandey S, Lakhanpal S, Padmapriya G, Mishra S, Kaur M, Ashraf A, Kumar MR, Khan F. Review to Elucidate the Correlation between Cuproptosis-Related Genes and Immune Infiltration for Enhancing the Detection and Treatment of Cervical Cancer. Int J Mol Sci 2024; 25:10604. [PMID: 39408933 PMCID: PMC11477161 DOI: 10.3390/ijms251910604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Copper is a vital trace element in oxidized and reduced forms. It plays crucial roles in numerous biological events such as redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy, and immune modulation. Maintaining the balance of copper in the body is essential because its deficiency and excess can be harmful. Abnormal copper metabolism has a two-fold impact on the development of tumors and cancer treatment. Cuproptosis is a form of cell death that occurs when there is excessive copper in the body, leading to proteotoxic stress and the activation of a specific pathway in the mitochondria. Research has been conducted on the advantageous role of copper ionophores and chelators in cancer management. This review presents recent progress in understanding copper metabolism, cuproptosis, and the molecular mechanisms involved in using copper for targeted therapy in cervical cancer. Integrating trace metals and minerals into nanoparticulate systems is a promising approach for controlling invasive tumors. Therefore, we have also included a concise overview of copper nanoformulations targeting cervical cancer cells. This review offers comprehensive insights into the correlation between cuproptosis-related genes and immune infiltration, as well as the prognosis of cervical cancer. These findings can be valuable for developing advanced clinical tools to enhance the detection and treatment of cervical cancer.
Collapse
Affiliation(s)
- Pratibha Pandey
- Post Doctoral Department, Eudoxia Research University, New Castle, DE 19808, USA;
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India;
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - G. Padmapriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN Deemed to be University, Bangalore 560069, India;
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur 303121, India;
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur 303012, India;
| | - Ayash Ashraf
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, India;
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam 531162, India;
| | - Fahad Khan
- Center for Global Health Research Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| |
Collapse
|
5
|
Leone L, De Fenza M, Esposito A, Maglio O, Nastri F, Lombardi A. Peptides and metal ions: A successful marriage for developing artificial metalloproteins. J Pept Sci 2024; 30:e3606. [PMID: 38719781 DOI: 10.1002/psc.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 10/12/2024]
Abstract
The mutual relationship between peptides and metal ions enables metalloproteins to have crucial roles in biological systems, including structural, sensing, electron transport, and catalytic functions. The effort to reproduce or/and enhance these roles, or even to create unprecedented functions, is the focus of protein design, the first step toward the comprehension of the complex machinery of nature. Nowadays, protein design allows the building of sophisticated scaffolds, with novel functions and exceptional stability. Recent progress in metalloprotein design has led to the building of peptides/proteins capable of orchestrating the desired functions of different metal cofactors. The structural diversity of peptides allows proper selection of first- and second-shell ligands, as well as long-range electrostatic and hydrophobic interactions, which represent precious tools for tuning metal properties. The scope of this review is to discuss the construction of metal sites in de novo designed and miniaturized scaffolds. Selected examples of mono-, di-, and multi-nuclear binding sites, from the last 20 years will be described in an effort to highlight key artificial models of catalytic or electron-transfer metalloproteins. The authors' goal is to make readers feel like guests at the marriage between peptides and metal ions while offering sources of inspiration for future architects of innovative, artificial metalloproteins.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Yang Z, Wang L, Zhang X, Zhang J, Ren N, Ding L, Wang A, Liu J, Liu H, Yu X. Nitrogen Vacancy Modulation of Tungsten Nitride Peroxidase-Mimetic Activity for Bacterial Infection Therapy. ACS NANO 2024; 18:24469-24483. [PMID: 39172806 DOI: 10.1021/acsnano.4c07856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Bacterial infections claim millions of lives every year, with the escalating menace of microbial antibiotic resistance compounding this global crisis. Nanozymes, poised as prospective substitutes for antibiotics, present a significant frontier in antibacterial therapy, yet their precise enzymatic origins remain elusive. With the continuous development of nanozymes, the applications of elemental N-modulated nanozymes have spanned multiple fields, including sensing and detection, infection therapy, cancer treatment, and pollutant degradation. The introduction of nitrogen into nanozymes not only broadens their application range but also holds significant importance for the design of catalysts in biomedical research. The synergistic interplay between W and N induces pivotal alterations in electronic configurations, endowing tungsten nitride (WN) with a peroxidase-like functionality. Furthermore, the introduction of N vacancies augments the nanozyme activity, thus amplifying the catalytic potential of WN nanostructures. Rigorous theoretical modeling and empirical validation corroborate the genesis of the enzyme activity. The meticulously engineered WN nanoflower architecture exhibits an exceptional ability in traversing bacterial surfaces, exerting potent bactericidal effects through direct physical interactions. Additionally, the topological intricacies of these nanostructures facilitate precise targeting of generated radicals on bacterial surfaces, culminating in exceptional bactericidal efficacy against both Gram-negative and Gram-positive bacterial strains along with notable inhibition of bacterial biofilm formation. Importantly, assessments using a skin infection model underscore the proficiency of WN nanoflowers in effectively clearing bacterial infections and fostering wound healing. This pioneering research illuminates the realm of pseudoenzyme activity and bacterial capture-killing strategies, promising a fertile ground for the development of innovative, high-performance artificial peroxidases.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Xiaoyu Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jian Zhang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| | - Na Ren
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Aizhu Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
7
|
Lin YW. Functional metalloenzymes based on myoglobin and neuroglobin that exploit covalent interactions. J Inorg Biochem 2024; 257:112595. [PMID: 38759262 DOI: 10.1016/j.jinorgbio.2024.112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Globins, such as myoglobin (Mb) and neuroglobin (Ngb), are ideal protein scaffolds for the design of functional metalloenzymes. To date, numerous approaches have been developed for enzyme design. This review presents a summary of the progress made in the design of functional metalloenzymes based on Mb and Ngb, with a focus on the exploitation of covalent interactions, including coordination bonds and covalent modifications. These include the construction of a metal-binding site, the incorporation of a non-native metal cofactor, the formation of Cys/Tyr-heme covalent links, and the design of disulfide bonds, as well as other Cys-covalent modifications. As exemplified by recent studies from our group and others, the designed metalloenzymes have potential applications in biocatalysis and bioconversions. Furthermore, we discuss the current trends in the design of functional metalloenzymes and highlight the importance of covalent interactions in the design of functional metalloenzymes.
Collapse
Affiliation(s)
- Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China.
| |
Collapse
|
8
|
Alvarez-Hernandez JL, Zhang X, Cui K, Deziel AP, Hammes-Schiffer S, Hazari N, Piekut N, Zhong M. Long-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt-porphyrin complexes. Chem Sci 2024; 15:6800-6815. [PMID: 38725508 PMCID: PMC11077573 DOI: 10.1039/d3sc06177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
A CoII-porphyrin complex (1) with an appended aza-crown ether for Lewis acid (LA) binding was synthesized and characterized. NMR spectroscopy and electrochemistry show that cationic group I and II LAs (i.e., Li+, Na+, K+, Ca2+, Sr2+, and Ba2+) bind to the aza-crown ether group of 1. The binding constant for Li+ is comparable to that observed for a free aza-crown ether. LA binding causes an anodic shift in the CoII/CoI couple of between 10 and 40 mV and also impacts the CoIII/CoII couple. The magnitude of the anodic shift of the CoII/CoI couple varies linearly with the strength of the LA as determined by the pKa of the corresponding metal-aqua complex, with dications giving larger shifts than monocations. The extent of the anodic shift of the CoII/CoI couple also increases as the ionic strength of the solution decreases. This is consistent with electric field effects being responsible for the changes in the redox properties of 1 upon LA binding and provides a novel method to tune the reduction potential. Density functional theory calculations indicate that the bound LA is 5.6 to 6.8 Å away from the CoII ion, demonstrating that long-range electrostatic effects, which do not involve changes to the primary coordination sphere, are responsible for the variations in redox chemistry. Compound 1 was investigated as a CO2 reduction electrocatalyst and shows high activity but rapid decomposition.
Collapse
Affiliation(s)
| | - Xiaowei Zhang
- Department of Chemical and Environmental Engineering, Yale University New Haven CT 06520 USA
| | - Kai Cui
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | | | | | - Nilay Hazari
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Nicole Piekut
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University New Haven CT 06520 USA
| |
Collapse
|
9
|
Wu Y, Hu Q, Che Y, Niu Z. Opportunities and challenges for plastic depolymerization by biomimetic catalysis. Chem Sci 2024; 15:6200-6217. [PMID: 38699266 PMCID: PMC11062090 DOI: 10.1039/d4sc00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Plastic waste has imposed significant burdens on the environment. Chemical recycling allows for repeated regeneration of plastics without deterioration in quality, but often requires harsh reaction conditions, thus being environmentally unfriendly. Enzymatic catalysis offers a promising solution for recycling under mild conditions, but it faces inherent limitations such as poor stability, high cost, and narrow substrate applicability. Biomimetic catalysis may provide a new avenue by combining high enzyme-like activity with the stability of inorganic materials. Biomimetic catalysis has demonstrated great potential in biomass conversion and has recently shown promising progress in plastic degradation. This perspective discusses biomimetic catalysis for plastic degradation from two perspectives: the imitation of the active centers and the imitation of the substrate-binding clefts. Given the chemical similarity between biomass and plastics, relevant work is also included in the discussion to draw inspiration. We conclude this perspective by highlighting the challenges and opportunities in achieving sustainable plastic recycling via a biomimetic approach.
Collapse
Affiliation(s)
- Yanfen Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Qikun Hu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yizhen Che
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
10
|
Chen ZY, Yuan H, Wang H, Sun LJ, Yu L, Gao SQ, Tan X, Lin YW. Regulating the Heme Active Site by Covalent Modifications: Two Case Studies of Myoglobin. Chembiochem 2024; 25:e202300678. [PMID: 38015421 DOI: 10.1002/cbic.202300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Using myoglobin (Mb) as a model protein, we herein developed a facial approach to modifying the heme active site. A cavity was first generated in the heme distal site by F46 C mutation, and the thiol group of Cys46 was then used for covalently linked to exogenous ligands, 1H-1,2,4-triazole-3-thiol and 1-(4-hydroxyphenyl)-1H-pyrrole-2,5-dione. The engineered proteins, termed F46C-triazole Mb and F46C-phenol Mb, respectively, were characterized by X-ray crystallography, spectroscopic and stopped-flow kinetic studies. The results showed that both the heme coordination state and the protein function such as H2 O2 activation and peroxidase activity could be efficiently regulated, which suggests that this approach might be generally applied to the design of functional heme proteins.
Collapse
Affiliation(s)
- Ze-Yuan Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Shu-Qin Gao
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
11
|
de Raffele D, Ilie IM. Unlocking novel therapies: cyclic peptide design for amyloidogenic targets through synergies of experiments, simulations, and machine learning. Chem Commun (Camb) 2024; 60:632-645. [PMID: 38131333 DOI: 10.1039/d3cc04630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Existing therapies for neurodegenerative diseases like Parkinson's and Alzheimer's address only their symptoms and do not prevent disease onset. Common therapeutic agents, such as small molecules and antibodies struggle with insufficient selectivity, stability and bioavailability, leading to poor performance in clinical trials. Peptide-based therapeutics are emerging as promising candidates, with successful applications for cardiovascular diseases and cancers due to their high bioavailability, good efficacy and specificity. In particular, cyclic peptides have a long in vivo stability, while maintaining a robust antibody-like binding affinity. However, the de novo design of cyclic peptides is challenging due to the lack of long-lived druggable pockets of the target polypeptide, absence of exhaustive conformational distributions of the target and/or the binder, unknown binding site, methodological limitations, associated constraints (failed trials, time, money) and the vast combinatorial sequence space. Hence, efficient alignment and cooperation between disciplines, and synergies between experiments and simulations complemented by popular techniques like machine-learning can significantly speed up the therapeutic cyclic-peptide development for neurodegenerative diseases. We review the latest advancements in cyclic peptide design against amyloidogenic targets from a computational perspective in light of recent advancements and potential of machine learning to optimize the design process. We discuss the difficulties encountered when designing novel peptide-based inhibitors and we propose new strategies incorporating experiments, simulations and machine learning to design cyclic peptides to inhibit the toxic propagation of amyloidogenic polypeptides. Importantly, these strategies extend beyond the mere design of cyclic peptides and serve as template for the de novo generation of (bio)materials with programmable properties.
Collapse
Affiliation(s)
- Daria de Raffele
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Ioana M Ilie
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
12
|
Tang S, Sun LJ, Pan AQ, Huang J, Wang H, Lin YW. Application of engineered myoglobins for biosynthesis of clofazimine by integration with chemical synthesis. Org Biomol Chem 2023; 21:9603-9609. [PMID: 38014756 DOI: 10.1039/d3ob01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Significant efforts have been made in the design of artificial metalloenzymes. Myoglobin (Mb), an O2 carrier, has been engineered to exhibit different functions. Herein, we applied a series of engineered Mb mutants with peroxidase activity for biosynthesis of clofazimine (CFZ), a potential drug with a broad-spectrum antiviral activity, by integration with chemical synthesis. Two of those mutants, F43Y Mb and F43Y/T67R Mb, have been shown to efficiently catalyze the oxidative coupling of 2-N-(4-chlorophenyl) benzene-1,2-diamine (N-4-CPBDA) in the presence of H2O2, with 97% yields. The overall catalytic efficiency (kcat/Km) is 46-fold and 82-fold higher than that of WT Mb, respectively. By further combination of this reaction with chemical synthesis, the production of CFZ was accomplished with an isolated yield of 72%. These results showed that engineered Mbs containing the Tyr-heme cross-link (F43Y Mb and F43Y/T67R Mb) exhibit enhanced activity in the oxidative coupling reaction. This study also indicates that the combination of biocatalysis and chemical synthesis avoids the need for the separation of intermediate products, which offers a convenient approach for the total synthesis of the biological compound CFZ.
Collapse
Affiliation(s)
- Shuai Tang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Li-Juan Sun
- Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Ai-Qun Pan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jun Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
- Hengyang Medical College, University of South China, Hengyang 421001, China
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
13
|
Sun LJ, Wang H, Xu JK, Gao SQ, Wen GB, Lin YW. Exploiting and Engineering Neuroglobin for Catalyzing Carbene N-H Insertions and the Formation of Quinoxalinones. Inorg Chem 2023; 62:16294-16298. [PMID: 37772803 DOI: 10.1021/acs.inorgchem.3c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
It is desired to design and construct more efficient enzymes with better performance to catalyze carbene N-H insertions for the synthesis of bioactive molecules. To this end, we exploited and designed a series of human neuroglobin (Ngb) mutants. As shown in this study, a double mutant, A15C/H64G Ngb, with an additional disulfide bond and a modified heme active site, exhibited yields up to >99% and total turnover numbers up to 33000 in catalyzing the carbene N-H insertions for aromatic amine derivatives, including those with a large size such as 1-aminopyrene. Moreover, for o-phenylenediamine derivatives, they underwent two cycles of N-H insertions, followed by cyclization to form quinoxalinones, as confirmed by the X-ray crystal structures. This study suggests that Ngb can be designed into a functional carbene transferase for efficiently catalyzing carbene N-H insertion reactions with a range of substrates. It also represents the first example of the formation of quinoxalinones catalyzed by an engineered heme enzyme.
Collapse
Affiliation(s)
- Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Kun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shu-Qin Gao
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
14
|
Diep P, Kell B, Yakunin A, Hilfinger A, Mahadevan R. Quantifying metal-binding specificity of CcNikZ-II from Clostridium carboxidivorans in the presence of competing metal ions. Anal Biochem 2023; 676:115182. [PMID: 37355028 DOI: 10.1016/j.ab.2023.115182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/26/2023]
Abstract
Many proteins bind transition metal ions as cofactors to carry out their biological functions. Despite binding affinities for divalent transition metal ions being predominantly dictated by the Irving-Williams series for wild-type proteins, in vivo metal ion binding specificity is ensured by intracellular mechanisms that regulate free metal ion concentrations. However, a growing area of biotechnology research considers the use of metal-binding proteins in vitro to purify specific metal ions from wastewater, where specificity is dictated by the protein's metal binding affinities. A goal of metalloprotein engineering is to modulate these affinities to improve a protein's specificity towards a particular metal; however, the quantitative relationship between the affinities and the equilibrium metal-bound protein fractions depends on the underlying binding mechanisms. Here we demonstrate a high-throughput intrinsic tryptophan fluorescence quenching method to validate binding models in multi-metal solutions for CcNikZ-II, a nickel-binding protein from Clostridium carboxidivorans. Using our validated models, we quantify the relationship between binding affinity and specificity in different classes of metal-binding models for CcNikZ-II. We further illustrate the potential relevance of data-informed models to predicting engineering targets for improved specificity.
Collapse
Affiliation(s)
- Patrick Diep
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Brayden Kell
- Department of Physics, University of Toronto, Toronto, ON, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada; Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA
| | - Alexander Yakunin
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, UK
| | - Andreas Hilfinger
- Department of Physics, University of Toronto, Toronto, ON, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada; Department of Mathematics, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Keoingthong P, Xu Y, Li S, Xu J, Zhang L, Chen Z, Tan W. Highly Active CoRh Graphitic Nanozyme for Colorimetric Sensing in Real Samples. J Phys Chem B 2023. [PMID: 37290092 DOI: 10.1021/acs.jpcb.3c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rh-based nanozymes show high catalytic efficiency, specific surface area, good stability, and unique physicochemical properties, while magnetic nanozymes facilitate the magnetic separation of detection samples under an external magnetic field for improved sensitivity. However, magnetic Rh nanozymes, especially those with excellent stability, have not been reported. Herein, we apply the chemical vapor deposition (CVD) method to prepare a CoRh graphitic nanozyme (termed as CoRh@G nanozyme), which structurally consists of CoRh nanoalloy encapsulated by a few layers of graphene for sensitive colorimetric sensing applications. The proposed CoRh@G nanozyme has superior peroxidase (POD)-like activity, and it shows higher affinity of the CoRh@G nanozyme than horseradish peroxidase (HRP) toward 3,3',5,5'-tetramethylbenzydine (TMB) oxidation. In addition, the CoRh@G nanozyme shows high durability and superior recyclability owing to its protective graphitic shell. The outstanding merits of the CoRh@G nanozyme allow its use for quantitative colorimetric detection of dopamine (DA) and ascorbic acid (AA), showing high sensitivity and good selectivity. Moreover, it shows satisfactory performance for AA detection in commercial beverages and energy drinks. The proposed CoRh@G nanozyme-based colorimetric sensing platform shows great promise in point-of-care (POC) visual monitoring.
Collapse
Affiliation(s)
- Phouphien Keoingthong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Yiting Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jieqiong Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Liang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| |
Collapse
|
16
|
Cai Y, Zhou J, Huang J, Zhou W, Wan Y, Cohen Stuart MA, Wang J. Rational design of polymeric nanozymes with robust catalytic performance via copper-ligand coordination. J Colloid Interface Sci 2023; 645:458-465. [PMID: 37156154 DOI: 10.1016/j.jcis.2023.04.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Incorporating copper (Cu) ions into polymeric particles can be a straightforward strategy for mimicking copper enzymes, but it is challenging to simultaneously control the structure of the nanozyme and of the active sites. In this report, we present a novel bis-ligand (L2) containing bipyridine groups connected by a tetra-ethylene oxide (4EO) spacer. In phosphate buffer the Cu-L2 mixture forms coordination complexes that (at proper composition) can bind polyacrylic acid (PAA) to produce catalytically active polymeric nanoparticles with well-defined structure and size, which we refer to as 'nanozymes'. Manipulating the L2/Cu mixing ratio and using phosphate as a co-binding motif, cooperative copper centres are realized that exhibit promoted oxidation activity. The structure and activity of the so-designed nanozymes remain stable upon increasing temperature and over multiple cycles of application. Increasing ionic strength causes enhanced activity, a response also seen for natural tyrosinase. By means of our rational design we obtain nanozymes with optimized structure and active sites that in several respects outperform natural enzymes. This approach therefore demonstrates a novel strategy for developing functional nanozymes, which may well stimulate the application of this class of catalysts.
Collapse
Affiliation(s)
- Ying Cai
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jianan Huang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Wenjuan Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130, Meilong Road, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
17
|
The oxidative nuclease activity of human cytochrome c with mutations in Ω-loop C/D. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140897. [PMID: 36642204 DOI: 10.1016/j.bbapap.2023.140897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Natural and artificial nucleases have extensive applications in biotechnology and biomedicine. The exploration of protein with potential DNA cleavage activity also inspires the design of artificial nuclease and helps to understand the physiological process of DNA damage. In this study, we engineered four human cytochrome c (Cyt c) mutants (N52S, N52A, I81N, and I81D Cyt c), which showed enhanced DNA cleavage activity and degradation in comparison with WT Cyt c, especially under acidic conditions. The mechanism assays revealed that the superoxide (O2•-) plays an important role in the nuclease reaction. The kinetic assays showed that the peroxidase activity of the I81D Cyt c mutant enhanced up to 9-fold at pH 5. This study suggests that the mutations of Ile81 and Asn52 in Ω-loop C/D are critical for the nuclease activity of Cyt c, which may have physiological significance in DNA damage and potential applications in biomedicine.
Collapse
|
18
|
Sun S, Peng K, Sun S, Wang M, Shao Y, Li L, Xiang J, Sedjoah RCAA, Xin Z. Engineering Modular and Highly Sensitive Cell-Based Biosensors for Aromatic Contaminant Monitoring and High-Throughput Enzyme Screening. ACS Synth Biol 2023; 12:877-891. [PMID: 36821745 DOI: 10.1021/acssynbio.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Although a variety of whole-cell-based biosensors have been developed for different applications in recent years, most cannot meet practical requirements due to insufficient sensing performance. Here, we constructed two sets of modular genetic circuits by serial and parallel modes capable of significantly amplifying the input/output signal in Escherichia coli. The biosensors are engineered using σ54-dependent phenol-responsive regulator DmpR as a sensor and enhanced green fluorescent protein as a reporter. Cells harboring serial and parallel genetic circuits displayed nearly 9- and 16-fold higher sensitivity than the general circuit. The genetic circuits enabled rapid detection of six phenolic contaminants in 12 h and showed the low limit of detection of 2.5 and 2.2 ppb for benzopyrene (BaP) and tetracycline (Tet), with a broad detection range of 0.01-1 and 0.005-5 μM, respectively. Furthermore, the positive rate was as high as 73% when the biosensor was applied to screen intracellular enzymes with ester-hydrolysis activity from soil metagenomic libraries using phenyl acetate as a phenolic substrate. Several novel enzymes were isolated, identified, and biochemically characterized, including serine peptidases and alkaline phosphatase family protein/metalloenzyme. Consequently, this study provides a new signal amplification method for cell-based biosensors that can be widely applied to environmental contaminant assessment and screening of intracellular enzymes.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kailin Peng
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sen Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengxi Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Longxiang Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiahui Xiang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rita-Cindy Aye-Ayire Sedjoah
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
19
|
Qiao J, Sheng Y, Wang M, Li A, Li X, Huang H. Evolving Robust and Interpretable Enzymes for the Bioethanol Industry. Angew Chem Int Ed Engl 2023; 62:e202300320. [PMID: 36701239 DOI: 10.1002/anie.202300320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
Obtaining a robust and applicable enzyme for bioethanol production is a dream for biorefinery engineers. Herein, we describe a general method to evolve an all-round and interpretable enzyme that can be directly employed in the bioethanol industry. By integrating the transferable protein evolution strategy InSiReP 2.0 (In Silico guided Recombination Process), enzymatic characterization for actual production, and computational molecular understanding, the model cellulase PvCel5A (endoglucanase II Cel5A from Penicillium verruculosum) was successfully evolved to overcome the remaining challenges of low ethanol and temperature tolerance, which primarily limited biomass transformation and bioethanol yield. Remarkably, application of the PvCel5A variants in both first- and second-generation bioethanol production processes (i. Conventional corn ethanol fermentation combined with the in situ pretreatment process; ii. cellulosic ethanol fermentation process) resulted in a 5.7-10.1 % increase in the ethanol yield, which was unlikely to be achieved by other optimization techniques.
Collapse
Affiliation(s)
- Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China.,School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
20
|
Sun LJ, Yuan H, Xu JK, Luo J, Lang JJ, Wen GB, Tan X, Lin YW. Phenoxazinone Synthase-like Activity of Rationally Designed Heme Enzymes Based on Myoglobin. Biochemistry 2023; 62:369-377. [PMID: 34665595 DOI: 10.1021/acs.biochem.1c00554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The design of functional metalloenzymes is attractive for the biosynthesis of biologically important compounds, such as phenoxazinones and phenazines catalyzed by native phenoxazinone synthase (PHS). To design functional heme enzymes, we used myoglobin (Mb) as a model protein and introduced an artificial CXXC motif into the heme distal pocket by F46C and L49C mutations, which forms a de novo disulfide bond, as confirmed by the X-ray crystal structure. We further introduced a catalytic Tyr43 into the heme distal pocket and found that the F43Y/F46C/L49C Mb triple mutant and the previously designed F43Y/F46S Mb exhibit PHS-like activity (80-98% yields in 5-15 min), with the catalytic efficiency exceeding those of natural metalloenzymes, including o-aminophenol oxidase, laccase, and dye-decolorizing peroxidase. Moreover, we showed that the oxidative coupling product of 1,6-disulfonic-2,7-diaminophenazine is a potential pH indicator, with the orange-magenta color change at pH 4-5 (pKa = 4.40). Therefore, this study indicates that functional heme enzymes can be rationally designed by structural modifications of Mb, exhibiting the functionality of the native PHS for green biosynthesis.
Collapse
Affiliation(s)
- Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jie Luo
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Jia-Jia Lang
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- Hengyang Medical School, University of South China, Hengyang 421001, China.,Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
21
|
Guo C, Chadwick RJ, Foulis A, Bedendi G, Lubskyy A, Rodriguez KJ, Pellizzoni MM, Milton RD, Beveridge R, Bruns N. Peroxidase Activity of Myoglobin Variants Reconstituted with Artificial Cofactors. Chembiochem 2022; 23:e202200197. [PMID: 35816250 PMCID: PMC9545363 DOI: 10.1002/cbic.202200197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Indexed: 02/02/2023]
Abstract
Myoglobin (Mb) can react with hydrogen peroxide (H2 O2 ) to form a highly active intermediate compound and catalyse oxidation reactions. To enhance this activity, known as pseudo-peroxidase activity, previous studies have focused on the modification of key amino acid residues of Mb or the heme cofactor. In this work, the Mb scaffold (apo-Mb) was systematically reconstituted with a set of cofactors based on six metal ions and two ligands. These Mb variants were fully characterised by UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS) and native mass spectrometry (nMS). The steady-state kinetics of guaiacol oxidation and 2,4,6-trichlorophenol (TCP) dehalogenation catalysed by Mb variants were determined. Mb variants with iron chlorin e6 (Fe-Ce6) and manganese chlorin e6 (Mn-Ce6) cofactors were found to have improved catalytic efficiency for both guaiacol and TCP substrates in comparison with wild-type Mb, i. e. Fe-protoporphyrin IX-Mb. Furthermore, the selected cofactors were incorporated into the scaffold of a Mb mutant, swMb H64D. Enhanced peroxidase activity for both substrates were found via the reconstitution of Fe-Ce6 into the mutant scaffold.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Robert J. Chadwick
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Adam Foulis
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Giada Bedendi
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Andriy Lubskyy
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Kyle J. Rodriguez
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Ross D. Milton
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Rebecca Beveridge
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Nico Bruns
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK,Department of ChemistryTechnical University of DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
22
|
Li P, Jiang L, Liu L, Zhao P, Xie G, Xu X, Liu C, Jia J, Liu M, Zhang M. Chelation-based metal cation stabilization of graphene oxide membranes towards efficient sieving of mono/divalent ions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Gupta A, Saha A, Rahaman A, Kumar J, Suresh E, Ganguly B, Bhadra S. Cooperativity between the Substrate and Ligand in Palladium-Catalyzed Allylic Alkylation Using 1-Aryl-1-propynes. J Org Chem 2022; 87:10366-10371. [DOI: 10.1021/acs.joc.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aniket Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anusuya Saha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajijur Rahaman
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jogendra Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eringathodi Suresh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bishwajit Ganguly
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukalyan Bhadra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Wu Y, Bu X, Ke Y, Sun H, Li J, Chen L, Cui W, He Y, Wu L. Insight into the Stereocontrol of DNA Polymerase‐Catalysed Reaction by Chiral Cobalt Complexes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ya Wu
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Xinya Bu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yongqi Ke
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Huaming Sun
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710065 People's Republic of China
| | - Jingyao Li
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Lu Chen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Wei Cui
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yujian He
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Li Wu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 People's Republic of China
| |
Collapse
|
25
|
Maity B, Taher M, Mazumdar S, Ueno T. Artificial metalloenzymes based on protein assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Ge H, Zhang H. Fungus-Based MnO/Porous Carbon Nanohybrid as Efficient Laccase Mimic for Oxygen Reduction Catalysis and Hydroquinone Detection. NANOMATERIALS 2022; 12:nano12091596. [PMID: 35564305 PMCID: PMC9103193 DOI: 10.3390/nano12091596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 01/27/2023]
Abstract
Developing efficient laccase-mimicking nanozymes via a facile and sustainable strategy is intriguing in environmental sensing and fuel cells. In our work, a MnO/porous carbon (MnO/PC) nanohybrid based on fungus was synthesized via a facile carbonization route. The nanohybrid was found to possess excellent laccase-mimicking activity using 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the substrate. Compared with the natural laccase and reported nanozymes, the MnO/PC nanozyme had much lower Km value. Furthermore, the electrochemical results show that the MnO/PC nanozyme had high electrocatalytic activity toward the oxygen reduction reaction (ORR) when it was modified on the electrode. The hybrid nanozyme could catalyze the four-electron ORR, similar to natural laccase. Moreover, hydroquinone (HQ) induced the reduction of oxABTS and caused the green color to fade, which provided colorimetric detection of HQ. A desirable linear relationship (0–50 μM) and detection limit (0.5 μM) were obtained. Our work opens a simple and sustainable avenue to develop a carbon–metal hybrid nanozyme in environment and energy applications.
Collapse
|
27
|
Qu R, Suo H, Gu Y, Weng Y, Qin Y. Sidechain Metallopolymers with Precisely Controlled Structures: Synthesis and Application in Catalysis. Polymers (Basel) 2022; 14:1128. [PMID: 35335458 PMCID: PMC8956016 DOI: 10.3390/polym14061128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Inspired by the cooperative multi-metallic activation in metalloenzyme catalysis, artificial enzymes as multi-metallic catalysts have been developed for improved kinetics and higher selectivity. Previous models about multi-metallic catalysts, such as cross-linked polymer-supported catalysts, failed to precisely control the number and location of their active sites, leading to low activity and selectivity. In recent years, metallopolymers with metals in the sidechain, also named as sidechain metallopolymers (SMPs), have attracted much attention because of their combination of the catalytic, magnetic, and electronic properties of metals with desirable mechanical and processing properties of polymeric backbones. Living and controlled polymerization techniques provide access to SMPs with precisely controlled structures, for example, controlled degree of polymerization (DP) and molecular weight dispersity (Đ), which may have excellent performance as multi-metallic catalysts in a variety of catalytic reactions. This review will cover the recent advances about SMPs, especially on their synthesis and application in catalysis. These tailor-made SMPs with metallic catalytic centers can precisely control the number and location of their active sites, exhibiting high catalytic efficiency.
Collapse
Affiliation(s)
- Rui Qu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Hongyi Suo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Yanan Gu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Yunxuan Weng
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| |
Collapse
|
28
|
Functional Conversion of Acetyl-Coenzyme a Synthase to a Nickel Superoxide Dismutase via Rational Design of Coordination Microenvironment for the Ni d-Site. Int J Mol Sci 2022; 23:ijms23052652. [PMID: 35269794 PMCID: PMC8910529 DOI: 10.3390/ijms23052652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The Nid site coordination microenvironment of a truncated acetyl-coenzyme A synthase has been designed systematically for functional conversion to a Ni-SOD-like enzyme. To this end, the first strategy is to introduce an axial histidine ligand, using mutations F598H, S594H and S594H-GP individually. The resulting three mutants obtained Ni-SOD-like activity successfully, although the catalytic activity was about 10-fold lower than in native Ni-SOD. The second strategy is to mimic the H-bond network in the second sphere coordination microenvironment of the native Ni-SOD. Two mutations based on F598H (EFG-F598H and YGP-F598H) were designed. The successful EFG-F598H exhibited ~3-fold Ni-SOD-like activity of F598H. These designed Ni-SOD-like metalloproteins were characterized by UV/Vis, EPR and Cyclic voltammetry while F598H was also characterized by X-ray protein crystallography. The pH titrations were performed to reveal the source of the two protons required for forming H2O2 in the SOD catalytic reaction. Based on all of the results, a proposed catalytic mechanism for the Ni-SOD-like metalloproteins is presented.
Collapse
|
29
|
Gao SQ, Yuan H, Yang XZ, Xiang HF, Tan X, Wen GB, Lin YW. Improving the cell-membrane-penetrating activity of globins by introducing positive charges on protein surface: A case study of sperm whale myoglobin. Biochem Biophys Res Commun 2022; 598:26-31. [PMID: 35151200 DOI: 10.1016/j.bbrc.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/05/2022] [Indexed: 11/18/2022]
Abstract
Globins are heme proteins such as hemoglobin (Hb), myoglobin (Mb) and neuroglobin (Ngb), playing important roles in biological system. In addition to normal functions, zebrafish Ngb was able to penetrate cell membranes, whereas less was known for other globin members. In this study, to improve the cell-membrane-penetrating activity of globins, we used sperm whale Mb as a model protein and constructed a quadruple mutant of G5K/Q8K/A19K/V21K Mb (termed 4K Mb), by introduction of four positive charges on the protein surface, which was designed according to the amino acid alignment with that of zebrafish Ngb. Spectroscopic and crystallographic studies showed that the four positively charged Lys residues did not affect the protein structure. Cell-membrane-penetrating essay further showed that 4K Mb exhibited enhanced activity compared to that of native Mb. This study provides valuable information for the effect of distribution of charged residues on the protein structure and the cell-membrane-penetrating activity of globins. Therefore, it will guide the design of protein-based biomaterials for biological applications.
Collapse
Affiliation(s)
- Shu-Qin Gao
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Xin-Zhi Yang
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Heng-Fang Xiang
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, 421001, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Ge-Bo Wen
- Hengyang Medical School, University of South China, Hengyang, 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, 421001, China.
| | - Ying-Wu Lin
- Hengyang Medical School, University of South China, Hengyang, 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
30
|
Guo WJ, Xu JK, Wu ST, Gao SQ, Wen GB, Tan X, Lin YW. Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion. Int J Mol Sci 2021; 23:ijms23010413. [PMID: 35008837 PMCID: PMC8745427 DOI: 10.3390/ijms23010413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022] Open
Abstract
The treatment of environmental pollutants such as synthetic dyes and lignin has received much attention, especially for biotechnological treatments using both native and artificial metalloenzymes. In this study, we designed and engineered an efficient peroxidase using the O2 carrier myoglobin (Mb) as a protein scaffold by four mutations (F43Y/T67R/P88W/F138W), which combines the key structural features of natural peroxidases such as the presence of a conserved His-Arg pair and Tyr/Trp residues close to the heme active center. Kinetic studies revealed that the quadruple mutant exhibits considerably enhanced peroxidase activity, with the catalytic efficiency (kcat/Km) comparable to that of the most efficient natural enzyme, horseradish peroxidase (HRP). Moreover, the designed enzyme can effectively decolorize a variety of synthetic organic dyes and catalyze the bioconversion of lignin, such as Kraft lignin and a model compound, guaiacylglycerol-β-guaiacyl ether (GGE). As analyzed by HPLC and ESI-MS, we identified several bioconversion products of GGE, as produced via bond cleavage followed by dimerization or trimerization, which illustrates the mechanism for lignin bioconversion. This study indicates that the designed enzyme could be exploited for the decolorization of textile wastewater contaminated with various dyes, as well as for the bioconversion of lignin to produce more value-added products.
Collapse
Affiliation(s)
- Wen-Jie Guo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
| | - Jia-Kun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China;
| | - Sheng-Tao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
| | - Shu-Qin Gao
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
| | - Ge-Bo Wen
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China;
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
- Correspondence: ; Tel.: +86-734-8282375
| |
Collapse
|
31
|
Chang M, Hou Z, Wang M, Li C, A Al Kheraif A, Lin J. Tumor Microenvironment Responsive Single-Atom Nanozymes for Enhanced Antitumor Therapy. Chemistry 2021; 28:e202104081. [PMID: 34931345 DOI: 10.1002/chem.202104081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 11/11/2022]
Abstract
Single-atom nanozymes (SAzymes) with specific response to the unique tumor microenvironment (TME) feature providing 100% metal atoms utilization for high-efficient enzyme-catalyzed therapy and accurate template for the study of therapeutic mechanisms. In this review, we first introduce the various synthetic strategies of SAzymes, and the TME-responsive SAzymes activities. Next, the TME-responsive enhanced antitumor therapeutic approaches based on the enzymatic activities of SAzymes are summarized, and the corresponding therapy mechanisms are elaborated. Subsequently, a concise but concentrated summary, and the challenges and opportunities for the future design and engineering of SAzyme are outlined. As a newly-built discipline, SAzymes have vast space for development in enhanced antitumor therapy. This timely review provides guidance and constructive suggestions for the future of SAzymes.
Collapse
Affiliation(s)
- Mengyu Chang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, CHINA
| | - Zhiyao Hou
- Guangzhou Medical University, Department of Biological Sciences, CHINA
| | - Man Wang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Chunxia Li
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | | | - Jun Lin
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Lab Rare Earth Chem Phys, 5625 Remin Street, 130022, Changchun, CHINA
| |
Collapse
|
32
|
Pan H, Huang G, Wodrich MD, Tirani FF, Ataka K, Shima S, Hu X. Diversifying Metal–Ligand Cooperative Catalysis in Semi‐Synthetic [Mn]‐Hydrogenases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui‐Jie Pan
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| | - Gangfeng Huang
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Matthew D. Wodrich
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
- Laboratory for Computational Molecular Design Institute of Chemical Science and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei Tirani
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| | - Kenichi Ataka
- Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| |
Collapse
|
33
|
Pan H, Huang G, Wodrich MD, Tirani FF, Ataka K, Shima S, Hu X. Diversifying Metal-Ligand Cooperative Catalysis in Semi-Synthetic [Mn]-Hydrogenases. Angew Chem Int Ed Engl 2021; 60:13350-13357. [PMID: 33635597 PMCID: PMC8251902 DOI: 10.1002/anie.202100443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Indexed: 12/25/2022]
Abstract
The reconstitution of [Mn]-hydrogenases using a series of MnI complexes is described. These complexes are designed to have an internal base or pro-base that may participate in metal-ligand cooperative catalysis or have no internal base or pro-base. Only MnI complexes with an internal base or pro-base are active for H2 activation; only [Mn]-hydrogenases incorporating such complexes are active for hydrogenase reactions. These results confirm the essential role of metal-ligand cooperation for H2 activation by the MnI complexes alone and by [Mn]-hydrogenases. Owing to the nature and position of the internal base or pro-base, the mode of metal-ligand cooperation in two active [Mn]-hydrogenases is different from that of the native [Fe]-hydrogenase. One [Mn]-hydrogenase has the highest specific activity of semi-synthetic [Mn]- and [Fe]-hydrogenases. This work demonstrates reconstitution of active artificial hydrogenases using synthetic complexes differing greatly from the native active site.
Collapse
Affiliation(s)
- Hui‐Jie Pan
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)ISIC-LSCI, BCH 33051015LausanneSwitzerland
| | - Gangfeng Huang
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Matthew D. Wodrich
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)ISIC-LSCI, BCH 33051015LausanneSwitzerland
- Laboratory for Computational Molecular DesignInstitute of Chemical Science and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Farzaneh Fadaei Tirani
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)ISIC-LSCI, BCH 33051015LausanneSwitzerland
| | - Kenichi Ataka
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Seigo Shima
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)ISIC-LSCI, BCH 33051015LausanneSwitzerland
| |
Collapse
|
34
|
Man Ngo F, Tse ECM. Bioinorganic Platforms for Sensing, Biomimicry, and Energy Catalysis. CHEM LETT 2021. [DOI: 10.1246/cl.200875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fung Man Ngo
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, P. R. China
- Advanced Functional Materials Laboratory, HKU Zhejiang Institute of Research and Innovation, Zhejiang 311305, P. R. China
| | - Edmund C. M. Tse
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, P. R. China
- Advanced Functional Materials Laboratory, HKU Zhejiang Institute of Research and Innovation, Zhejiang 311305, P. R. China
| |
Collapse
|
35
|
Lin YW. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
37
|
Rahman AB, Okamoto H, Miyazawa Y, Aoki S. Design and Synthesis of Supramolecular Phosphatases Formed from a Bis(Zn
2+
‐Cyclen) Complex, Barbital‐Crown‐K
+
Conjugate and Cu
2+
for the Catalytic Hydrolysis of Phosphate Monoester. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Akib Bin Rahman
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Hirokazu Okamoto
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yuya Miyazawa
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
- Research Institute for Science and Technology Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
- Research Institute for Biomedical Sciences Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
38
|
Naowarojna N, Cheng R, Lopez J, Wong C, Qiao L, Liu P. Chemical modifications of proteins and their applications in metalloenzyme studies. Synth Syst Biotechnol 2021; 6:32-49. [PMID: 33665390 PMCID: PMC7897936 DOI: 10.1016/j.synbio.2021.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
Protein chemical modifications are important tools for elucidating chemical and biological functions of proteins. Several strategies have been developed to implement these modifications, including enzymatic tailoring reactions, unnatural amino acid incorporation using the expanded genetic codes, and recognition-driven transformations. These technologies have been applied in metalloenzyme studies, specifically in dissecting their mechanisms, improving their enzymatic activities, and creating artificial enzymes with non-natural activities. Herein, we summarize some of the recent efforts in these areas with an emphasis on a few metalloenzyme case studies.
Collapse
Affiliation(s)
| | | | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Christina Wong
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Lu Qiao
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
39
|
Facchetti G, Bucci R, Fusè M, Erba E, Gandolfi R, Pellegrino S, Rimoldi I. Alternative Strategy to Obtain Artificial Imine Reductase by Exploiting Vancomycin/D-Ala-D-Ala Interactions with an Iridium Metal Complex. Inorg Chem 2021; 60:2976-2982. [PMID: 33550804 DOI: 10.1021/acs.inorgchem.0c02969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Based on the supramolecular interaction between vancomycin (Van), an antibiotic glycopeptide, and D-Ala-D-Ala (DADA) dipeptides, a novel class of artificial metalloenzymes was synthesized and characterized. The presence of an iridium(III) ligand at the N-terminus of DADA allowed the use of the metalloenzyme as a catalyst in the asymmetric transfer hydrogenation of cyclic imines. In particular, the type of link between DADA and the metal-chelating moiety was found to be fundamental for inducing asymmetry in the reaction outcome, as highlighted by both computational studies and catalytic results. Using the [IrCp*(m-I)Cl]Cl ⊂ Van complex in 0.1 M CH3COONa buffer at pH 5, a significant 70% (S) e.e. was obtained in the reduction of quinaldine B.
Collapse
Affiliation(s)
- Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Emanuela Erba
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Raffaella Gandolfi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
40
|
Chen SF, Liu XC, Xu JK, Li L, Lang JJ, Wen GB, Lin YW. Conversion of Human Neuroglobin into a Multifunctional Peroxidase by Rational Design. Inorg Chem 2021; 60:2839-2845. [PMID: 33539081 DOI: 10.1021/acs.inorgchem.0c03777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein design has received much attention in the last decades. With an additional disulfide bond to enhance the protein stability, human A15C neuroglobin (Ngb) is an ideal protein scaffold for heme enzyme design. In this study, we rationally converted A15C Ngb into a multifunctional peroxidase by replacing the heme axial His64 with an Asp residue, where Asp64 and the native Lys67 at the heme distal site were proposed to act as an acid-base catalytic couple for H2O2 activation. Kinetic studies showed that the catalytic efficiency of A15C/H64D Ngb was much higher (∼50-80-fold) than that of native dehaloperoxidase, which even exceeds (∼3-fold) that of the most efficient native horseradish peroxidase. Moreover, the dye-decolorizing peroxidase activity was also comparable to that of some native enzymes. Electron paramagnetic resonance, molecular docking, and isothermal titration calorimetry studies provided valuable information for the substrate-protein interactions. Therefore, this study presents the rational design of an efficient multifunctional peroxidase based on Ngb with potential applications such as in bioremediation for environmental sustainability.
Collapse
Affiliation(s)
- Shun-Fa Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jia-Jia Lang
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| |
Collapse
|
41
|
Banerjee S, Sadler PJ. Transfer hydrogenation catalysis in cells. RSC Chem Biol 2021; 2:12-29. [PMID: 34458774 PMCID: PMC8341873 DOI: 10.1039/d0cb00150c] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrogenation reactions in biology are usually carried out by enzymes with nicotinamide adenine dinucleotide (NAD(P)H) or flavin mononucleotide (FAMH2)/flavinadenine dinucleotide (FADH2) as cofactors and hydride sources. Industrial scale chemical transfer hydrogenation uses small molecules such as formic acid or alcohols (e.g. propanol) as hydride sources and transition metal complexes as catalysts. We focus here on organometallic half-sandwich RuII and OsII η6-arene complexes and RhIII and IrIII η5-Cp x complexes which catalyse hydrogenation of biomolecules such as pyruvate and quinones in aqueous media, and generate biologically important species such as H2 and H2O2. Organometallic catalysts can achieve enantioselectivity, and moreover can be active in living cells, which is surprising on account of the variety of poisons present. Such catalysts can induce reductive stress using formate as hydride source or oxidative stress by accepting hydride from NAD(P)H. In some cases, photocatalytic redox reactions can be induced by light absorption at metal or flavin centres. These artificial transformations can interfere in biochemical pathways in unusual ways, and are the basis for the design of metallodrugs with novel mechanisms of action.
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Chemistry, University of Warwick, Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
42
|
Nagao S, Idomoto A, Shibata N, Higuchi Y, Hirota S. Rational design of metal-binding sites in domain-swapped myoglobin dimers. J Inorg Biochem 2021; 217:111374. [PMID: 33578251 DOI: 10.1016/j.jinorgbio.2021.111374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The metal active site is precisely designed in metalloproteins. Here we applied 3D domain swapping, a phenomenon in which a partial protein structure is exchanged between molecules, to introduce metal sites in proteins. We designed multiple metal-binding sites specific to domain-swapped myoglobin (Mb) with His mutation. Stable dimeric Mbs with metal-binding sites were obtained by shifting the His position and introducing two Ala residues in the hinge region (K78H/G80A/H82A and K79H/G80A/H81A Mbs). The absorption and circular dichroism spectra of the monomer and dimer of K78H/G80A/H82A and K79H/G80A/H81A Mbs were similar to the corresponding spectra, respectively, of wild-type Mb. No negative peak due to dimer-to-monomer dissociation was observed below the denaturation temperature in the differential scanning calorimetry thermograms of K78H/G80A/H82A and K79H/G80A/H81A Mbs, whereas the dimer dissociates into monomers at 68 °C for wild-type Mb. These results show that the two mutants were stable in the dimer state. Metal ions bound to the metal-binding sites containing the introduced His in the domain-swapped Mb dimers. Co2+-bound and Ni2+-bound K78H/G80A/H82A Mb exhibited octahedral metal-coordination structures, where His78, His81, Glu85, and three H2O/OH- molecules coordinated to the metal ion. On the other hand, Co2+-bound and Zn2+-bound K79H/G80A/H81A Mb exhibited tetrahedral metal-coordination structures, where His79, His82, Asp141, and a H2O/OH- molecule coordinated to the metal ion. The Co2+-bound site exists deep inside the protein in the K79H/G80A/H81A Mb dimer, which may allow the unique tetrahedral coordination for the Co2+ ion. These results show that we can utilize domain swapping to construct artificial metalloproteins.
Collapse
Affiliation(s)
- Satoshi Nagao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Ayaka Idomoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Naoki Shibata
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
43
|
Rational Design of an Artificial Nuclease by Engineering a Hetero-Dinuclear Center of Mg-Heme in Myoglobin. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Liao F, Xu JK, Luo J, Gao SQ, Wang XJ, Lin YW. Bioinspired design of an artificial peroxidase: introducing key residues of native peroxidases into F43Y myoglobin with a Tyr-heme cross-link. Dalton Trans 2020; 49:5029-5033. [PMID: 32236202 DOI: 10.1039/d0dt00875c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inspired by the structural features of native peroxidases, an artificial peroxidase was rationally designed using F43Y myoglobin with a Tyr-heme cross-link by further introduction of key residues, including both a distal Arg and a Trp close to the heme group, which exhibits an enhanced peroxidase activity similar to the most efficient native horseradish peroxidase. This study provides a simple approach for design of artificial heme enzymes by the combination of catalytic elements of native enzymes with the post-translational modifications of heme proteins.
Collapse
Affiliation(s)
- Fei Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and By products of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Jie Luo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiao-Juan Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and By products of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China. and Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
45
|
Qian X, Nymann Westensee I, Brodszkij E, Städler B. Cell mimicry as a bottom-up strategy for hierarchical engineering of nature-inspired entities. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1683. [PMID: 33205632 DOI: 10.1002/wnan.1683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Artificial biology is an emerging concept that aims to design and engineer the structure and function of natural cells, organelles, or biomolecules with a combination of biological and abiotic building blocks. Cell mimicry focuses on concepts that have the potential to be integrated with mammalian cells and tissue. In this feature article, we will emphasize the advancements in the past 3-4 years (2017-present) that are dedicated to artificial enzymes, artificial organelles, and artificial mammalian cells. Each aspect will be briefly introduced, followed by highlighting efforts that considered key properties of the different mimics. Finally, the current challenges and opportunities will be outlined. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
46
|
Kulesha A, Yoon JH, Chester C, D'Souza A, Costeas C, Makhlynets OV. Contributions of primary coordination ligands and importance of outer sphere interactions in UFsc, a de novo designed protein with high affinity for metal ions. J Inorg Biochem 2020; 212:111224. [PMID: 32871348 DOI: 10.1016/j.jinorgbio.2020.111224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Metalloproteins constitute nearly half of all proteins and catalyze some of the most complex chemical reactions. Recently, we reported a design of 4G-UFsc (Uno Ferro single chain), a single chain four-helical bundle with extraordinarily high (30 pM) affinity for zinc. We evaluated the contribution of different side chains to binding of Co(II), Ni(II), Zn(II) and Mn(II) using systematic mutagenesis of the amino acids that constitute the primary metal coordination and outer spheres. The binding affinity of proteins for metals was then measured using isothermal titration calorimetry. Our results show that both primary metal coordination environment and side chains in the outer sphere of UFsc are highly sensitive to even slight changes and can be adapted to binding different 3d metals, including hard-to-tightly bind metal ions such as Mn(II). The studies on the origins of tight metal binding will guide future metalloprotein design efforts.
Collapse
Affiliation(s)
- Alona Kulesha
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States
| | - Jennifer H Yoon
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States
| | - Cara Chester
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States
| | - Areetha D'Souza
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States
| | - Christos Costeas
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States.
| |
Collapse
|
47
|
Ford CL, Miller TJ, Park YJ, Iranmanesh N, Gray DL, Fout AR. Varying the secondary coordination sphere: synthesis of cobalt and iron complexes of a tripodal ligand featuring two hydrogen-bond donors or acceptors. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1822523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Courtney L. Ford
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tabitha J. Miller
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yun Ji Park
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Niknaz Iranmanesh
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danielle L. Gray
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
48
|
Hishikawa Y, Maity B, Ito N, Abe S, Lu D, Ueno T. Design of Multinuclear Gold Binding Site at the Two-fold Symmetric Interface of the Ferritin Cage. CHEM LETT 2020. [DOI: 10.1246/cl.200217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuki Hishikawa
- Department of Chemical Engineering, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100-084, P. R. China
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Basudev Maity
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Nozomi Ito
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100-084, P. R. China
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
49
|
Shokri Z, Azimi N, Moradi S, Rostami A. A novel magnetically separable laccase‐mediator catalyst system for the aerobic oxidation of alcohols and 2‐substituted‐2,3‐dihydroquinazolin‐4(1
H
)‐ones under mild conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zahra Shokri
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Nahid Azimi
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Sirvan Moradi
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| | - Amin Rostami
- Department of Chemistry, Faculty of Science University of Kurdistan Zip Code 66177‐15175 Sanandaj Iran
| |
Collapse
|
50
|
Zambrano G, Chino M, Renzi E, Di Girolamo R, Maglio O, Pavone V, Lombardi A, Nastri F. Clickable artificial heme-peroxidases for the development of functional nanomaterials. Biotechnol Appl Biochem 2020; 67:549-562. [PMID: 33463759 DOI: 10.1002/bab.1969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/06/2020] [Indexed: 11/08/2022]
Abstract
Artificial metalloenzymes as catalysts are promising candidates for their use in different technologies, such as bioremediation, biomass transformation, or biosensing. Despite this, their practical exploitation is still at an early stage. Immobilized natural enzymes have been proposed to enhance their applicability. Immobilization may offer several advantages: (i) catalyst reuse; (ii) easy separation of the enzyme from the reaction medium; (iii) better tolerance to harsh temperature and pH conditions. Here, we report an easy immobilization procedure of an artificial peroxidase on different surfaces, by means of click chemistry. FeMC6*a, a recently developed peroxidase mimic, has been functionalized with a pegylated aza-dibenzocyclooctyne to afford a "clickable" biocatalyst, namely FeMC6*a-PEG4@DBCO, which easily reacts with azide-functionalized molecules and/or nanomaterials to afford functional bioconjugates. The clicked biocatalyst retains its structural and, to some extent, its functional behaviors, thus housing high potential for biotechnological applications.
Collapse
Affiliation(s)
- Gerardo Zambrano
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Emilia Renzi
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy.,Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli "Federico II," Via Cintia, Napoli, Italy
| |
Collapse
|