1
|
Abate PO, Juárez VM, Baraldo LM. Coupling between two Ru(bda) catalysts bridged by a trans-dicyano complex. Dalton Trans 2024; 53:1575-1585. [PMID: 38164735 DOI: 10.1039/d3dt03220e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
We have prepared two trimetallic complexes [{Ru(bda)(DMSO)(μ-CN)}2Ru(L)4] (with bda = 2,2'-bipyridine-6,6'-dicarboxylate) where two {Ru(bda)} centers are bridged by a cyanide complex of the trans-Ru(L)4CN2 family (with L = pyridine and 4-tert-butylpyridine). The complex [{Ru(bda)(DMSO)(μ-CN)}2Ru(py)4] is fully soluble in aqueous solution and is a catalyst for the oxidation of water both chemically, using Ce(IV) at pH = 1 as the terminal oxidant, and electrochemically. Both reactions are first order in the complex and the resting state of the catalyst is the [RuVRuIII(py)4RuIV]2+ redox state. Electrochemical and spectroelectrochemical studies together with (TD)DFT calculations show that the coupling between the Ru(bda) fragments for the [RuIIIRuII(py)4RuIII]2+ and [RuIVRuII(py)4RuIV]2+ redox states is very weak, but significant for the [RuVRuII(py)4RuIV]2+ ion due to the orientation of the orbitals involved. This coupling affects the reactivity of the [RuVRuII(py)4RuIV]2+ redox state, making it a much slower catalyst towards the water oxidation reaction than [RuVRuIII(py)4RuIV]2+.
Collapse
Affiliation(s)
- Pedro O Abate
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires. Instituto de Química-Física de Materiales, Ambientes y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Virginia M Juárez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires. Instituto de Química-Física de Materiales, Ambientes y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Luis M Baraldo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires. Instituto de Química-Física de Materiales, Ambientes y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Pavlović M, Kahrović E, Aranđelović S, Radulović S, Ilich PP, Grgurić-Šipka S, Ljubijankić N, Žilić D, Jurec J. Tumor selective Ru(III) Schiff bases complexes with strong in vitro activity toward cisplatin-resistant MDA-MB-231 breast cancer cells. J Biol Inorg Chem 2023; 28:263-284. [PMID: 36781474 DOI: 10.1007/s00775-023-01989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
Novel ruthenium(III) complexes of general formula Na[RuCl2(L1-3-N,O)2] where L(1-3) denote deprotonated Schiff bases (HL1-HL3) derived from 5-substituted salicyladehyde and alkylamine (propyl- or butylamine) were prepared and characterized based on elemental analysis, mass spectra, infrared, electron spin/paramagnetic resonance (ESR/EPR) spectroscopy, and cyclovoltammetric study. Optimization of five isomers of complex C1 was done by DFT calculation. The interaction of C1-C3 complexes with DNA (Deoxyribonucleic acid) and BSA (Bovine serum albumin) was investigated by electron spectroscopy and fluorescence quenching. The cytotoxic activity of C1-C3 was investigated in a panel of four human cancer cell lines (K562, A549, EA.hy926, MDA-MB-231) and one human non-tumor cell line (MRC-5). Complexes displayed an apparent cytoselective profile, with IC50 values in the low micromolar range from 1.6 ± 0.3 to 23.0 ± 0.1 µM. Cisplatin-resistant triple-negative breast cancer cells MDA-MB-231 displayed the highest sensitivity to complexes, with Ru(III) compound containing two chlorides and two deprotonated N-propyl-5-chloro-salicylidenimine (hereinafter C1) as the most potent (IC50 = 1.6 µM), and approximately ten times more active than cisplatin (IC50 = 21.9 µM). MDA-MB-231 cells treated for 24 h with C1 presented with apoptotic morphology, as seen by acridine orange/ethidium bromide staining, while 48 h of treatment induced DNA fragmentation, and necrotic changes in cells, as seen by flow cytometry analysis. Drug-accumulation study by inductively coupled plasma mass spectrometry (ICP-MS) demonstrated markedly higher intracellular accumulation of C1 compared with cisplatin.
Collapse
Affiliation(s)
- Marijana Pavlović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade, Serbia
| | - Emira Kahrović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33, 71 000, Sarajevo, Bosnia and Herzegovina.
| | - Sandra Aranđelović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade, Serbia
| | - Siniša Radulović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade, Serbia
| | - Predrag-Peter Ilich
- Department of Natural Sciences, Weissman School of Arts and Sciences, Baruch College/CUNY, New York City, NY, USA
| | - Sanja Grgurić-Šipka
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Nevzeta Ljubijankić
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Dijana Žilić
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Jurica Jurec
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| |
Collapse
|
3
|
Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis. Nat Catal 2022. [DOI: 10.1038/s41929-022-00843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Kim M, Park S, Song D, Moon D, You Y, Lim M, Lee HI. Visible-light NO photolysis of ruthenium nitrosyl complexes with N 2O 2 ligands bearing π-extended rings and their photorelease dynamics. Dalton Trans 2022; 51:11404-11415. [PMID: 35822310 DOI: 10.1039/d2dt01019d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NO photorelease and its dynamics for two {RuNO}6 complexes, Ru(salophen)(NO)Cl (1) and Ru(naphophen)(NO)Cl (2), with salen-type ligands bearing π-extended systems (salophenH2 = N,N'-(1,2-phenylene)-bis(salicylideneimine) and naphophenH2 = N,N'-1,2-phenylene-bis(2-hydroxy-1-naphthylmethyleneimine)) were investigated. NO photolysis was performed under white room light and monitored by UV/Vis, EPR, and NMR spectroscopies. NO photolysis was also performed under 459 and 489 nm irradiation for 1 and 2, respectively. The photochemical quantum yields of the NO photolysis (ΦNO) of both 1 and 2 were determined to be 9% at the irradiation wavelengths. The structural and spectroscopic characteristics of the complexes before and after the photolysis confirmed the conversion of diamagnetic Ru(II)(L)(Cl)-NO+ to paramagnetic S = ½ Ru(III)(L)(Cl)-solvent by photons (L = salophen2- and naphophen2-). The photoreleased NO radicals were detected by spin-trapping EPR. DFT and TDDFT calculations found that the photoactive bands are configured as mostly the ligand-to-ligand charge transfer (LLCT) of π(L) → π*(Ru-NO), suggesting that the NO photorelease was initiated by the LLCT. Dynamics of NO photorelease from the complexes in DMSO under 320 nm excitation were investigated by femtosecond (fs) time-resolved mid-IR spectroscopy. The primary photorelease of NO occurred for less than 0.32 ps after the excitation. The rate constants (k-1) of the geminate rebinding of NO to the photolyzed 1 and 2 were determined to be (15 ps)-1 and (13 ps)-1, respectively. The photochemical quantum yields of NO photolysis (ΦNO, λ = 320 nm) were estimated to be no higher than 14% for 1 and 11% for 2, based on the analysis of the fs time-resolved IR data. The results of fs time-resolved IR spectroscopy and theoretical calculations provided some insight into the overall kinetic reaction pathway, localized electron pathway or resonance pathway, of the NO photolysis of 1 and 2. Overall, our study found that the investigated {RuNO}6 complexes, 1 and 2, with planar N2O2 ligands bearing π-extended rings effectively released NO under visible light.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| | - Dayoon Song
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dohyun Moon
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| | - Hong-In Lee
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
Li G, Ahlquist MSG. Computational comparison of Ru(bda)(py) 2 and Fe(bda)(py) 2 as water oxidation catalysts. Dalton Trans 2022; 51:8618-8624. [PMID: 35593410 DOI: 10.1039/d2dt01150f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(bda)(py)2 (bda = 2,2'-bipyridine-6,6'-dicarboxylate, py = pyridine) has been a significant milestone in the development of water oxidation catalysts. Inspired by Ru(bda)(py)2 and aiming to reduce the use of noble metals, iron (Fe) was introduced to replace the Ru catalytic center in Ru(bda)(py)2. In this study, density functional theory (DFT) calculations were performed on Fe- and Ru(bda)(py)2 catalysts, and a more stable 6-coordinate Fe(bda)(py)2 with one carboxylate group of bda disconnecting with Fe was found. For the first time, theoretical comparisons have been conducted on these three catalysts to compare their catalytic performances, such as reduction potentials and energy profiles of the radical coupling process. Explanations for the high potential of [FeIII(bda)(py)2-H2O]+ and reactivity of [FeV(bda)(py)2-O]+ have been provided. This study can provide insights on Fe(bda)(py)2 from a computational perspective if it is utilized as a water oxidation catalyst.
Collapse
Affiliation(s)
- Ge Li
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden.
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden.
| |
Collapse
|
6
|
Levin N, Casadevall C, Cutsail GE, Lloret‐Fillol J, DeBeer S, Rüdiger O. XAS and EPR in Situ Observation of Ru(V) Oxo Intermediate in a Ru Water Oxidation Complex**. ChemElectroChem 2021; 9:e202101271. [PMID: 35874044 PMCID: PMC9302654 DOI: 10.1002/celc.202101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/12/2021] [Indexed: 11/13/2022]
Abstract
In this study, we combine in situ spectroelectrochemistry coupled with electron paramagnetic resonance (EPR) and X‐ray absorption spectroscopies (XAS) to investigate a molecular Ru‐based water oxidation catalyst bearing a polypyridinic backbone [RuII(OH2)(Py2Metacn)]2+. Although high valent key intermediate species arising in catalytic cycles of this family of compounds have remain elusive due to the lack of additional anionic ligands that could potentially stabilize them, mechanistic studies performed on this system proposed a water nucleophilic attack (WNA) mechanism for the O−O bond formation. Employing in situ experimental conditions and complementary spectroscopic techniques allowed to observe intermediates that provide support for a WNA mechanism, including for the first time a Ru(V) oxo intermediate based on the Py2Metacn ligand, in agreement with the previously proposed mechanism.
Collapse
Affiliation(s)
- Natalia Levin
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 D-45470 Mülheim an der Ruhr Germany
| | - Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ) Avinguda Països Catalans, 16 43007 Tarragona Spain
- Current address Department of Chemistry University of Cambridge Lensfield road CB2 1EW Cambridge UK
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 D-45470 Mülheim an der Ruhr Germany
- University of Duisburg-Essen Department of Chemistry Universitätstr. 7 D-45141 Essen Germany
| | - Julio Lloret‐Fillol
- Institute of Chemical Research of Catalonia (ICIQ) Avinguda Països Catalans, 16 43007 Tarragona Spain
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 D-45470 Mülheim an der Ruhr Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 D-45470 Mülheim an der Ruhr Germany
| |
Collapse
|
7
|
Cho JH, Kim M, You Y, Lee HI. A new photoactivable NO-releasing {Ru-NO} 6 ruthenium nitrosyl complex with a tetradentate ligand containing aniline and pyridine moieties. Chem Asian J 2021; 17:e202101244. [PMID: 34921511 DOI: 10.1002/asia.202101244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Indexed: 11/12/2022]
Abstract
A new type of photoactivable NO-releasing ruthenium nitrosyl complex, [Ru(EPBP)Cl(NO)], with a tetradentate ligand, N,N'-(ethane-1,2-diyldi-o-phenylene)-bis(pyridine-2-carboxamide) (= H2 EPBP) was synthesized. Single crystal X-ray crystallography revealed that the complex has a distorted octahedral coordination geometry and NO is positioned at cis to Cl- ion. NO-photolysis was observed under a white room light. The photodissociation of Ru-NO bond was identified by various techniques including X-ray crystallography, IR, UV/Vis absorption, electron paramagnetic resonance (EPR), and NMR spectroscopies. Quantum yields for the NO-photolysis of the complex in CH3 OH, CHCl3 , DMSO, CH3 CN, and CH3 NO2 were measured to be 0.19-0.36 with 400 (±5) nm excitation. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations were performed to understand the details of the photodissociation of the complex. The calculations suggest that the NO photolysis is most likely initiated by the electronic transition from the aniline moiety π MOs (π (aniline)) of the EPBP2- chelating ligand to the π-antibonding MO of Ru-NO (π*(Ru-NO)). Experimental and theoretical investigations indicate that the EPBP2- ligand provides an effective platform forming ruthenium nitrosyl complexes useful for NO-photoreleasing.
Collapse
Affiliation(s)
- Jang-Hoon Cho
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minyoung Kim
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science and Graduated Program in System Health Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hong-In Lee
- Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
8
|
Schindler D, Meza‐Chincha A, Roth M, Würthner F. Structure-Activity Relationship for Di- up to Tetranuclear Macrocyclic Ruthenium Catalysts in Homogeneous Water Oxidation. Chemistry 2021; 27:16938-16946. [PMID: 33909302 PMCID: PMC9290496 DOI: 10.1002/chem.202100549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Two di- and tetranuclear Ru(bda) (bda: 2,2'-bipyridine-6,6'-dicarboxylate) macrocyclic complexes were synthesized and their catalytic activities in chemical and photochemical water oxidation investigated in a comparative manner to our previously reported trinuclear congener. Our studies have shown that the catalytic activities of this homologous series of multinuclear Ru(bda) macrocycles in homogeneous water oxidation are dependent on their size, exhibiting highest efficiencies for the largest tetranuclear catalyst. The turnover frequencies (TOFs) have increased from di- to tetranuclear macrocycles not only per catalyst molecule but more importantly also per Ru unit with TOF of 6 s-1 to 8.7 s-1 and 10.5 s-1 in chemical and 0.6 s-1 to 3.3 s-1 and 5.8 s-1 in photochemical water oxidation per Ru unit, respectively. Thus, for the first time, a clear structure-activity relationship could be established for this novel class of macrocyclic water oxidation catalysts.
Collapse
Affiliation(s)
- Dorothee Schindler
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | | | - Maximilian Roth
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
9
|
Li L, Yan H, Li F, Kong Q, Yuan C, Weng TC. Identification of intermediates of a molecular ruthenium catalyst for water oxidation using in situ electrochemical X-ray absorption spectroscopy. Phys Chem Chem Phys 2021; 23:23961-23966. [PMID: 34661215 DOI: 10.1039/d1cp03837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the first study on a Ru(bda) (bda: 2,2'-bipyridine-6,6'-dicarboxylic acid) catalyst in solution using a home-built electrochemical cell, in combination with an energy-dispersive X-ray absorption spectroscopy setup. The oxidation state and coordination number of the catalyst during electrocatalysis could be estimated, while avoiding radiation damage from the X-rays.
Collapse
Affiliation(s)
- Lin Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Huacai Yan
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Gif sur Yvette Cedex BP 48 91192, France
| | - Fusheng Li
- State Key Lab of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China
| | - Qingyu Kong
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Gif sur Yvette Cedex BP 48 91192, France
| | - Chunze Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Tuning the O–O bond formation pathways of molecular water oxidation catalysts on electrode surfaces via second coordination sphere engineering. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63671-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Recent developments in polymer-supported ruthenium nanoparticles/complexes for oxidation reactions. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
From Ru-bda to Ru-bds: a step forward to highly efficient molecular water oxidation electrocatalysts under acidic and neutral conditions. Nat Commun 2021; 12:373. [PMID: 33446649 PMCID: PMC7809030 DOI: 10.1038/s41467-020-20637-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/14/2020] [Indexed: 11/09/2022] Open
Abstract
Significant advances during the past decades in the design and studies of Ru complexes with polypyridine ligands have led to the great development of molecular water oxidation catalysts and understanding on the O−O bond formation mechanisms. Here we report a Ru-based molecular water oxidation catalyst [Ru(bds)(pic)2] (Ru-bds; bds2− = 2,2′-bipyridine-6,6′-disulfonate) containing a tetradentate, dianionic sulfonate ligand at the equatorial position and two 4-picoline ligands at the axial positions. This Ru-bds catalyst electrochemically catalyzes water oxidation with turnover frequencies (TOF) of 160 and 12,900 s−1 under acidic and neutral conditions respectively, showing much better performance than the state-of-art Ru-bda catalyst. Density functional theory calculations reveal that (i) under acidic conditions, the high valent Ru intermediate RuV=O featuring the 7-coordination configuration is involved in the O−O bond formation step; (ii) under neutral conditions, the seven-coordinate RuIV=O triggers the O−O bond formation; (iii) in both cases, the I2M (interaction of two M−O units) pathway is dominant over the WNA (water nucleophilic attack) pathway. Developing efficient molecular water oxidation catalysts for artificial photosynthesis is a challenging task. Here the authors introduce a ruthenium based complex with negatively charged sulfonate groups to effectively drive water oxidation under both acidic and neutral conditions.
Collapse
|
13
|
Johansson MP, Niederegger L, Rauhalahti M, Hess CR, Kaila VRI. Dispersion forces drive water oxidation in molecular ruthenium catalysts. RSC Adv 2020; 11:425-432. [PMID: 35423068 PMCID: PMC8691110 DOI: 10.1039/d0ra09004b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
Rational design of artificial water-splitting catalysts is central for developing new sustainable energy technology. However, the catalytic efficiency of the natural light-driven water-splitting enzyme, photosystem II, has been remarkably difficult to achieve artificially. Here we study the molecular mechanism of ruthenium-based molecular catalysts by integrating quantum chemical calculations with inorganic synthesis and functional studies. By employing correlated ab initio calculations, we show that the thermodynamic driving force for the catalysis is obtained by modulation of π-stacking dispersion interactions within the catalytically active dimer core, supporting recently suggested mechanistic principles of Ru-based water-splitting catalysts. The dioxygen bond forms in a semi-concerted radical coupling mechanism, similar to the suggested water-splitting mechanism in photosystem II. By rationally tuning the dispersion effects, we design a new catalyst with a low activation barrier for the water-splitting. The catalytic principles are probed by synthesis, structural, and electrochemical characterization of the new catalyst, supporting enhanced water-splitting activity under the examined conditions. Our combined findings show that modulation of dispersive interactions provides a rational catalyst design principle for controlling challenging chemistries.
Collapse
Affiliation(s)
- Mikael P Johansson
- Department of Chemistry, University of Helsinki P.O. Box 55 FI-00014 Helsinki Finland.,Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany .,Helsinki Institute of Sustainability Science (Helsus) FI-00014 Helsinki Finland.,CSC-IT Center for Science P.O. Box 405 FI-02101 Espoo Finland
| | - Lukas Niederegger
- Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany
| | - Markus Rauhalahti
- Department of Chemistry, University of Helsinki P.O. Box 55 FI-00014 Helsinki Finland
| | - Corinna R Hess
- Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany
| | - Ville R I Kaila
- Department of Chemistry, Technical University of Munich (TUM) Lichtenbergstraße 4 Garching D-85747 Germany .,Department of Biochemistry and Biophysics, Stockholm University Stockholm Sweden
| |
Collapse
|
14
|
Luque-Urrutia JA, Solà M, Poater A. The influence of the pH on the reaction mechanism of water oxidation by a Ru(bda) catalyst. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Kundu A, Dey SK, Dey S, Anoop A, Mandal S. Mononuclear Ruthenium-Based Water Oxidation Catalyst Supported by Anionic, Redox-Non-Innocent Ligand: Heterometallic O-O Bond Formation via Radical Coupling Pathway. Inorg Chem 2020; 59:1461-1470. [PMID: 31877037 DOI: 10.1021/acs.inorgchem.9b03258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerium(IV)-driven water oxidation catalysis mediated by a mononuclear ruthenium(III) complex, [Ru(L)(pic)3] (H3L = 2,2'-iminodibenzoic acid, pic = 4-methylpyridine), has been demonstrated in this work. The mechanistic details of water oxidation have been investigated by the combined use of spectroscopy, electrochemistry, kinetic analysis, and computational studies. It was found that water oxidation proceeds via formal high-valent RuVII species. The capability of accessing such a high-valent state is derived from the non-innocent behavior of the anionic tridentate ligand frame which helps in accumulation of oxidative equivalents in cooperation with metal center. This metal-ligand cooperation facilitates the multi-electron-transfer reaction such as water oxidation. Kinetic analysis suggests water oxidation at a single site of Ru where O-O bond formation occurs via radical-radical coupling pathway between the oxygen atom of ruthenium-oxo species and the oxygen atom of the hydroxocerium(IV) ion.
Collapse
Affiliation(s)
- Animesh Kundu
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India
| | - Suman Kr Dey
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India
| | - Subhasis Dey
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India
| | - Anakuthil Anoop
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India
| | - Sukanta Mandal
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India
| |
Collapse
|
16
|
Shylin SI, Pavliuk MV, D'Amario L, Fritsky IO, Berggren G. Photoinduced hole transfer from tris(bipyridine)ruthenium dye to a high-valent iron-based water oxidation catalyst. Faraday Discuss 2019; 215:162-174. [PMID: 30951052 PMCID: PMC6677028 DOI: 10.1039/c8fd00167g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient water oxidation system is a prerequisite for developing solar energy conversion devices. Using advanced time-resolved spectroscopy, we study the initial catalytic relevant electron transfer events in the light-driven water oxidation system utilizing [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) as a light harvester, persulfate as a sacrificial electron acceptor, and a high-valent iron clathrochelate complex as a catalyst. Upon irradiation by visible light, the excited state of the ruthenium dye is quenched by persulfate to afford a [Ru(bpy)3]3+/SO4˙- pair, showing a cage escape yield up to 75%. This is followed by the subsequent fast hole transfer from [Ru(bpy)3]3+ to the FeIV catalyst to give the long-lived FeV intermediate in aqueous solution. In the presence of excess photosensitizer, this process exhibits pseudo-first order kinetics with respect to the catalyst with a rate constant of 3.2(1) × 1010 s-1. Consequently, efficient hole scavenging activity of the high-valent iron complex is proposed to explain its high catalytic performance for water oxidation.
Collapse
Affiliation(s)
- Sergii I Shylin
- Department of Chemistry -Ångström Laboratory, Uppsala University, P. O. Box 523, 75120 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Pineda-Galvan Y, Ravari AK, Shmakov S, Lifshits L, Kaveevivitchai N, Thummel R, Pushkar Y. Detection of the site protected 7-coordinate RuV = O species and its chemical reactivity to enable catalytic water oxidation. J Catal 2019. [DOI: 10.1016/j.jcat.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Zhang B, Sun L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 2019; 48:2216-2264. [PMID: 30895997 DOI: 10.1039/c8cs00897c] [Citation(s) in RCA: 413] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | |
Collapse
|
19
|
Zhang B, Sun L. Ru-bda: Unique Molecular Water-Oxidation Catalysts with Distortion Induced Open Site and Negatively Charged Ligands. J Am Chem Soc 2019; 141:5565-5580. [PMID: 30889353 DOI: 10.1021/jacs.8b12862] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A water-oxidation catalyst with high intrinsic activity is the foundation for developing any type of water-splitting device. To celebrate its 10 years anniversary, in this Perspective we focus on the state-of-the-art molecular water-oxidation catalysts (MWOCs), the Ru-bda series (bda = 2,2'-bipyridine-6,6'-dicarboxylate), to offer strategies for the design and synthesis of more advanced MWOCs. The O-O bond formation mechanisms, derivatives, applications, and reasons behind the outstanding catalytic activities of Ru-bda catalysts are summarized and discussed. The excellent performance of the Ru-bda catalyst is owing to its unique structural features: the distortion induced 7-coordination and the carboxylate ligands with coordination flexibility, proton-transfer function as well as small steric hindrance. Inspired by the Ru-bda catalysts, we emphasize that the introduction of negatively charged groups, such as the carboxylate group, into ligands is an effective strategy to lower the onset potential of MWOCs. Moreover, distortion of the regular configuration of a transition metal complex by ligand design to generate a wide open site as the catalytic site for binding the substrate as an extra-coordination is proposed as a new concept for the design of efficient molecular catalysts. These inspirations can be expected to play a great role in not only water-oxidation catalysis but also other small molecule activation and conversion reactions involving artificial photosynthesis, such as CO2 reduction and N2 fixation reactions.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry , KTH Royal Institute of Technology , 10044 Stockholm , Sweden
| | - Licheng Sun
- Department of Chemistry , KTH Royal Institute of Technology , 10044 Stockholm , Sweden.,State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT) , 116024 Dalian , China
| |
Collapse
|
20
|
Shylin SI, Pavliuk MV, D'Amario L, Mamedov F, Sá J, Berggren G, Fritsky IO. Efficient visible light-driven water oxidation catalysed by an iron(iv) clathrochelate complex. Chem Commun (Camb) 2019; 55:3335-3338. [PMID: 30801592 DOI: 10.1039/c9cc00229d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A water-stable FeIV clathrochelate complex catalyses fast and homogeneous photochemical oxidation of water to dioxygen with a turnover frequency of 2.27 s-1 and a maximum turnover number of 365. An FeV intermediate generated under catalytic conditions is trapped and characterised using EPR and Mössbauer spectroscopy.
Collapse
Affiliation(s)
- Sergii I Shylin
- Department of Chemistry -Ångström Laboratory, Uppsala University, PO Box 523, 75120 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Richmond CJ, Escayola S, Poater A. Axial Ligand Effects of Ru-BDA Complexes in the O-O Bond Formation via the I2M Bimolecular Mechanism in Water Oxidation Catalysis. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Craig J. Richmond
- Level 5; RMIT Europe Media-TIC Building; c/ Roc Boronat, 117 08018 Barcelona Catalonia Spain
| | - Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química; Universitat de Girona; c/ Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química; Universitat de Girona; c/ Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
22
|
Kamdar JM, Grotjahn DB. An Overview of Significant Achievements in Ruthenium-Based Molecular Water Oxidation Catalysis. Molecules 2019; 24:molecules24030494. [PMID: 30704078 PMCID: PMC6385003 DOI: 10.3390/molecules24030494] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/03/2022] Open
Abstract
Fossil fuels (coal, oil, natural gas) are becoming increasingly disfavored as long-term energy options due to concerns of scarcity and environmental consequences (e.g., release of anthropogenic CO2). Hydrogen gas, on the other hand, has gained popularity as a clean-burning fuel because the only byproduct from its reaction with O2 is H2O. In recent decades, hydrogen derived from water splitting has been a topic of extensive research. The bottleneck of the water splitting reaction is the difficult water oxidation step (2H2O → O2 + 4H+ + 4e−), which requires an effective and robust catalyst to overcome its high kinetic barrier. Research in water oxidation by molecular ruthenium catalysts enjoys a rich history spanning nearly 40 years. As the diversity of novel ligands continues to widen, the relationship between ligand geometry or electronics, and catalyst activity is undoubtedly becoming clearer. The present review highlights, in the authors’ opinion, some of the most impactful discoveries in the field and explores the evolution of ligand design that has led to the current state of the art.
Collapse
Affiliation(s)
- Jayneil M Kamdar
- Department of Chemistry and Biochemistry, San Diego State University; San Diego, CA 92182-1030, USA.
| | - Douglas B Grotjahn
- Department of Chemistry and Biochemistry, San Diego State University; San Diego, CA 92182-1030, USA.
| |
Collapse
|
23
|
Glasbrenner M, Vogler S, Ochsenfeld C. Linear and sublinear scaling computation of the electronic g-tensor at the density functional theory level. J Chem Phys 2019; 150:024104. [DOI: 10.1063/1.5066266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Glasbrenner
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, 81377 Munich, Germany
| | - Sigurd Vogler
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, 81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, 81377 Munich, Germany
| |
Collapse
|
24
|
Matheu R, Ghaderian A, Francàs L, Chernev P, Ertem MZ, Benet-Buchholz J, Batista VS, Haumann M, Gimbert-Suriñach C, Sala X, Llobet A. Behavior of Ru-bda Water-Oxidation Catalysts in Low Oxidation States. Chemistry 2018; 24:12838-12847. [DOI: 10.1002/chem.201801236] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/06/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Roc Matheu
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology (BIST); Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Abolfazl Ghaderian
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology (BIST); Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Laia Francàs
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology (BIST); Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Petko Chernev
- Institute for Experimental Physics; Free University Berlin; 14195 Berlin Germany
| | - Mehmed Z. Ertem
- Chemistry Department; Brookhaven National Laboratory; Upton NY 11973 USA
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology (BIST); Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Victor S. Batista
- Department of Chemistry; Yale University; P.O. Box 208107 New Haven CT 06520-8107 USA
| | - Michael Haumann
- Institute for Experimental Physics; Free University Berlin; 14195 Berlin Germany
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology (BIST); Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Xavier Sala
- Departament de Química; Universitat Autònoma de Barcelona; Cerdanyola del Vallès 08193 Barcelona Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology (BIST); Avinguda Països Catalans 16 43007 Tarragona Spain
- Departament de Química; Universitat Autònoma de Barcelona; Cerdanyola del Vallès 08193 Barcelona Spain
| |
Collapse
|
25
|
Glasbrenner M, Vogler S, Ochsenfeld C. Gauge-origin dependence in electronic g-tensor calculations. J Chem Phys 2018; 148:214101. [DOI: 10.1063/1.5028454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Glasbrenner
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, 81377 Munich, Germany
| | - Sigurd Vogler
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, 81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, 81377 Munich, Germany
| |
Collapse
|
26
|
Schilling M, Böhler M, Luber S. Towards the rational design of the Py5-ligand framework for ruthenium-based water oxidation catalysts. Dalton Trans 2018; 47:10480-10490. [DOI: 10.1039/c8dt01209a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in–depth view on the water oxidation mechanism of Py5-derived Ru catalysts, paving the way for rational design of analogous water oxidation catalysts.
Collapse
Affiliation(s)
- Mauro Schilling
- University of Zurich
- Department of Chemistry C Winterthurerstrasse
- CH-8057 Zurich
- Switzerland
| | - Michael Böhler
- University of Zurich
- Department of Chemistry C Winterthurerstrasse
- CH-8057 Zurich
- Switzerland
| | - Sandra Luber
- University of Zurich
- Department of Chemistry C Winterthurerstrasse
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
27
|
Lebedev D, Pineda-Galvan Y, Tokimaru Y, Fedorov A, Kaeffer N, Copéret C, Pushkar Y. The Key Ru V=O Intermediate of Site-Isolated Mononuclear Water Oxidation Catalyst Detected by in Situ X-ray Absorption Spectroscopy. J Am Chem Soc 2017; 140:451-458. [PMID: 29219306 DOI: 10.1021/jacs.7b11388] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Improvement of the oxygen evolution reaction (OER) is a challenging step toward the development of sustainable energy technologies. Enhancing the OER rate and efficiency relies on understanding the water oxidation mechanism, which entails the characterization of the reaction intermediates. Very active Ru-bda type (bda is 2,2'-bipyridine-6,6'-dicarboxylate) molecular OER catalysts are proposed to operate via a transient 7-coordinate RuV═O intermediate, which so far has never been detected due to its high reactivity. Here we prepare and characterize a well-defined supported Ru(bda) catalyst on porous indium tin oxide (ITO) electrode. Site isolation of the catalyst molecules on the electrode surface allows trapping of the key 7-coordinate RuV═O intermediate at potentials above 1.34 V vs NHE at pH 1, which is characterized by electron paramagnetic resonance and in situ X-ray absorption spectroscopies. The in situ extended X-ray absorption fine structure analysis shows a Ru═O bond distance of 1.75 ± 0.02 Å, consistent with computational results. Electrochemical studies and density functional theory calculations suggest that the water nucleophilic attack on the surface-bound RuV═O intermediate (O-O bond formation) is the rate limiting step for OER catalysis at low pH.
Collapse
Affiliation(s)
- Dmitry Lebedev
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Yuliana Pineda-Galvan
- Purdue University , Department of Physics and Astronomy, West Lafayette, Indiana 47907, United States
| | - Yuki Tokimaru
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Alexey Fedorov
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Nicolas Kaeffer
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Christophe Copéret
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Yulia Pushkar
- Purdue University , Department of Physics and Astronomy, West Lafayette, Indiana 47907, United States
| |
Collapse
|
28
|
Shaffer DW, Xie Y, Concepcion JJ. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling. Chem Soc Rev 2017; 46:6170-6193. [DOI: 10.1039/c7cs00542c] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A review of water oxidation by ruthenium-based molecular catalysts, with emphasis on the mechanism of O–O bond formation.
Collapse
Affiliation(s)
| | - Yan Xie
- Chemistry Division
- Brookhaven National Laboratory
- Upton
- USA
| | | |
Collapse
|