1
|
Ouyang J, Li D, Zhu L, Cai X, Liu L, Pan H, Ma A. Application and Challenge of Metalloporphyrin Sensitizers in Noninvasive Dynamic Tumor Therapy. Molecules 2024; 29:4828. [PMID: 39459197 PMCID: PMC11510167 DOI: 10.3390/molecules29204828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic tumor therapies (mainly including photodynamic therapy (PDT) and sonodynamic therapy (SDT)) offer new approaches to cancer treatment. They are often characterized by their noninvasive nature, high selectivity, and low toxicity. Sensitizers are crucial for dynamic therapy. Developing efficient sensitizers with good biocompatibility and controllability is an important aim in dynamic therapy. Porphyrins and metalloporphyrins attract great attention due to their excellent photophysical properties and low cytotoxicity under non-light. Compared to porphyrins, metalloporphyrins show greater potential for dynamic therapy due to their enhanced photochemical and photophysical properties after metal ions coordinate with porphyrin rings. This paper reviews some metalloporphyrin-based sensitizers used in photo/sonodynamic therapy and combined therapy. In addition, the probable challenges and bottlenecks in clinical translation are also discussed.
Collapse
Affiliation(s)
- Jiacheng Ouyang
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Dan Li
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyuan Cai
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Aiqing Ma
- Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang 523808, China
| |
Collapse
|
2
|
Nejabat M, Samie A, Khojastehnezhad A, Hadizadeh F, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM, Siaj M. Stimuli-Responsive Covalent Organic Frameworks for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51837-51859. [PMID: 39163539 DOI: 10.1021/acsami.4c07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.g., hypoxia, acidic pH, high levels of glutathione, and overexpressed hydrogen peroxide) or extrinsic stimulus of laser light bring about more precise and selective treatments. Among them, nanostructures of covalent organic frameworks (COFs) have drawn great interest in biomedical fields during recent years. Possessing large surface area, high porosity, structural stability, and customizable architecture, these biocompatible porous crystalline polymers properly translate to promising platforms for drug delivery and induction of combination therapies. With the focus on stimuli-responsive characteristics of nanoscale COFs, this study aims to propose an overview of their potentiality in cancer treatment on the basis of chemotherapy alone or in combination with sonodynamic, chemodynamic, photodynamic, and photothermal therapies.
Collapse
Affiliation(s)
- Masoud Nejabat
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Ali Samie
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
3
|
Chen S, Huang B, Tian J, Zhang W. Advancements of Porphyrin-Derived Nanomaterials for Antibacterial Photodynamic Therapy and Biofilm Eradication. Adv Healthc Mater 2024; 13:e2401211. [PMID: 39073000 DOI: 10.1002/adhm.202401211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Indexed: 07/30/2024]
Abstract
The threat posed by antibiotic-resistant bacteria and the challenge of biofilm formation has highlighted the inadequacies of conventional antibacterial therapies, leading to increased interest in antibacterial photodynamic therapy (aPDT) in recent years. This approach offers advantages such as minimal invasiveness, low systemic toxicity, and notable effectiveness against drug-resistant bacterial strains. Porphyrins and their derivatives, known for their high molar extinction coefficients and singlet oxygen quantum yields, have emerged as crucial photosensitizers in aPDT. However, their practical application is hindered by challenges such as poor water solubility and aggregation-induced quenching. To address these limitations, extensive research has focused on the development of porphyrin-based nanomaterials for aPDT, enhancing the efficacy of photodynamic sterilization and broadening the range of antimicrobial activity. This review provides an overview of various porphyrin-based nanomaterials utilized in aPDT and biofilm eradication in recent years, including porphyrin-loaded inorganic nanoparticles, porphyrin-based polymer assemblies, supramolecular assemblies, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Additionally, insights into the prospects of aPDT is offered, highlighting its potential for practical implementation.
Collapse
Affiliation(s)
- Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
4
|
Fan Q, Kuang L, Wang B, Yin Y, Dong Z, Tian N, Wang J, Yin T, Wang Y. Multiple Synergistic Effects of the Microglia Membrane-Bionic Nanoplatform on Mediate Tumor Microenvironment Remodeling to Amplify Glioblastoma Immunotherapy. ACS NANO 2024; 18:14469-14486. [PMID: 38770948 DOI: 10.1021/acsnano.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Glioblastoma (GBM) is a lethal brain tumor with high levels of malignancy. Most chemotherapy agents show serious systemic cytotoxicity and restricted delivery effectiveness due to the impediments of the blood-brain barrier (BBB). Immunotherapy has developed great potential for aggressive tumor treatments. Disappointingly, its efficacy against GBM is hindered by the immunosuppressive tumor microenvironment (TME) and BBB. Herein, a multiple synergistic immunotherapeutic strategy against GBM was developed based on the nanomaterial-biology interaction. We have demonstrated that this BM@MnP-BSA-aPD-1 can transverse the BBB and target the TME, resulting in amplified synergetic effects of metalloimmunotherapy and photothermal immunotherapy (PTT). The journey of this nanoformulation within the TME contributed to the activation of the stimulator of the interferon gene pathway, the initiation of the immunogenic cell death effect, and the inhibition of the programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1) signaling axis. This nanomedicine revitalizes the immunosuppressive TME and evokes the cascade effect of antitumor immunity. Therefore, the combination of BM@MnP-BSA-aPD-1 and PTT without chemotherapeutics presents favorable benefits in anti-GBM immunotherapy and exhibits immense potential for clinical translational applications.
Collapse
Affiliation(s)
- Qin Fan
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Lei Kuang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bingyi Wang
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Ying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhufeng Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Nixin Tian
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Jiaojiao Wang
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yazhou Wang
- School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Yao L, Zhu X, Shan Y, Zhang L, Yao J, Xiong H. Recent Progress in Anti-Tumor Nanodrugs Based on Tumor Microenvironment Redox Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310018. [PMID: 38269480 DOI: 10.1002/smll.202310018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The growth state of tumor cells is strictly affected by the specific abnormal redox status of the tumor microenvironment (TME). Moreover, redox reactions at the biological level are also central and fundamental to essential energy metabolism reactions in tumors. Accordingly, anti-tumor nanodrugs targeting the disruption of this abnormal redox homeostasis have become one of the hot spots in the field of nanodrugs research due to the effectiveness of TME modulation and anti-tumor efficiency mediated by redox interference. This review discusses the latest research results of nanodrugs in anti-tumor therapy, which regulate the levels of oxidants or reductants in TME through a variety of therapeutic strategies, ultimately breaking the original "stable" redox state of the TME and promoting tumor cell death. With the gradual deepening of study on the redox state of TME and the vigorous development of nanomaterials, it is expected that more anti-tumor nano drugs based on tumor redox microenvironment regulation will be designed and even applied clinically.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiang Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Yunyi Shan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Liang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
6
|
Fu X, Cai Z, Fu S, Cai H, Li M, Gu H, Jin R, Xia C, Lui S, Song B, Gong Q, Ai H. Porphyrin-Based Self-Assembled Nanoparticles for PET/MR Imaging of Sentinel Lymph Node Metastasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27139-27150. [PMID: 38752591 DOI: 10.1021/acsami.4c03611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Diagnosing of lymph node metastasis is challenging sometimes, and multimodal imaging offers a promising method to improve the accuracy. This work developed porphyrin-based nanoparticles (68Ga-F127-TAPP/TCPP(Mn) NPs) as PET/MR dual-modal probes for lymph node metastasis imaging by a simple self-assembly method. Compared with F127-TCPP(Mn) NPs, F127-TAPP/TCPP(Mn) NPs synthesized by amino-porphyrins (TAPP) doping can not only construct PET/MR bimodal probes but also improve the T1 relaxivity (up to 456%). Moreover, T1 relaxivity can be adjusted by altering the molar ratio of TAPP/TCPP(Mn) and the concentration of F127. However, a similar increase in T1 relaxivity was not observed in the F127-TCPP/TCPP(Mn) NPs, which were synthesized using carboxy-porphyrins (TCPP) doping. In a breast cancer lymph node metastasis mice model, subcutaneous injection of 68Ga-F127-TAPP/TCPP(Mn) NPs through the hind foot pad, the normal lymph nodes and metastatic lymph nodes were successfully distinguished based on the difference of PET standard uptake values and MR signal intensities. Furthermore, the dark brown F127-TAPP/TCPP(Mn) NPs demonstrated the potential for staining and mapping lymph nodes. This study provides valuable insights into developing and applying PET/MR probes for lymph node metastasis imaging.
Collapse
Affiliation(s)
- Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Shengxiang Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Huawei Cai
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mufeng Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Xu Z, Dong W, Cui X, Duan Q. Three-dimensional donor-acceptor conjugated porous polymers based on metal-porphyrin and triazine for highly effective photodegradation of organic pollutants in water. CHEMOSPHERE 2024; 355:141801. [PMID: 38552804 DOI: 10.1016/j.chemosphere.2024.141801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Three-dimensional donor-acceptor (D-A) type conjugated porous polymers (CPPs) was designed and synthesized via imine condensation of copper tetraaminoporphyrin (CuTAPP) as donor and 1,3,5-tris-(4-formyl phenyl) triazine (TFPT) as acceptor, named as CuPT-CPP. The CuPT-CPP possesses a high specific surface area (73.7 m2/g) and excellent photophysical properties. The simultaneous introduction of the organometallic molecules and D-A structures in CuPT-CPP could be broadened the visible-light response range (400-800 nm) and facilitated efficient photogenerated carrier separation and transportation. As heterogeneous photocatalysts, CuPT-CPP has excellent photocatalytic performances under visible light irradiation, leading to excellent model pollutant rhodamine B degradation efficiency up to about 100% in 3 h, it has superb stability and reusability during the photocatalytic processes, and CuPT-CPP also exhibited broad substrate adaptability, which could photocatalytic degradation of methylene blue (MB), methyl orange (MO), and tetracycline hydrochloride (TC). This work indicates that three-dimensional D-A type porphyrin- and triazine-based CuPT-CPP has great potential in the practical application of photocatalysis.
Collapse
Affiliation(s)
- Zhilin Xu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wenyue Dong
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xu Cui
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China; Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, China.
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China; Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, China.
| |
Collapse
|
8
|
Shee NK, Kim HJ. Recent Developments in Porphyrin-Based Metal-Organic Framework Materials for Water Remediation under Visible-Light Irradiation. Int J Mol Sci 2024; 25:4183. [PMID: 38673768 PMCID: PMC11050243 DOI: 10.3390/ijms25084183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Access to clean drinking water is a basic requirement, and eliminating pollutants from wastewater is important for saving water ecosystems. The porous structure and surface characteristics of metal-organic frameworks (MOFs) can function as a perfect scaffold for removing toxic compounds from wastewater. Porphyrins are promising building blocks for constructing MOFs. Porphyrin-based metal-organic frameworks (P-MOFs) have been fabricated using porphyrin ligands, metal clusters, or ions. These materials can harvest light from a wide region of the solar spectrum, and their framework morphology and physicochemical properties can be controlled by changing their peripheral subunits or metal ions. These porous crystalline materials have generated interest because of their distinctive characteristics, including large permanent porosity, interesting surface morphology, broad conformational diversity, high photostability, and semiconducting nature. This article discusses the recent progress and usefulness of P-MOFs. The fabrication procedures of P-MOFs are discussed, followed by the adsorptive and photocatalytic removal of contaminants from wastewater. The relationships between the geometries of P-MOFs and their light-harvesting and charge-transfer mechanisms for the photocatalytic degradation of pollutants are highlighted. Finally, some future perspectives and obstacles in the photodegradation usage of P-MOFs are discussed, along with feasible research directions to standardize efficient photocatalysts for improved photodegradation for water treatment.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
| |
Collapse
|
9
|
Bashir B, Alotaibi MM, Clayborne AZ. Computational investigation of structural, electronic, and spectroscopic properties of Ni and Zn metalloporphyrins with varying anchoring groups. J Chem Phys 2024; 160:134305. [PMID: 38563304 DOI: 10.1063/5.0191858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Porphyrins are prime candidates for a host of molecular electronics applications. Understanding the electronic structure and the role of anchoring groups on porphyrins is a prerequisite for researchers to comprehend their role in molecular devices at the molecular junction interface. Here, we use the density functional theory approach to investigate the influence of anchoring groups on Ni and Zn diphenylporphyrin molecules. The changes in geometry, electronic structure, and electronic descriptors were evaluated. There are minimal changes observed in geometry when changing the metal from Ni to Zn and the anchoring group. However, we find that the distribution of electron density changes when changing the anchoring group in the highest occupied and lowest unoccupied molecular orbitals. This has a direct effect on electronic descriptors such as global hardness, softness, and electrophilicity. Additionally, the optical spectra of both Ni and Zn diphenylporphyrin molecules exhibit either blue or red shifts when changing the anchoring group. These results indicate the importance of the anchoring group on the electronic structure and optical properties of porphyrin molecules.
Collapse
Affiliation(s)
- Beenish Bashir
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA
| | - Maha M Alotaibi
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA
| | - Andre Z Clayborne
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA
| |
Collapse
|
10
|
Hang L, Li M, Zhang Y, Li W, Fang L, Chen Y, Zhou C, Qu H, Shao L, Jiang G. Mn(II) Optimized Sono/Chemodynamic Effect of Porphyrin-Metal-Organic Framework Nanosheets for MRI-Guided Colon Cancer Therapy and Metastasis Suppression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306364. [PMID: 37997202 DOI: 10.1002/smll.202306364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Sonodynamic therapy (SDT) offers a remarkable non-invasive ultrasound (US) treatment by activating sonosensitizer and generating reactive oxygen species (ROS) to inhibit tumor growth. The development of multifunctional, biocompatible, and highly effective sonosensitizers remains a current priority for SDT. Herein, the first report that Mn(II) ions chelated Gd-TCPP (GMT) nanosheets (NSs) are synthesized via a simple reflux method and encapsulated with pluronic F-127 to form novel sonosensitizers (GMTF). The GMTF NSs produce a high yield of ROS under US irradiation due to the decreased highest occupied molecular orbital-lowest unoccupied molecular orbital gap energy (2.7-1.28 eV). Moreover, Mn(II) ions endow GMTF with a fascinating Fenton-like activity to produce hydroxyl radicals in support of chemodynamic therapy (CDT). It is also effectively used in magnetic resonance imaging (MRI) with high relaxation rate (r 1: 4.401 mM-1 s-1) to track the accumulation of NSs in tumors. In vivo results indicate that the SDT and CDT in combination with programmed cell death protein 1 antibody (anti-PD-1) show effective metastasis prevention effects, and 70% of the mice in the GMTF + US + anti-PD-1 group survived for 60 days. In conclusion, this study develops a sonosensitizer with promising potential for utilizing both MRI-guided SDT and CDT strategies.
Collapse
Affiliation(s)
- Lifeng Hang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Meng Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Yuxuan Zhang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Wuming Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Laiping Fang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Yiyu Chen
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Chunze Zhou
- Interventional Radiology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, P. R. China
| | - Hong Qu
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Lianyi Shao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Guihua Jiang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| |
Collapse
|
11
|
Anitha K, Chenchula S, Surendran V, Shvetank B, Ravula P, Milan R, Chikatipalli R, R P. Advancing cancer theranostics through biomimetics: A comprehensive review. Heliyon 2024; 10:e27692. [PMID: 38496894 PMCID: PMC10944277 DOI: 10.1016/j.heliyon.2024.e27692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Nanotheranostics, especially those employing biomimetic approaches, are of substantial interest for molecular imaging and cancer therapy. The incorporation of diagnostics and therapeutics, known as cancer theranostics, represents a promising strategy in modern oncology. Biomimetics, inspired by nature, offers a multidisciplinary avenue with potential in advancing cancer theranostics. This review comprehensively analyses recent progress in biomimetics-based cancer theranostics, emphasizing its role in overcoming current treatment challenges, with a focus on breast, prostate, and skin cancers. Biomimetic approaches have been explored to address multidrug resistance (MDR), emphasizing their role in immunotherapy and photothermal therapy. The specific areas covered include biomimetic drug delivery systems bypassing MDR mechanisms, biomimetic platforms for immune checkpoint blockade, immune cell modulation, and photothermal tumor ablation. Pretargeting techniques enhancing radiotherapeutic agent uptake are discussed, along with a comprehensive review of clinical trials of global nanotheranostics. This review delves into biomimetic materials, nanotechnology, and bioinspired strategies for cancer imaging, diagnosis, and targeted drug delivery. These include imaging probes, contrast agents, and biosensors for enhanced specificity and sensitivity. Biomimetic strategies for targeted drug delivery involve the design of nanoparticles, liposomes, and hydrogels for site-specific delivery and improved therapeutic efficacy. Overall, this current review provides valuable information for investigators, clinicians, and biomedical engineers, offering insights into the latest biomimetics applications in cancer theranostics. Leveraging biomimetics aims to revolutionize cancer diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur, 425405, India
| | - Santenna Chenchula
- Department of Clinical Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, 462020, Madhya Pradesh, India
| | - Vijayaraj Surendran
- Dr Kalam College of Pharmacy, Thanjavur District, Tamil Nadu, 614 623, India
| | - Bhatt Shvetank
- School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, Maharashtra, India
| | - Parameswar Ravula
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Rhythm Milan
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Radhika Chikatipalli
- Sri Venkateshwara College of Pharmacy, Chittoor District, Andhra Pradesh, 517520, India
| | - Padmavathi R
- SVS Medical College, Mahbubnagar, Telangana, India
| |
Collapse
|
12
|
Rossi GG, Tisoco I, Moreira KS, de Lima Burgo TA, de Campos MMA, Iglesias BA. Photophysical, photobiological, and mycobacteria photo-inactivation properties of new meso-tetra-cationic platinum(II) metalloderivatives at meta position. Braz J Microbiol 2024; 55:11-24. [PMID: 38051456 PMCID: PMC10920514 DOI: 10.1007/s42770-023-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
In this manuscript, we report the photo-inactivation evaluation of new tetra-cationic porphyrins with peripheral Pt(II) complexes ate meta N-pyridyl positions in the antimicrobial photodynamic therapy (aPDT) of rapidly growing mycobacterial strains (RGM). Four different metalloderivatives were synthetized and applied. aPDT experiments in the strains of Mycobacteroides abscessus subsp. Abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycobacteroides abscessus subsp. Massiliense (ATCC 48898), and Mycolicibacterium smegmatis (ATCC 700084) conducted with adequate concentration of photosensitizers (PS) under white-light conditions at 90 min (irradiance of 50 mW cm-2 and a total light dosage of 270 J cm-2) showed that the Zn(II) derivative is the most effective PS significantly reduced the concentration of viable mycobacteria. The effectiveness of the molecule as PS for PDI studies is also clear with mycobacteria, which is strongly related with the porphyrin peripheral charge and coordination platinum(II) compounds and consequently about the presence of metal center ion. This class of PS may be promising antimycobacterial aPDT agents with potential applications in medical clinical cases and bioremediation.
Collapse
Affiliation(s)
- Grazielle Guidolin Rossi
- Department of Pharmaceutical Sciences, Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Isadora Tisoco
- Department of Chemistry, Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Kelly Schneider Moreira
- Department of Chemistry, Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São Jose Do Rio Preto, São Paulo State, Brazil
| | - Thiago Augusto de Lima Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São Jose Do Rio Preto, São Paulo State, Brazil.
| | - Marli Matiko Anraku de Campos
- Department of Pharmaceutical Sciences, Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bernardo Almeida Iglesias
- Department of Chemistry, Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Di Gregorio E, Scarciglia A, Amaolo A, Ferrauto G. Mn(iii), Fe(iii) and Zn(ii)-serum albumin as innovative multicolour contrast agents for photoacoustic imaging. NANOSCALE ADVANCES 2024; 6:777-781. [PMID: 38298593 PMCID: PMC10825928 DOI: 10.1039/d3na00843f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Here we propose innovative photoacoustic imaging (PAI) contrast agents, based on the loading of Mn(iii)-, Fe(iii)- or Zn(ii)-protoporphyrin IX in serum albumin. These systems show different absorption wavelengths, opening the way to multicolor PA imaging. They were characterized in vitro for assessing stability, biocompatibility, and their optical and contrastographic properties. Finally, a proof of concept in vivo study was carried out in breast cancer bearing mice, to evaluate its effectiveness for cancer imaging.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Angelo Scarciglia
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Alessandro Amaolo
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| |
Collapse
|
14
|
Shee NK, Kim HJ. Porphyrin-Based Nanomaterials for the Photocatalytic Remediation of Wastewater: Recent Advances and Perspectives. Molecules 2024; 29:611. [PMID: 38338355 PMCID: PMC10856464 DOI: 10.3390/molecules29030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Self-organized, well-defined porphyrin-based nanostructures with controllable sizes and morphologies are in high demand for the photodegradation of hazardous contaminants under sunlight. From this perspective, this review summarizes the development progress in the fabrication of porphyrin-based nanostructures by changing their synthetic strategies and designs. Porphyrin-based nanostructures can be fabricated using several methods, including ionic self-assembly, metal-ligand coordination, reprecipitation, and surfactant-assisted methods. The synthetic utility of porphyrins permits the organization of porphyrin building blocks into nanostructures, which can remarkably improve their light-harvesting properties and photostability. The tunable functionalization and distinctive structures of porphyrin nanomaterials trigger the junction of the charge-transfer mechanism and facilitate the photodegradation of pollutant dyes. Finally, porphyrin nanomaterials or porphyrin/metal nanohybrids are explored to amplify their photocatalytic efficiency.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
| |
Collapse
|
15
|
Wen X, Zeng W, Zhang J, Liu Y, Miao Y, Liu S, Yang Y, Xu JJ, Ye D. Cascade In Situ Self-Assembly and Bioorthogonal Reaction Enable the Enrichment of Photosensitizers and Carbonic Anhydrase Inhibitors for Pretargeted Cancer Theranostics. Angew Chem Int Ed Engl 2024; 63:e202314039. [PMID: 38055211 DOI: 10.1002/anie.202314039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
We report here a tumor-pretargted theranostic approach for multimodality imaging-guided synergistic cancer PDT by cascade alkaline phosphatase (ALP)-mediated in situ self-assembly and bioorthogonal inverse electron demand Diels-Alder (IEDDA) reaction. Using the enzymatic catalysis of ALP that continuously catalyses the dephosphorylation and self-assembly of trans-cyclooctene (TCO)-bearing P-FFGd-TCO, a high density of fluorescent and magnetic TCO-containing nanoparticles (FMNPs-TCO) can be synthesized and retained on the membrane of tumor cells. They can act as 'artificial antigens' amenable to concurrently capture lately administrated tetrazine (Tz)-decorated PS (775NP-Tz) and carbonic anhydrase (CA) inhibitor (SA-Tz) via the fast IEDDA reaction. This two-step pretargeting process can further induce FMNPs-TCO regrowth into microparticles (FMNPs-775/SA) directly on tumor cell membranes, which is analyzed by bio-SEM and fluorescence imaging. Thus, efficient enrichment of both SA-Tz and 775NP-Tz in tumors can be achieved, allowing to alleviate hypoxia by continuously inhibiting CA activity and improving PDT of tumors. Findings show that subcutaneous HeLa tumors could be completely eradicated and no tumor recurred after irradiation with an 808 nm laser (0.33 W cm-2 , 10 min). This pretargeted approach may be applied to enrich other therapeutic agents in tumors to improve targeted therapy.
Collapse
Affiliation(s)
- Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yili Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Shaohai Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yanling Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Zhang WY, Li GC, Fan Y, Sun XQ, Wang B, Zhang CY, Feng XX, Xu WB, Liu JC. Synthesis of three cisplatin-conjugated asymmetric porphyrin photosensitizers for photodynamic therapy. Dalton Trans 2024; 53:582-590. [PMID: 38059743 DOI: 10.1039/d3dt02900j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Photodynamic therapy provides a promising solution for treating various cancer types. In this study, three distinct asymmetric porphyrin-cisplatin complex photosensitizers (ZnPt-P1, ZnPt-P2, and ZnPt-P3) were synthesized, each having unique side chains. Through a set of experiments involving singlet oxygen detection and density functional theory, ZnPt-P1 was demonstrated to have excellent efficacy, exceeding that of ZnPt-P2 and ZnPt-P3. Notably, ZnPt-1 showed significant phototoxicity while maintaining low dark toxicity when tested on HepG2 cells. Additionally, further examination revealed that ZnPt-P1 had the capability to generate reactive oxygen species within cancer cells when exposed to light irradiation. Taken together, these results highlight the potential of ZnPt-P1 as a photosensitizer for use in photodynamic therapy. This study contributes to enhancing cancer treatment methodologies and provides insights for the future development of innovative drugs for photosensitization.
Collapse
Affiliation(s)
- Wen-Yuan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Gui-Chen Li
- State Key Laboratory of Aridland Crop Science, Gansu Agriculture University, Lanzhou, 730000, P. R. China
| | - Yan Fan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xue-Qin Sun
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Bo Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Chun-Yan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xiao-Xia Feng
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Wei-Bing Xu
- State Key Laboratory of Aridland Crop Science, Gansu Agriculture University, Lanzhou, 730000, P. R. China
| | - Jia-Cheng Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
17
|
Wang L, Liu J, Wang J, Zhang D, Huang J. Thiophene-based porphyrin polymers for Mercury (II) efficient removal in aqueous solution. J Colloid Interface Sci 2024; 653:405-412. [PMID: 37722169 DOI: 10.1016/j.jcis.2023.09.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Development of novel sulf-functionalized porous organic polymers (POPs) for Mercury (II) (Hg2+) removal is of great significant, but the adsorbents always suffered by the low adsorption capacity, stability, and efficiency for the reason that the common construction of functionalized POPs from the functionalized monomers or post-functionalization of the POPs always sacrifice the porosity. In this paper, porphyrin-based POPs with different heteroatoms were constructed through the aldehyde monomer (benzene, 2,5-thiophenedicarboxaldehyde and thieno[3,2-b]thiophene-2,5-dicarboxaldehyde) and pyrrole according to the Adler-Longo method. In this way, nitrogen (N) in pyrrole and sulfur (S) in thiophene structures were embed into the backbone structure of the polymers. The functional structures not only act as the linking building block into the stable cross-linking structure, but also offer abundant uncovered functional sites for Hg2+ adsorption, resulting the porphyrin-based POPs high Hg2+ capacity (1049 mg/g), removal efficiency (more than 99.9%), good reusability and selectivity for its highest heteroatoms contents. The adsorption mechanism confirmed the cooperative coordination of N in porphyrin and S in thiophene with Hg2+. This work confirmed the functional groups play more important role in heavy metal adsorption, and the embedded functional sites into backbone also promotes the stability and the adsorption performance.
Collapse
Affiliation(s)
- Lizhi Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Junlong Liu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiajia Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - Du Zhang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China.
| |
Collapse
|
18
|
Han J, Liu Y, Peng D, Liu J, Wu D. Biomedical Application of Porphyrin-Based Amphiphiles and Their Self-Assembled Nanomaterials. Bioconjug Chem 2023; 34:2155-2180. [PMID: 37955349 DOI: 10.1021/acs.bioconjchem.3c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Porphyrins have been vastly explored and applied in many cutting-edge fields with plenty of encouraging achievements because of their excellent properties. As important derivatives of porphyrins, porphyrin-based amphiphiles (PBAs) not only maintain the advanced properties of porphyrins (catalysis, imaging, and energy transfer) but also possess self-assembly and encapsulation capability in aqueous solution. Accordingly, PBAs and their self-assembles have had important roles in diagnosing and treating tumors and inflammation lesions in vivo, but not limited to these. In this article, we introduce the research progress of PBAs, including their constitution, structure design strategies, and performances in tumor and inflammation lesion diagnosis and treatments. On that basis, the defects of synthesized PBAs during their application and the possible effective strategies to overcome the limitations are also proposed. Finally, perspectives on PBAs exploration are updated based on our knowledge. We hope this review will bring researchers from various domains insights about PBAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong 518119, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| |
Collapse
|
19
|
Yang M, Zhang Y, Hu Z, Xie H, Tian W, Liu Z. Application of hyaluronic acid-based nanoparticles for cancer combination therapy. Int J Pharm 2023; 646:123459. [PMID: 37778513 DOI: 10.1016/j.ijpharm.2023.123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Cancer is a significant public health problem in the world. The treatment methods include surgery, chemotherapy, phototherapy, and immunotherapy. Due to their respective limitations, the treatment effect is often unsatisfactory, laying hidden dangers for metastasis and recurrence. Since their exceptional biocompatibility and excellent targeting capabilities, hyaluronic acid-based biomaterials have generated great interest as drug delivery methods for tumor therapy. Moreover, modified HA can self-assemble into hydrogels or nanoparticles (NPs) for precise drug administration. This article summarizes the application of HA-based NPs in combination therapy. Ultimately, it is anticipated that this research will offer guidance for creating various HA-based NPs utilized in numerous cancer therapies.
Collapse
Affiliation(s)
- Mengru Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zheming Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Haonan Xie
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Wenli Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
20
|
Gogde K, Paul S, Pujari AK, Yadav AK, Bhaumik J. Synthesis of Metallo-Chromone Porphyrin Nano-Starch Sensitizers as Photodynamic Therapeutics for the Eradication of Enterococci Dental Pathogens. J Med Chem 2023; 66:13058-13071. [PMID: 37671975 DOI: 10.1021/acs.jmedchem.3c01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Photodynamic therapy (PDT), as an advanced, alternative, and promising treatment, can inhibit dental pathogens. PDT employs the activation of photosensitizers via the light of a particular wavelength and molecular oxygen to inhibit dental pathogens. Herein, we present a comprehensive study on the synthesis and characterization of three chromone-porphyrins [Zn(II)-5-[4-chromone]-15-(4-phenyl)porphyrin (ZnCP), 5-[4-chromone]-15-(4-12 phenyl)porphyrin (DMCP), and Pd(II)-5-[4-chromone]-15-(4-phenyl)porphyrin (PdCP)]. Next, the computational study was also performed to establish the correlation between photophysical properties and theoretical calculations for those chromone-porphyrins using density functional theory and time-dependent density functional theory. Furthermore, chromone-porphyrins were encapsulated in starch nanoparticles to develop soluble nano-starch sensitizers (ZnCP-SNPs, DMCP-SNPs, and PdCP-SNPs) via the nanoprecipitation technique. Upon green light exposure, these nano-starch sensitizers exhibited excellent singlet oxygen generation ability. Moreover, final nanoformulations have been explored for pH responsiveness. Based on our intriguing findings, the chromone-porphyrin-loaded nano-starch sensitizers displayed great potential as prospective PDT to treat enterococci dental pathogens.
Collapse
Affiliation(s)
- Kunal Gogde
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, Chandigarh 160014, India
| | - Shatabdi Paul
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001, India
| | - Anil Kumar Pujari
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
- Indian Institute of Science Education and Research (IISER), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, Chandigarh 160014, India
| | - Jayeeta Bhaumik
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
| |
Collapse
|
21
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
22
|
Nejad ST, Rahimi R, Rabbani M, Rostamnia S. Facile photosynthesis of novel porphyrin-derived nanocomposites containing Ag, Ag/Au, and Ag/Cu for photobactericidal study. Sci Rep 2023; 13:8580. [PMID: 37237037 DOI: 10.1038/s41598-023-34745-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
In this research, the one-step synthesis of novel porphyrin-based nanocomposites was performed easily using a photochemical under visible light illumination strategy. As a result, the focus of this research is on synthesizing and using decorated ZnTPP (zinc(II)tetrakis(4-phenyl)porphyrin) nanoparticles with Ag, Ag/AgCl/Cu, and Au/Ag/AgCl nanostructures as antibacterial agents. Initially, ZnTPP NPs were synthesized as a result of the self-assembly of ZnTPP. In the next step, in a visible-light irradiation photochemically process, the self-assembled ZnTPP nanoparticles were used to make ZnTPP/Ag NCs, ZnTPP/Ag/AgCl/Cu NCs, and ZnTPP/Au/Ag/AgCl NCs. A study on the antibacterial activity of nanocomposites was carried out for Escherichia coli, and Staphylococcus aureus as pathogen microorganisms by the plate count method, well diffusion tests, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) values determination. Thereafter, the reactive oxygen species (ROS) were determined by the flow cytometry method. All the antibacterial tests and the flow cytometry ROS measurements were carried out under LED light and in dark. The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to investigate the cytotoxicity of the ZnTPP/Ag/AgCl/Cu NCs, against Human foreskin fibroblast (HFF-1) normal cells. Due to the specific properties such as admissible photosensitizing properties of porphyrin, mild reaction conditions, high antibacterial properties in the presence of LED light, crystal structure, and green synthesis, these nanocomposites were recognized as kinds of antibacterial materials that are activated in visible light, got the potential for use in a broad range of medical applications, photodynamic therapy, and water treatment.
Collapse
Affiliation(s)
- Sajedeh Tehrani Nejad
- Inorganic Group, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Rahmatollah Rahimi
- Inorganic Group, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran.
| | - Mahboubeh Rabbani
- Inorganic Group, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran.
| |
Collapse
|
23
|
Zhang C, Wang X, Liu G, Ren H, Liu J, Jiang Z, Zhang Y. CRISPR/Cas9 and Chlorophyll Coordination Micelles for Cancer Treatment by Genome Editing and Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206981. [PMID: 36693779 DOI: 10.1002/smll.202206981] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
CRISPR/Cas9-based gene therapy and photodynamic therapy both show promise for cancer treatment but still have their drawbacks limited by tumor microenvironment and long treatment duration. Herein, CRISPR/Cas9 genome editing and photodynamic strategy for a synergistic anti-tumor therapeutic modality is merged. Chlorophyll (Chl) extracted from natural green vegetables is encapsulated in Pluronic F127 (F127) micelles and Histidine-tagged Cas9 can be effectively chelated onto micelles via metal coordination by simple incubation, affording Cas9-Chl@F127 micelles. Mg2+ acts as an enzyme cofactor to correlatively enhance Cas9 gene-editing activity. Upon laser irradiation, Chl as an effective photosensitizer generates reactive oxygen species (ROS) to kill tumor cells. Meanwhile, CRISPR/Cas9, mediated by dual deliberately designed gRNAs of APE1 and NRF2, can reprogram the tumor microenvironment by increasing the intracellular oxygen accumulation and impairing the oxidative defense system of tumor cells. Cas9-Chl@F127 micelles can responsively release Cas9 in the presence of abundant ATP or low pH in tumor cells. In a murine tumor model, Cas9-Chl@F127 complexed with dual gRNAs including APE1 and NRF2 significantly inhibits the tumor growth. Taken together, Cas9-Chl@F127 micelles, representing the first Chl-based green biomaterial for the delivery of Cas9, show great promise for the synergistic anti-tumor treatment by PDT and gene editing.
Collapse
Affiliation(s)
- Chen Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaojie Wang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jingang Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
24
|
Dong Q, Ding Q, Yuan R, Yuan Y. Metal Porphyrin Complex Combined with Polymerization and Isomerization Cyclic Amplification for a Sensitive Photoelectrochemical Assay. Anal Chem 2023; 95:5126-5132. [PMID: 36897080 DOI: 10.1021/acs.analchem.3c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
5,10,15,20-Tetrakis(4-aminophenyl)-21H,23H-porphine (TPAPP) possesses good light-harvesting ability and photoelectrochemical (PEC) cathode response signal; however, the disadvantages of easy stacking and weak hydrophilicity limit its application as a signal probe in PEC biosensors. Based on these, we prepared a Fe3+ and Cu2+ co-coordinating photoactive material (TPAPP-Fe/Cu) with horseradish peroxidase (HRP)-like activity. The metal ions in the porphyrin center not only enabled the directional flow of photogenerated electrons between electron-rich porphyrin and positive metal ions within inner-/intermolecular layers but also accelerated electron transfer through a synergistic redox reaction of Fe(III)/Fe(II) and Cu(II)/Cu(I) as well as rapid generation of superoxide anion radicals (O2-•) by mimicking catalytically produced and dissolved oxygen, thereby providing the desired cathode photoactive material with extremely high photoelectric conversion efficiency. Accordingly, by combining with toehold-mediated strand displacement (TSD)-induced single cycle and polymerization and isomerization cyclic amplification (PICA), an ultrasensitive PEC biosensor was constructed for the detection of colon cancer-related miRNA-182-5p. The ultratrace target could be converted to abundant output DNA by TSD possessing the desirable amplifying ability to trigger PICA for forming long ssDNA with repetitive sequences, thus decorating substantial TPAPP-Fe/Cu-labeled DNA signal probes for producing high PEC photocurrent. Meanwhile, the Mn(III) meso-tetraphenylporphine chloride (MnPP) was embedded in dsDNA to further exhibit a sensitization effect toward TPAPP-Fe/Cu and an acceleration effect analogous to that of metal ions in the porphyrin center above. As a result, the proposed biosensor displayed a detection limit as low as 0.2 fM, facilitating the development of high-performance biosensors and showing great potential in early clinical diagnosis.
Collapse
Affiliation(s)
- Qingyuan Dong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Qiao Ding
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
25
|
Sharma VK, Assaraf YG, Gross Z. Hallmarks of anticancer and antimicrobial activities of corroles. Drug Resist Updat 2023; 67:100931. [PMID: 36739808 DOI: 10.1016/j.drup.2023.100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corroles provide a remarkable opportunity for the development of cancer theranostic agents among other porphyrinoids. While most transition metal corrole complexes are only therapeutic, post-transition metallocorroles also find their applications in bioimaging. Moreover, corroles exhibit excellent photo-physicochemical properties, which can be harnessed for antitumor and antimicrobial interventions. Nevertheless, these intriguing, yet distinct properties of corroles, have not attained sufficient momentum in cancer research. The current review provides a comprehensive summary of various cancer-relevant features of corroles ranging from their structural and photophysical properties, chelation, protein/corrole interactions, to DNA intercalation. Another aspect of the paper deals with the studies of corroles conducted in vitro and in vivo with an emphasis on medical imaging (optical and magnetic resonance), photo/sonodynamic therapies, and photodynamic inactivation. Special attention is also given to a most recent finding that shows the development of pH-responsive phosphorus corrole as a potent antitumor drug for organelle selective antitumor cytotoxicity in preclinical studies. Another biomedical application of corroles is also highlighted, signifying the application of water-soluble and completely lipophilic corroles in the photodynamic inactivation of microorganisms. We strongly believe that future studies will offer a greater possibility of utilizing advanced corroles for selective tumor targeting and antitumor cytotoxicity. In the line with future developments, an ideal pipeline is envisioned on grounds of cancer targeting nanoparticle systems upon decoration with tumor-specific ligands. Hence, we envision that a bright future lies ahead of corrole anticancer research and therapeutics.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
26
|
Cobalt protoporphyrin-induced nano-self-assembly for CT imaging, magnetic-guidance, and antioxidative protection of stem cells in pulmonary fibrosis treatment. Bioact Mater 2023; 21:129-141. [PMID: 36093327 PMCID: PMC9411585 DOI: 10.1016/j.bioactmat.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) transplantation is a promising approach for pulmonary fibrosis (PF), however it is impeded by several persistent challenges, including the lack of long-term tracking, low retention, and poor survival of MSCs, as well as the low labeling efficiency of nanoprobes. Herein, a cobalt protoporphyrin IX (CoPP) aggregation-induced strategy is applied to develop a multifunctional nano-self-assembly (ASCP) by combining gold nanoparticle (AuNPs), superparamagnetic iron oxide nanoparticles (SPIONs), and CoPP through a facile solvent evaporation-driven approach. Since no additional carrier materials are employed during the synthesis, high loading efficiency of active ingredients and excellent biocompatibility are achieved. Additionally, facile modification of the ASCPs with bicyclo[6.1.0]nonyne (BCN) groups (named as ASCP-BCN) enables them to effectively label MSCs through bioorthogonal chemistry. The obtained ASCP-BCN could not only help to track MSCs with AuNP-based computed tomography (CT) imaging, but also achieve an SPIONs-assisted magnetic field based improvement in the MSCs retention in lungs as well as promoted the survival of MSCs via the sustained release of CoPP. The in vivo results demonstrated that the labeled MSCs improved the lung functions and alleviated the fibrosis symptoms in a bleomycin–induced PF mouse model. Collectively, a novel ASCP-BCN multifunctional nanoagent was developed to bioorthogonally-label MSCs with a high efficiency, presenting a promising potential in the high-efficient MSC therapy for PF. Cobalt protoporphyrin IX induces the formation of multifunctional nanoagent by self-assembly without additional carriers. Bioorthogonal reaction increases the stem cell labeling efficiency of nanoagents. Gold nanoparticles-based CT imaging enables stem cell tracking in vivo. Magnetic guidance and cytoprotection functions improve the therapeutic effect of stem cell therapy for pulmonary fibrosis.
Collapse
|
27
|
Wu T, Lu X, Yu Z, Zhu X, Zhang J, Wang L, Zhou H. Near-infrared light activated photosensitizer with specific imaging of lipid droplets enables two-photon excited photodynamic therapy. J Mater Chem B 2023; 11:1213-1221. [PMID: 36632783 DOI: 10.1039/d2tb02466g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two-photon excited phototherapy has attracted considerable attention due to its advantages such as deeper penetration depth and higher spatial resolution. The lack of a high-performance photosensitizer with large two-photon absorption cross-sections and specific targeting ability makes the efficacy of phototherapy in the treatment of cancer unsatisfactory. Here, a new BODIPY-derived photosensitizer 6DBF2 is designed with two-photon photosensitization for two-photon excited photodynamic therapy in vivo. 6DBF2 possesses good two-photon absorption and efficient 1O2 generation upon near-infrared laser excitation. Excellent targeting specificities to lipid droplets of 6DBF2 without any encapsulation or modification at a low working concentration of 0.1 μM is in favor of efficient photodynamic therapy. In vitro cancer cell ablation and in vivo tumor ablation inside mice models upon two-photon irradiation in NIR demonstrate the outstanding therapeutic performance of 6DBF2 in two-photon excited photodynamic therapy. This work thus discusses a rare example of lipid droplets targeting two-photon excited photodynamic therapy for deep cancer tissue imaging and treatment under near-infrared light irradiation.
Collapse
Affiliation(s)
- Tengdie Wu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Xin Lu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Zhipeng Yu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Xiaojiao Zhu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Jie Zhang
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Lianke Wang
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Hongping Zhou
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| |
Collapse
|
28
|
Chavda VP, Khadela A, Shah Y, Postwala H, Balar P, Vora L. Current status of Cancer Nanotheranostics: Emerging strategies for cancer management. Nanotheranostics 2023; 7:368-379. [PMID: 37151802 PMCID: PMC10161386 DOI: 10.7150/ntno.82263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Cancer diagnosis and management have been a slow-evolving area in medical science. Conventional therapies have by far proved to have various limitations. Also, the concept of immunotherapy which was thought to revolutionize the management of cancer has presented its range of drawbacks. To overcome these limitations nanoparticulate-derived diagnostic and therapeutic strategies are emerging. These nanomaterials are to be explored as they serve as a prospect for cancer theranostics. Nanoparticles have a significant yet unclear role in screening as well as therapy of cancer. However, nanogels and Photodynamic therapy is one such approach to be developed in cancer theranostics. Photoactive cancer theranostics is a vivid area that might prove to help manage cancer. Also, the utilization of the quantum dots as a diagnostic tool and to selectively kill cancer cells, especially in CNS tumors. Additionally, the redox-sensitive micelles targeting the tumor microenvironment of the cancer are also an important theranostic tool. This review focuses on exploring various agents that are currently being studied or can further be studied as cancer theranostics.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
- ✉ Corresponding author: Vivek P. Chavda, Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Niangua, Ahmedabad (Gujarat)-380009. +91 7030919407; ; ORCID ID: https://orcid.org/0000-0002-7701-8597
| | - Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Niangua, Ahmedabad, Gujarat 380009, India
| | - Yasha Shah
- PharmD Section, L.M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Humzah Postwala
- PharmD Section, L.M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Pankti Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Lalit Vora
- School of Pharmacy, Queen's University Belfast, 97 Lilburn Road, BT9 7BL, U.K
| |
Collapse
|
29
|
Maddahzadeh-Darini N, Ghorbanloo M. Supra-Amphiphilic Porphyrin Based on Thermoresponsive Poly(N-Isopropylacrylamide-co-2-Acrylamido-2-Methylpropane Sulfonic Acid Sodium) Hydrogels: Synthesis, Characterization and Catalytic Applications. Catal Letters 2022. [DOI: 10.1007/s10562-022-04241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Pan M, Hu D, Yuan L, Yu Y, Li Y, Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B 2022. [PMID: 37521874 PMCID: PMC10372842 DOI: 10.1016/j.apsb.2022.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive treatment modality that utilizes low-frequency and low-intensity ultrasound (US) to trigger sensitizers to kill tumor cells with reactive oxygen species (ROS). Although SDT has attracted much attention for its properties including high tumor specificity and deep tissue penetration, its anticancer efficacy is still far from satisfactory. As a result, new strategies such as gas-assisted therapy have been proposed to further promote the effectiveness of SDT. In this review, the mechanisms of SDT and gas-assisted SDT are first summarized. Then, the applications of gas-assisted SDT for cancer therapy are introduced and categorized by gas types. Next, therapeutic systems for SDT that can realize real-time imaging are further presented. Finally, the challenges and perspectives of gas-assisted SDT for future clinical applications are discussed.
Collapse
|
31
|
Jung W, Lee DY, Moon E, Jon S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications. Adv Drug Deliv Rev 2022; 191:114620. [PMID: 36379406 DOI: 10.1016/j.addr.2022.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Metals are indispensable for the activities of all living things, from single-celled organisms to higher organisms, including humans. Beyond their intrinsic quality as metal ions, metals help creatures to maintain requisite biological processes by forming coordination complexes with endogenous ligands that are broadly distributed in nature. These types of naturally occurring chelating reactions are found through the kingdoms of life, including bacteria, plants and animals. Mimicking these naturally occurring coordination complexes with intrinsic biocompatibility may offer an opportunity to develop nanomedicine toward clinical applications. Herein, we introduce representative examples of naturally occurring coordination complexes in a selection of model organisms and highlight such bio-inspired metal-chelating nanomaterials for theranostic applications.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea; Translational Biomedical Research Group, Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea.
| | - Eugene Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
32
|
Shee NK, Kim HJ. Sn(IV)-Porphyrin-Based Nanostructures Featuring Pd(II)-Mediated Supramolecular Arrays and Their Photocatalytic Degradation of Acid Orange 7 Dye. Int J Mol Sci 2022; 23:13702. [PMID: 36430177 PMCID: PMC9696627 DOI: 10.3390/ijms232213702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Two robust Sn(IV)-porphyrin-based supramolecular arrays (1 and 2) were synthesized via the reaction of trans-Pd(PhCN)2Cl2 with two precursor building blocks (SnP1 and SnP2). The structural patterns in these architectures vary from 2D to 3D depending on the axial ligation of Sn(IV)-porphyrin units. A discrete 2D tetrameric supramolecule (1) was constructed by coordination of {(trans-dihydroxo)[5,10-bis(4-pyridyl)-15,20-bis(phenyl) porphyrinato]}tin(IV) (SnP1) with trans-PdCl2 units. In contrast, the coordination between the {(trans-diisonicotinato)[5,10-bis(4-pyridyl)-15,20-bis(phenyl)porphyrinato]}tin(IV) (SnP2) and trans-PdCl2 units formed a divergent 3D array (2). Axial ligation of the Sn(IV)-porphyrin building blocks not only alters the supramolecular arrays but also significantly modifies the nanostructures, including porosity, surface area, stability, and morphology. These structural changes consequently affected the photocatalytic degradation efficiency under visible-light irradiation towards acid orange 7 (AO) dye in an aqueous solution. The degradation efficiency of the AO dye in the aqueous solution was observed to be between 86% to 91% within 90 min by these photocatalysts.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Korea
| |
Collapse
|
33
|
Lu Z, Bai S, Jiang Y, Wu S, Xu D, Zhang J, Peng X, Zhang H, Shi Y, Liu G. Amplifying Dendritic Cell Activation by Bioinspired Nanometal Organic Frameworks for Synergistic Sonoimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203952. [PMID: 36148843 DOI: 10.1002/smll.202203952] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Despite recent advancements of sonodynamic therapy (SDT) in cancer immunotherapy, challenges have yet to be surmounted to further boost its immunotherapeutic efficacy due to the low-level tumor antigens presentation of dendritic cells (DCs). Cell membrane camouflaged-nanoparticles can integrate the neoantigens of the cancer cell membrane with the multifunctionalities of synthetic nanocores. Herein, sono-responsive nanoparticles coated with DC-targeted antibody chimeric cancer cell membrane are investigated for multimodal therapy. The nanometal organic frameworks (MOFs) that respond to ultrasound are loaded successfully inside the vesicles displaying an anti-DEC205 antibody. The anti-DEC205 chimeric vesicles can directly target and activate DCs, promote tumor antigens cross-presentation, and then produce a cascade amplified T-cell immune response. Upon deep tissue-penetrating sonication, AMR-MOF@AuPt generates large amounts of reactive oxygen species that directly kill cancer cells, further initiating an anti-cancer T cell immune response. Such synergistic sono-immunotherapies effectually inhibit tumor growth and induce strong systemic and long-term immune memory against cancer recurrence and distant metastasis. The authors findings provide DCs and tumor cells of a dual active-targeting cell membrane-coated sono-immunotherapeutic nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Yonghe Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Shuaiying Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Jianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Xuqi Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Hongrui Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
34
|
Liao M, Cui J, Yang M, Wei Z, Xie Y, Lu C. Photoinduced electron transfer in metalloporphyrins. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Metalloporphyrin Metal–Organic Frameworks: Eminent Synthetic Strategies and Recent Practical Exploitations. Molecules 2022; 27:molecules27154917. [PMID: 35956867 PMCID: PMC9369971 DOI: 10.3390/molecules27154917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence of metal–organic frameworks (MOFs) in recent years has stimulated the interest of scientists working in this area as one of the most applicable archetypes of three-dimensional structures that can be used as promising materials in several applications including but not limited to (photo-)catalysis, sensing, separation, adsorption, biological and electrochemical efficiencies and so on. Not only do MOFs have their own specific versatile structures, tunable cavities, and remarkably high surface areas, but they also present many alternative procedures to overcome emerging obstacles. Since the discovery of such highly effective materials, they have been employed for multiple uses; additionally, the efforts towards the synthesis of MOFs with specific properties based on planned (template) synthesis have led to the construction of several promising types of MOFs possessing large biological or bioinspired ligands. Specifically, metalloporphyrin-based MOFs have been created where the porphyrin moieties are either incorporated as struts within the framework to form porphyrinic MOFs or encapsulated inside the cavities to construct porphyrin@MOFs which can combine the peerless properties of porphyrins and porous MOFs simultaneously. In this context, the main aim of this review was to highlight their structure, characteristics, and some of their prominent present-day applications.
Collapse
|
36
|
Wang C, Tian Y, Wu B, Cheng W. Recent Progress Toward Imaging Application of Multifunction Sonosensitizers in Sonodynamic Therapy. Int J Nanomedicine 2022; 17:3511-3529. [PMID: 35966148 PMCID: PMC9365495 DOI: 10.2147/ijn.s370767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/23/2022] [Indexed: 12/13/2022] Open
Abstract
Sonodynamic therapy (SDT) is a rapidly developing non-surgical therapy that initiates sensitizers’ catalytic reaction using ultrasound, showing great potential for cancer treatment due to its high safety and non-invasive nature. In addition, recent research has found that using different diagnostic and therapeutic methods in tandem can lead to better anticancer outcomes. Therefore, as essential components of SDT, sonosensitizers have been extensively explored to optimize their functions and integrate multiple medical fields. The review is based on five years of articles evaluating the combined use of SDT and imaging in treating cancer. By developing multifunctional sonosensitive particles that combine imaging and sonodynamic therapy, we have integrated diagnosis into the treatment of precision medicine applications, improving SDT cell uptake and antitumor efficacy utilizing different tumour models. This paper describes the imaging principle and the results of cellular and animal imaging of the multifunctional sonosensitizers. Efforts are made in this paper to provide data and design references for future SDT combined imaging research and clinical application development and to provide offer suggestions.
Collapse
Affiliation(s)
- Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Wen Cheng; Bolin Wu, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13313677182; +86 15663615088, Fax +86 451 85718392; +86 451 86298651, Email ;
| |
Collapse
|
37
|
Sn(IV) Porphyrin-Based Ionic Self-Assembled Nanostructures and Their Application in Visible Light Photo-Degradation of Malachite Green. Catalysts 2022. [DOI: 10.3390/catal12070799] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of porphyrin-based ionic complexes were prepared through the reaction of two porphyrin precursors, 5,10,15,20-tetrakis(4-(2-pyridyl)phenyl)porphyrin H2TPhPyP (1) and trans-dihydroxo [5,10,15,20-tetrakis(4-(2-pyridyl)phenyl)porphyrinato]tin(IV) Sn(OH)2TPhPyP (2), with various acids (HCl, HNO3, CF3COOH, H2SO4, H2CO3, and H3PO4). The complexes were characterized via elemental analysis, 1H nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet (UV)-visible spectroscopy, fluorescence spectroscopy, and field-emission scanning electron microscopy (FE-SEM). Each compound exhibited different results for UV-visible, fluorescence, FT-IR, and FE-SEM studies depending on the counter anions. The complexes possessed different self-assembled nanostructures based on electronic interactions between the cations of compounds 1 and 2 with different counter anions. These aggregated species are stabilized by electrostatic forces and the π-π stacking interactions between the two porphyrin rings, in which the counter anions play an important bridging role. The counter anions also play an important role in controlling the morphology and photocatalytic properties of the as-developed materials. The complexes were then used for the photocatalytic degradation of the malachite green (MG) dye in aqueous media under visible light irradiation for up to 70 min. A morphology-dependent photocatalytic degradation of the MG dye was observed for all the ionic complexes, with efficiencies ranging from 50% to 95%.
Collapse
|
38
|
Figueira F, Tomé JPC, Paz FAA. Porphyrin NanoMetal-Organic Frameworks as Cancer Theranostic Agents. Molecules 2022; 27:3111. [PMID: 35630585 PMCID: PMC9147750 DOI: 10.3390/molecules27103111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Metal-Organic Frameworks (MOFs) are hybrid multifunctional platforms that have found remarkable applications in cancer treatment and diagnostics. Independently, these materials can be employed in cancer treatment as intelligent drug carriers in chemotherapy, photothermal therapy, and photodynamic therapy; conversely, MOFs can further be used as diagnostic tools in fluorescence imaging, magnetic resonance imaging, computed tomography imaging, and photoacoustic imaging. One essential property of these materials is their great ability to fine-tune their composition toward a specific application by way of a judicious choice of the starting building materials (metal nodes and organic ligands). Moreover, many advancements were made concerning the preparation of these materials, including the ability to downsize the crystallites yielding nanoporous porphyrin MOFs (NMOFs) which are of great interest for clinical treatment and diagnostic theranostic tools. The usage of porphyrins as ligands allows a high degree of multifunctionality. Historically these molecules are well known for their reactive oxygen species formation and strong fluorescence characteristics, and both have proved helpful in cancer treatment and diagnostic tools. The anticipation that porphyrins in MOFs could prompt the resulting materials to multifunctional theranostic platforms is a reality nowadays with a series of remarkable and ground-breaking reports available in the literature. This is particularly remarkable in the last five years, when the scientific community witnessed rapid development in porphyrin MOFs theranostic agents through the development of imaging technologies and treatment strategies for cancer. This manuscript reviews the most relevant recent results and achievements in this particular area of interest in MOF chemistry and application.
Collapse
Affiliation(s)
- Flávio Figueira
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - João P. C. Tomé
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n° 1, 1049-001 Lisboa, Portugal;
| | - Filipe A. Almeida Paz
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
39
|
Luo H, Yu W, Chen S, Wang Z, Tian Z, He J, Liu Y. Application of metalloporphyrin sensitizers for the treatment or diagnosis of tumors. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221090914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
At present, metalloporphyrin compounds demonstrate three main uses as anticancer sensitizers: (1) photosensitizers, (2) photothermal conversion agents, and (3) ultrasound sensitizers. Developing efficient sensitizers for cancer with excellent controllability and biocompatibility is an important goal of oncology medicine. Because of the different structural diversity of anticancer sensitizers, such sensitizers are used for treating cancers by employing a variety of tumor treatment methods such as mature photodynamic therapy, commonly used clinically photothermal therapy and promising sonodynamic therapy. Among the many sensitizers, metalloporphyrin-complex sensitizers attract wide attention due to their excellent performance in tumor treatment and diagnosis. This review briefly describes some metalloporphyrin anticancer drugs and diagnostic agents related to photodynamic, photothermal and sonodynamic therapy, and discusses the roles of metal atoms in these drugs.
Collapse
Affiliation(s)
- Hongyu Luo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Wenmei Yu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Si Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Zhenyu Wang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, People’s Republic of China
| | - Zejie Tian
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, People’s Republic of China
| | - Yunmei Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| |
Collapse
|
40
|
Shee N, Kim HJ. Three Isomeric Zn(II)-Sn(IV)-Zn(II) Porphyrin-Triad-Based Supramolecular Nanoarchitectures for the Morphology-Dependent Photocatalytic Degradation of Methyl Orange. ACS OMEGA 2022; 7:9775-9784. [PMID: 35350320 PMCID: PMC8945165 DOI: 10.1021/acsomega.2c00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Three isomeric Zn(II)-Sn(IV)-Zn(II) porphyrin-based triads (T2, T3, and T4) were synthesized by the reaction of common Zn(II) porphyrins (ZnL) with different Sn(IV) porphyrins (SnP n ). The Sn(IV) porphyrin precursors differ with respect to the position of the pyridyl-N atoms. All compounds were characterized by 1H NMR, UV-vis, fluorescence spectroscopy, electrospray ionization-mass spectrometry, and field-emission scanning electron microscopy measurements. In these structures, the intramolecular cooperative metal-ligand coordination of the 3-pyridyl nitrogen in SnP 3 with axial ZnL and the π-π interactions between the adjacent porphyrin triad are the determining factors affecting the nanostructures of T3. Owing to the geometrical constraints of the SnP 2 center, this type of interaction is not possible for T2. Therefore, only the π-π interactions affect the self-assembly process. In the case of SnP 4 , intermolecular coordinative interactions and then π-π interactions are responsible for the nanostructure of T4. The morphology-dependent photocatalytic degradation of methyl orange (MO) dye in aqueous solution under visible light irradiation was observed for these photocatalysts, and the degradation ratio of MO varied from 76 to 94% within 100 min. Nanorod-shaped T3 exhibited higher performance compared to nanosphere T2 and nanoflake T4.
Collapse
Affiliation(s)
- Nirmal
Kumar Shee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hee-Joon Kim
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
41
|
Luo LJ, Liu XM, Zhang X, Liu J, Gao Y, Sun TY, Li LL. Quantitative Detection of In Vivo Aggregation Degree for Enhanced M2 Macrophage MR Imaging. NANO LETTERS 2022; 22:1694-1702. [PMID: 35129358 DOI: 10.1021/acs.nanolett.1c04711] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ self-assembly in vivo can be used in the enhanced diagnosis and therapy of major diseases such as cancer and bacterial infections on the basis of an assembly/aggregation-induced-retention (AIR) effect. However, the aggregation degree (αagg) is a significant parameter for determining the delivery efficiency to lesions in a complex physiological environment and a real-time quantitative calculation of the aggregation degree in vivo is still a great challenge. Here, we developed a magnetic resonance imaging (MRI) method for sensitive and quantitative calculation of αagg with a detection limit of 10-4 M and a bioactivated in vivo assembly (BIVA) magnetic resonance (MR) probe was optimized for enhanced T1-weighted MR imaging of M2 macrophages in tumors. Our MRI quantitative calculation method had a high fitting degree (R2 = 0.987) with the gold standard fluorescence (FL) method. On the basis of the BIVA mechanism of CD206 active targeting and cathepsin B specific tailoring to induce an in situ nanofiber assembly, our optimized BIVA probe exhibited a high intracellular aggregation degree of over 70% and a high in vivo αagg value of over 55%. Finally, the aggregation-enhanced T1 MR signal and the AIR effect both contributed to enhanced T1-weighted MR imaging of M2 macrophages in triple-negative breast cancer. We believe that our αagg real-time quantitative calculation method of MRI will help to further screen and optimize the in vivo enhanced imaging and treatment of the BIVA drug.
Collapse
Affiliation(s)
- Lu-Jun Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China
| | - Xiu-Mei Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China
| | - Xiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, People's Republic of China
| | - Jiao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, People's Republic of China
| | - Yuanyuan Gao
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, People's Republic of China
| | - Tong-Yi Sun
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities, Key Laboratory of Biopharmaceuticals, School of Life Science and Technology, Weifang Medical University, Weifang 261053, Shandong, People's Republic of China
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, People's Republic of China
| |
Collapse
|
42
|
In vitro degradation, photo-dynamic and thermal antibacterial activities of Cu-bearing chlorophyllin-induced Ca–P coating on magnesium alloy AZ31. Bioact Mater 2022; 18:284-299. [PMID: 35387161 PMCID: PMC8961461 DOI: 10.1016/j.bioactmat.2022.01.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 12/20/2022] Open
|
43
|
Feng L, Chen M, Li R, Zhou L, Wang C, Ye P, Hu X, Yang J, Sun Y, Zhu Z, Fang K, Chai K, Shi S, Dong C. Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/ photodynamic therapy. Acta Biomater 2022; 138:463-477. [PMID: 34718179 DOI: 10.1016/j.actbio.2021.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is an effective noninvasive therapeutic strategy that can convert oxygen to highly cytotoxic singlet oxygen (1O2) through the co-localization of excitation light and photosensitizers. However, compromised by the hypoxic tumor microenvironment, the therapeutic efficacy of PDT is reduced seriously. Herein, to overcome tumor-associated hypoxia, and further achieve tumor-targeted synergistic chemotherapy/PDT/photothermal therapy (PTT), we have constructed a biodegradable oxygen-producing nanoplatform (named Ini@PM-HP), which was composed of the porous metal-organic framework (PCN-224(Mn)), the poly (ADP-ribose) polymerase (PARP) inhibitor (Iniparib), and the polydopamine-modified hyaluronic acid (HA-PDA). Since HA can specifically bind to the overexpressed HA receptors (cluster determinant 44, CD44) on tumor cell, Ini@PM-HP prefers to accumulate at the tumor site once injected intravenously. Then iniparib can be released in tumor environment (TME), thereby dysfunctioning DNA damage repair and promoting cell apoptosis. At the same time, the chelating of Mn and tetrakis(4-carboxyphenyl) porphyrin (Mn-TCPP) can generate O2 in situ by reacting with endogenous H2O2, relieving the hypoxic TME and achieving enhanced PDT. Moreover, owing to the high photothermal conversion efficiency of PDA, PTT can be driven by the 808 nm laser irradiation. As systematically demonstrated in vitro and in vivo, this nanotherapeutic approach enables the combined therapy with great inhibition on tumor. Overall, the as-prepared nanoplatform provide a promising strategy to overcome tumor-associated hypoxia, and shows great potential for combination tumor therapy. STATEMENT OF SIGNIFICANCE: A delicately designed biodegradable oxygen-producing nanoplatform Ini@PM-HP is constructed to achieve combination therapy of solid tumors. Taking advantage of the active-targeting, PTT, enhanced PDT and PARPi, this nanotherapeutic approach successfully enables the combined chemo/photothermal/photodynamic therapy with great inhibition of solid tumors.
Collapse
|
44
|
Polivanovskaia DA, Birin KP, Averin AA, Gorbunova YG, Tsivadze AY. Photocatalytic activity of pyrazinoporphyrin in the presence of gold nanoparticles and nanoclusters. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3321-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Shee NK, Kim HJ. Morphology-controlled self-assembled nanostructures of complementary metalloporphyrin triads obtained through tuning their intermolecular coordination and their photocatalytic degradation of Orange II dye. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00963c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tuning the intermolecular metal–ligand coordination mode in a series of (Zn–Sn–Zn) porphyrin triads resulted in the formation of specific nanostructured photocatalysts for the visible light photodegradation of Orange II dye.
Collapse
Affiliation(s)
- Nirmal Kumar Shee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
46
|
Mohammed TP, Sankaralingam M. Reactivities of high valent manganese-oxo porphyrins in aqueous medium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Mollaeva MR, Yabbarov N, Sokol M, Chirkina M, Mollaev MD, Zabolotskii A, Seregina I, Bolshov M, Kaplun A, Nikolskaya E. Optimization, Characterization and Pharmacokinetic Study of Meso-Tetraphenylporphyrin Metal Complex-Loaded PLGA Nanoparticles. Int J Mol Sci 2021; 22:12261. [PMID: 34830136 PMCID: PMC8618356 DOI: 10.3390/ijms222212261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
The selection of technological parameters for nanoparticle formulation represents a complicated development phase. Therefore, the statistical analysis based on Box-Behnken methodology is widely used to optimize technological processes, including poly(lactic-co-glycolic acid) nanoparticle formulation. In this study, we applied a two-level three-factor design to optimize the preparation of nanoparticles loaded with cobalt (CoTPP), manganese (MnClTPP), and nickel (NiTPP) metalloporphyrins (MeP). The resulting nanoparticles were examined by dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, MTT test, and hemolytic activity assay. The optimized model of nanoparticle formulation was validated, and the obtained nanoparticles possessed a spherical shape and physicochemical characteristics enabling them to deliver MeP in cancer cells. In vitro hemolysis assay revealed high safety of the formulated MeP-loaded nanoparticles. The MeP release demonstrated a biphasic profile and release mechanism via Fick diffusion, according to release exponent values. Formulated MeP-loaded nanoparticles revealed significant antitumor activity and ability to generate reactive oxygen species. MnClTPP- and CoTPP-nanoparticles specifically accumulated in tissues, preventing wide tissue distribution caused by long-term circulation of the hydrophobic drug. Our results suggest that MnClTPP- and CoTPP-nanoparticles represent the greatest potential for utilization in in anticancer therapy due to their effectiveness and safety.
Collapse
Affiliation(s)
- Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| | - Murad D. Mollaev
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Artur Zabolotskii
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Irina Seregina
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Mikhail Bolshov
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.S.); (M.B.)
| | - Alexander Kaplun
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia;
| | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.Y.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia; (M.D.M.); (A.Z.)
| |
Collapse
|
48
|
Modern Methods for the Sustainable Synthesis of Metalloporphyrins. Molecules 2021; 26:molecules26216652. [PMID: 34771061 PMCID: PMC8588080 DOI: 10.3390/molecules26216652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Metalloporphyrins are involved in many and diverse applications that require the preparation of these compounds in an efficient manner, which nowadays, also involves taking into consideration sustainability issues. In this context, we use ball milling mechanochemistry and sonochemistry for the rational development of synthetic strategies for the sustainable preparation of metalloporphyrins. Zinc, copper, cobalt and palladium complexes of hydrophobic porphyrins were obtained in high yields and under mechanical action with a moderate excess of the metal salt, without any solvent or additive. Sonochemistry prove to be a good alternative for the preparation of metal complexes of water-soluble porphyrins in good yields and short reaction times. Both strategies have good sustainability scores, close to the ideal values, which is useful in comparing and helping to choose the more adequate method.
Collapse
|
49
|
Chen W, Zhao J, Hou M, Yang M, Yi C. Gadolinium-porphyrin based polymer nanotheranostics for fluorescence/magnetic resonance imaging guided photodynamic therapy. NANOSCALE 2021; 13:16197-16206. [PMID: 34545903 DOI: 10.1039/d1nr04489c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotheranostics for fluorescence/magnetic resonance (FL/MR) dual-modal imaging guided photodynamic therapy (PDT) are highly desirable in precision and personalized medicine. In this study, a facile non-covalent electrostatic interaction induced self-assembly strategy is developed to effectively encapsulate gadolinium porphyrin (Gd-TCPP) into homogeneous supramolecular nanoparticles (referred to as Gd-PNPs). Gd-PNPs exhibit the following advantages: (1) excellent FL imaging property, high longitudinal relaxivity (16.157 mM-1 s-1), and good singlet oxygen (1O2) production property; (2) excellent long-term colloidal stability, dispersity and biocompatibility; and (3) enhanced in vivo FL/MR imaging guided tumor growth inhibition efficiency for CT 26 tumor-bearing mice. This study provides a new strategy to design and synthesize metalloporphyrin-based nanotheranostics for imaging-guided cancer therapy with enhanced theranostic properties.
Collapse
Affiliation(s)
- Wandi Chen
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Junkai Zhao
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Mengfei Hou
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Changqing Yi
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, P. R. China
| |
Collapse
|
50
|
Geraldes CF, Castro MMC, Peters JA. Mn(III) porphyrins as potential MRI contrast agents for diagnosis and MRI-guided therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|