1
|
Mukherjee N, Majumdar M. Diverse Functionality of Molecular Germanium: Emerging Opportunities as Catalysts. J Am Chem Soc 2024; 146:24209-24232. [PMID: 39172926 DOI: 10.1021/jacs.4c05498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fundamental research on germanium as the central element in compounds for bond activation chemistry and catalysis has achieved significant feats over the last two decades. Designing strategies for small molecule activations and the ultimate catalysts established capitalize on the orbital modalities of germanium, apparently imitating the transition-metal frontier orbitals. There is a growing body of examples in contemporary research implicating the tunability of the frontier orbitals through avant-garde approaches such as geometric constrained empowered reactivity, bimetallic orbital complementarity, cooperative reactivity, etc. The goal of this Perspective is to provide readers with an overview of the emerging opportunities in the field of germanium-based catalysis by perceiving the underlying key principles. This will help to convert the discrete set of findings into a more systematic vision for catalyst designs. Critical exposition on the germanium's frontier orbitals participations evokes the key challenges involved in innovative catalyst designs, wherein viewpoints are provided. We close by addressing the forward-looking directions for germanium-based catalytic manifold development. We hope that this Perspective will be motivational for applied research on germanium as a constituent of pragmatic catalysts.
Collapse
Affiliation(s)
- Nilanjana Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
2
|
Matsuoka M, Nagata K, Ohno R, Matsuo T, Tobita H, Hashimoto H. Neutral Chromium Complex with a Cr≡Si Triple Bond: Synthesis and Photoinduced H-H and Benzene C-H Bond Activation. Chemistry 2023:e202303765. [PMID: 38088491 DOI: 10.1002/chem.202303765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 12/23/2023]
Abstract
A neutral silylyne complex with a Cr≡Si triple bond was prepared by dehydrogenation of a chromium silylene complex with Cr-H and Si-H bonds, and was isolated as monomeric crystals, unlike dimeric forms of its tungsten and molybdenum congeners. The strong Cr(δ-)-Si(δ+) bond polarity was revealed by the reaction with MeOH and DFT calculations. The chromium silylyne complex reacted with H2 under LED (365 nm) irradiation to reproduce the precursor silylene complex with a (H)Cr=Si(H) moiety, as a result of 1,2-H-H addition across the Cr≡Si triple bond. Similarly, the chromium silylyne complex reacted with benzene under irradiation to afford an 1,2-addition product with a (H)Cr=Si(Ph) moiety, via benzene C-H bond activation accompanied by Si-C bond forming.
Collapse
Affiliation(s)
- Masahiro Matsuoka
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Sendai, Miyagi, 980-8578, Japan
| | - Koichi Nagata
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Sendai, Miyagi, 980-8578, Japan
| | - Ryoma Ohno
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi, Osaka, Osaka, 577-8502, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi, Osaka, Osaka, 577-8502, Japan
| | - Hiromi Tobita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Sendai, Miyagi, 980-8578, Japan
| | - Hisako Hashimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
3
|
Nagata K, Omura H, Hashimoto H. Π-Character of Chromium Germylyne Complex in the Reactions with Enone, Butadiene, and Alkynes: Formation of Germacycles through [2+4] Cycloaddition with Conjugated Molecules. Chem Asian J 2023; 18:e202300801. [PMID: 37804073 DOI: 10.1002/asia.202300801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
Germylyne complex Cp*(OC)2 Cr≡Ge{C(SiMe3 )3 } (1) reacted with methyl vinyl ketone to give an η3 -allyl complex 2 with an oxagermacyclopentenyl ring. An analogous η3 -allyl complex 3 with a germacyclopentenyl ring was obtained by the reaction with butadiene, a non-polar conjugated molecule, under photoirradiation. These reactions are accompanied by cleavage of the Cr≡Ge triple bond. On the other hand, the reactions of complex 1 with alkynes under photoirradiation resulted in clean substitution of a CO ligand of 1 to afford (η2 -alkyne)germylyne complexes, where the Cr≡Ge triple bond is intact.
Collapse
Grants
- 15 K05444 Ministry of Education, Culture, Sports, Science and Technology
- 22H02088 Ministry of Education, Culture, Sports, Science and Technology
- 19H04687 Ministry of Education, Culture, Sports, Science and Technology
- 21 K14638 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Koichi Nagata
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Sendai, Miyagi, 980-8578, Japan
| | - Hirotaka Omura
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Sendai, Miyagi, 980-8578, Japan
| | - Hisako Hashimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
4
|
Wu CS, Su MD. Reactivity Analysis of the [2 + 2] Cycloaddition between Group-6 ≡ Group-14 Triple-Bonded Complexes and Acetylene: Insights from Theoretical Studies. Inorg Chem 2023; 62:16388-16400. [PMID: 37768726 DOI: 10.1021/acs.inorgchem.3c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Theoretical examinations of reactivity for the formal [2 + 2] cycloaddition of Me-C≡C-Ph to Group-6(G6)≡Group-14(G14) triple-bonded organometallic complexes have been carried out using the M06-2X-D3/def2-TZVP level of theory. Our theoretical findings suggest that Me-C≡C-Ph can undergo adduct formation with all G6≡Si complexes, resulting in the generation of four-membered ring structures. However, among the W≡Group-14 complex reactants, only W≡Si-based, W≡Ge-based, and W≡Sn-based organometallic molecules are capable of undergoing a [2 + 2] cycloaddition reaction with Me-C≡C-Ph. Based on energy decomposition analysis, our theoretical investigations demonstrate that the bonding mechanism in such [2 + 2] cycloaddition reactions involves the creation of two dative bonds between singlet fragments (the donor-acceptor model), as opposed to two electron-sharing bonds between triplet fragments. In addition, the examinations based on the activation strain model indicate that the activation barrier of the [2 + 2] cycloaddition reaction is predominantly governed by the geometric deformation energy of the two reactants (G6≡G14-Rea and Me-C≡C-Ph). Our research using the M06-2X method shows that the barrier heights of [2 + 2] cycloaddition reactions between Me-C≡C-Ph and G6≡Si-Rea are dependent on the geometric changes occurring in both fragments during the transition states, consistent with Hammond's postulate.
Collapse
Affiliation(s)
- Chi-Shiun Wu
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
5
|
Auer M, Zwettler K, Eichele K, Schubert H, Sindlinger CP, Wesemann L. Synthesis of Cobalt-Tin and -Lead Tetrylidynes-Reactivity Study of the Triple Bond. Angew Chem Int Ed Engl 2023; 62:e202305951. [PMID: 37395167 DOI: 10.1002/anie.202305951] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Tetrylidynes [TbbSn≡Co(PMe3 )3 ] (1 a) and [TbbPb≡Co(PMe3 )3 ] (2) (Tbb=2,6-[CH(SiMe3 )2 ]2 -4-(t-Bu)C6 H2 ) are accessed for the first time via a substitution reaction between [Na(OEt2 )][Co(PMe3 )4 ] and [Li(thf)2 ][TbbEBr2 ] (E=Sn, Pb). Following an alternative procedure the stannylidyne [Ar*Sn≡Co(PMe3 )3 ] (1 b) was synthesized by hydrogen atom abstraction using AIBN from the paramagnetic hydride complex [Ar*SnH=Co(PMe3 )3 ] (4) (AIBN=azobis(isobutyronitrile)). The stannylidyne 1 a adds two equivalents of water to yield the dihydroxide [TbbSn(OH)2 CoH2 (PMe3 )3 ] (5). In reaction of the stannylidyne 1 a with CO2 a product of a redox reaction [TbbSn(CO3 )Co(CO)(PMe3 )3 ] (6) was isolated. Protonation of the tetrylidynes occurs at the cobalt atom to give the metalla-stanna vinyl cation [TbbSn=CoH(PMe3 )3 ][BArF 4 ] (7 a) [ArF =C6 H3 -3,5-(CF3 )2 ]. The analogous germanium and tin cations [Ar*E=CoH(PMe3 )3 ][BArF 4 ] (E=Ge 9, Sn 7 b) (Ar*=C6 H3 (2,6-Trip)2 , Trip=2,4,6-C6 H2 iPr3 ) were also obtained by oxidation of the paramagnetic complexes [Ar*EH=Co(PMe3 )3 ] (E=Ge 3, Sn 4), which were synthesized by substitution of a PMe3 ligand of [Co(PMe3 )4 ] by a hydridoylene (Ar*EH) unit.
Collapse
Affiliation(s)
- Maximilian Auer
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Kathrin Zwettler
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Klaus Eichele
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Christian P Sindlinger
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Lars Wesemann
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
6
|
The Electronic Nature of Cationic Group 10 Ylidyne Complexes. INORGANICS 2023. [DOI: 10.3390/inorganics11030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
We report a broad theoretical study on [(PMe3)3MER]+ complexes, with M = Ni, Pd, Pt, E = C, Si, Ge, Sn, Pb, and R = ArMes, Tbb, (ArMes = 2,6-dimesitylphenyl; Tbb = C6H2-2,6-[CH(SiMe3)2]2-4-tBu). A few years ago, our group succeeded in obtaining heavier homologues of cationic group 10 carbyne complexes via halide abstraction of the tetrylidene complexes [(PMe3)3M=E(X)R] (X = Cl, Br) using a halide scavenger. The electronic structure and the M-E bonds of the [(PMe3)3MER]+ complexes were analyzed utilizing quantum-chemical tools, such as the Pipek–Mezey orbital localization method, the energy decomposition analysis (EDA), and the extended-transition state method with natural orbitals of chemical valence (ETS-NOCV). The carbyne, silylidyne complexes, and the germylidyne complex [(PMe3)3NiGeArMes]+ are suggested to be tetrylidyne complexes featuring donor–acceptor metal tetrel triple bonds, which are composed of two strong π(M→E) and one weaker σ(E→M) interaction. In comparison, the complexes with M = Pd, Pt; E = Sn, Pb; and R = ArMes are best described as metallotetrylenes and exhibit considerable M−E−C bending, a strong σ(M→E) bond, weakened M−E π-components, and lone pair density at the tetrel atoms. Furthermore, bond cleavage energy (BCE) and bond dissociation energy (BDE) reveal preferred splitting into [M(PMe3)3]+ and [ER] fragments for most complex cations in the range of 293.3–618.3 kJ·mol−1 and 230.4–461.6 kJ·mol−1, respectively. Finally, an extensive study of the potential energy hypersurface varying the M−E−C angle indicates the presence of isomers with M−E−C bond angles of around 95°. Interestingly, these isomers are energetically favored for M = Pd, Pt; E = Sn, Pb; and R = ArMes over the less-bent structures by 13–29 kJ·mol−1.
Collapse
|
7
|
An isolable germylyne radical with a one-coordinate germanium atom. Nat Chem 2023; 15:200-205. [PMID: 36344822 DOI: 10.1038/s41557-022-01081-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Carbynes (R-[Formula: see text]), species that bear a monovalent carbon atom with three non-bonding valence electrons, are important intermediates and potentially useful in organic synthetic chemistry. However, free species of the type R-[Formula: see text] of any group 14 element (E) have eluded isolation in the condensed phase due to their high reactivity. Here we report the isolation, characterization and reactivity of a crystalline germylyne radical by using a sterically hindered hydrindacene ligand. The germylyne radical bears an essentially one-coordinate germanium atom as shown by single-crystal X-ray diffraction analysis. Electron paramagnetic resonance spectroscopic studies and theoretical calculations show that the germylyne radical features a doublet ground state, and the three non-bonding valence electrons at the germanium atom contribute to the lone pair of electrons as the highest occupied molecular orbital-3 and one unpaired electron as the singly occupied molecular orbital.
Collapse
|
8
|
Maurer LR, Engeser M. Group 6 germylidyne complexes in the gas phase by LIFDI and APCI mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:44-57. [PMID: 36437806 DOI: 10.1177/14690667221137465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although showing fascinating chemical properties and reactivity in solution, heavier tetrelylidyne complexes with M≡E triple bonds have not been studied in the gas phase before due to their high sensitivity towards air and moisture. We selected four group 6 germylidyne complexes, [Cp(PMe3)2M≡GeArMes] (M = Mo (1-Mo), W (1-W), ArMes = 2,6-dimesitylphenyl) and [Tp'(CO)2M≡GeArMes] (M = Mo (2-Mo), W (2-W), Tp' = κ3-N,N',N''-hydridotris(3,5-dimethylpyrazolyl) borate), for a mass-spectrometric study. Liquid Injection Field Desorption Ionization (LIFDI) proved to be a well-suited technique to ionize these sensitive compounds as the spectra show the molecular ions as radical cations and only minor traces of fragmentation or degradation products. In addition, Atmospheric Pressure Chemical Ionization (APCI) connected to a high-resolving tandem mass spectrometer allowed us to study the gas-phase fragmentation behaviour of these compounds. The fragmentation patterns not only comprise the expected losses of phosphane or carbonyl ligands, respectively, but also indicate C-H bond activation by the electron-deficient metal centre. An enhanced reactivity of the tungsten species is visible in a preferred methyl abstraction in the phosphane complex 1-W compared to 1-Mo. Although degradation in solution before ionization obviously can destroy the M≡Ge triple bond, the cleavage of the M≡Ge bond upon gas-phase activation is not observed for the Mo species and only as a minor pathway for the W compounds, highlighting the high bonding energy between metal and tetrel.
Collapse
|
9
|
Nagata K, Omura H, Matsuoka M, Tobita H, Hashimoto H. Photoinduced One-Pot Synthesis of a Chromium Germylyne Complex and Its Formation Mechanism. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Koichi Nagata
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hirotaka Omura
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Matsuoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hiromi Tobita
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hisako Hashimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
10
|
Tanabe M, Nakamura Y, Niwa TA, Sakai M, Kaneko A, Toi H, Okuma K, Tsuchido Y, Koizumi TA, Osakada K, Ide T. Di- and Trinuclear Complexes of Pd(0) and Pt(0) with Bridging Silylene Ligands: Structures with a Coordinatively Unsaturated Metal Center and Their Reactions with Alkynes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Makoto Tanabe
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
- Integrated Center for Science and Humanities, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan
| | - Yu Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Taka-aki Niwa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masaru Sakai
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Akira Kaneko
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroyuki Toi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kazuki Okuma
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshitaka Tsuchido
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1−3 Kagurazaka, Shinjukuku, Tokyo 162-8601, Japan
| | - Take-aki Koizumi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
- Advanced Instrumental Analysis Center, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Kohtaro Osakada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Tomohito Ide
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida-machi, Hachioji-shi, Tokyo 193-0097, Japan
| |
Collapse
|
11
|
|
12
|
Handford RC, Nesbit MA, Smith PW, Britt RD, Tilley TD. Versatile Fe-Sn Bonding Interactions in a Metallostannylene System: Multiple Bonding and C-H Bond Activation. J Am Chem Soc 2022; 144:358-367. [PMID: 34958213 DOI: 10.1021/jacs.1c10144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The metallostannylene Cp*(iPr2MeP)(H)2Fe-SnDMP (1; Cp* = η5-C5Me5; DMP = 2,6-dimesitylphenyl), formed by hydrogen migration in a putative Cp*(iPr2MeP)HFe[Sn(H)DMP] intermediate, serves as a robust platform for exploration of transition-metal main-group element bonding and reactivity. Upon one-electron oxidation, 1 expels H2 to generate the coordinatively unsaturated [Cp*(iPr2MeP)Fe═SnDMP][B(C6F5)4] (3), which possesses a highly polarized Fe-Sn multiple bond that involves interaction of the tin lone pair with iron. Evidence from EPR and 57Fe Mössbauer spectroscopy, along with DFT studies, shows that 3 is primarily an iron-based radical with charge localization at tin. Upon reduction of 3, C-H bond activation of the phosphine ligand was observed to produce Cp*HFe(κ2-(P,Sn)═Sn(DMP)CH2CHMePMeiPr) (5). Complex 5 was also accessed via thermolysis of 1, and kinetics studies of this thermolytic pathway indicate that the reductive elimination of H2 from 1 to produce a stannylyne intermediate, Cp*(iPr2MeP)Fe[SnDMP] (A), is likely rate-determining. Evidence indicates that the production of 5 proceeds through a concerted C-H bond activation. DFT investigations suggest that the transition state for this transformation involves C-H cleavage across the Fe-Sn bond and that a related transition state where C-H bond activation occurs exclusively at the tin center is disfavored, illustrating an effect of iron-tin cooperativity in this system.
Collapse
Affiliation(s)
- Rex C Handford
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Mark A Nesbit
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Patrick W Smith
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Zhao R, Sheng L, Gao K. Theoretical prediction of an NXeH4+ ion with N-Xe triple bond. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Afanasenko E, Seifullina I, Martsinko E, Chebanenko E, Dyakonenko V, Shishkina S. Supramolecular Salts of Germanium (IV) with Tartaric Acid, Zinc and 1,10‐Phenanthroline/2,2‘‐Bipyridine: Synthesis, Structural Features and Selective Recognition. ChemistrySelect 2021. [DOI: 10.1002/slct.202100363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Eleonora Afanasenko
- I.I. Mechnikov Odessa National University Dvoryanskaya 2 Odessa 65082 Ukraine
| | - Inna Seifullina
- I.I. Mechnikov Odessa National University Dvoryanskaya 2 Odessa 65082 Ukraine
| | - Elena Martsinko
- I.I. Mechnikov Odessa National University Dvoryanskaya 2 Odessa 65082 Ukraine
| | - Elena Chebanenko
- I.I. Mechnikov Odessa National University Dvoryanskaya 2 Odessa 65082 Ukraine
| | - Viktoriya Dyakonenko
- SSI “Institute for Single Crystals” National Academy of Sciences of Ukraine Nauki Ave 60 Kharkiv 61001 Ukraine
| | - Svitlana Shishkina
- SSI “Institute for Single Crystals” National Academy of Sciences of Ukraine Nauki Ave 60 Kharkiv 61001 Ukraine
- V.N. Karazin Kharkiv National University 4 Svobody sq Kharkiv 61077 Ukraine
| |
Collapse
|
15
|
Hashimoto H, Nagata K. Transition-metal Complexes with Triple Bonds to Si, Ge, Sn, and Pb and Relevant Complexes. CHEM LETT 2021. [DOI: 10.1246/cl.200872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hisako Hashimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Koichi Nagata
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
16
|
Ouellette ET, Carpentier A, Joseph Brackbill I, Lohrey TD, Douair I, Maron L, Bergman RG, Arnold J. σ or π? Bonding interactions in a series of rhenium metallotetrylenes. Dalton Trans 2021; 50:2083-2092. [PMID: 33481968 DOI: 10.1039/d1dt00129a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salt metathesis reactions between a low-valent rhenium(i) complex, Na[Re(η5-Cp)(BDI)] (BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate), and a series of amidinate-supported tetrylenes of the form ECl[PhC(NtBu)2] (E = Si, Ge, Sn) led to rhenium metallotetrylenes Re(E[PhC(NtBu)2])(η5-Cp)(BDI) (E = Si (1a), Ge (2), Sn (4)) with varying extents of Re-E multiple bonding. Whereas the rhenium-stannylene 4 adopts a σ-metallotetrylene arrangement featuring a Re-E single bond, the rhenium-silylene (1a) and -germylene (2) both engage in π-interactions to form short Re-E multiple bonds. Temperature was found to play a crucial role in reactions between Na[Re(η5-Cp)(BDI)] and SiCl[PhC(NtBu)2], as manipulation of reaction conditions led to isolation of an unusual rhenium-silane, (BDI)Re(μ-η5:η1-C5H4)(SiH[PhC(NtBu)2]) (1b) and a dinitrogen bridged rhenium-silylene, (η5-Cp)(BDI)Re(μ-N2)Si[PhC(NtBu)2] (1c), in addition to 1a. Finally, the reaction of Na[Re(η5-Cp)(BDI)] with GeCl2·dioxane led to a rare μ2-tetrelido complex, μ2-Ge[Re(η5-Cp)(BDI)]2 (3). Bonding interactions within these complexes are discussed through the lens of various spectroscopic, structural, and computational investigations.
Collapse
Affiliation(s)
- Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Ambre Carpentier
- LPCNO, Université de Toulouse, INAS Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - I Joseph Brackbill
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Trevor D Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Iskander Douair
- LPCNO, Université de Toulouse, INAS Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Laurent Maron
- LPCNO, Université de Toulouse, INAS Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
17
|
Saini S, Agarwal A, Bose SK. Transition metal chemistry of heavier group 14 congener triple-bonded complexes: syntheses and reactivity. Dalton Trans 2020; 49:17055-17075. [PMID: 33216084 DOI: 10.1039/d0dt03378b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The diversification and synthetic utility of carbyne complexes in organometallic chemistry and catalysis are well recognized, but the syntheses of related heavier group 14 alkylidyne complexes are a recent advancement. A wide range of metal-ylidyne M[triple bond, length as m-dash]E (E = Si-Pb) complexes were synthesized and characterized spectroscopically. The synthetic methodology generally involves elimination or substitution chemistry between metallates and suitable group 14 precursors. The reluctance in forming triple bonded complexes makes this field quite fascinating and challenging. This article gives a brief overview of the pioneering reports followed by detailed information on the latest developments of complexes having a triple bond between a metal and heavier group 14 elements (Si, Ge, Sn, and Pb). Their synthesis and chemistry of the earlier reports followed by recent progress in this field will be discussed. Furthermore, their unique structures and bonding properties will be described based on spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Suresh Saini
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore-562112, India.
| | | | | |
Collapse
|
18
|
Zhu Q, Fettinger JC, Vasko P, Power PP. Interactions of a Diplumbyne with Dinuclear Transition Metal Carbonyls to Afford Metalloplumbylenes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qihao Zhu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - James C. Fettinger
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Petra Vasko
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, University of Jyväskylä, P.O. Box 35, FI-40014 , Jyväskylä, Finland
| | - Philip P. Power
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
19
|
Dong Y, Zhang P, Fan Q, Du X, Xie S, Sun H, Li X, Fuhr O, Fenske D. The Effect of Substituents on the Formation of Silyl [PSiP] Pincer Cobalt(I) Complexes and Catalytic Application in Both Nitrogen Silylation and Alkene Hydrosilylation. Inorg Chem 2020; 59:16489-16499. [PMID: 33108179 DOI: 10.1021/acs.inorgchem.0c02332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four different [PSiP]-pincer ligands L1-L4 ((2-Ph2PC6H4)2SiHR (R = H (L1) and Ph (L2)) and (2-iPr2PC6H4)2SiHR' (R' = Ph (L3) and H (L4)) were used to investigate the effect of substituents at P and/or Si atom of the [PSiP] pincer ligands on the formation of silyl cobalt(I) complexes by the reactions with CoMe(PMe3)4 via Si-H cleavage. Two penta-coordinated silyl cobalt(I) complexes, (2-Ph2PC6H4)2HSiCo(PMe3)2 (1) and (2-Ph2PC6H4)2PhSiCo(PMe3)2 (2), were obtained from the reactions of L1 and L2 with CoMe(PMe3)4, respectively. Under similar reaction conditions, a tetra-coordinated cobalt(I) complex (2-iPr2PC6H4)2PhSiCo(PMe3) (3) was isolated from the interaction of L3 with CoMe(PMe3)4. It was found that, only in the case of ligand L4, silyl dinitrogen cobalt(I) complex 4, [(2-iPr2PC6H4)2HSiCo(N2)(PMe3)], was formed. Our results indicate that the increasing of electron cloud density at the Co center is beneficial for the formation of a dinitrogen cobalt complex because the large electron density at Co center leads to the enhancement of the π-backbonding from cobalt to the coordinated N2. It was found that silyl dinitrogen cobalt(I) complex 4 is an effective catalyst for catalytic transformation of dinitrogen into silylamine. Among these four silyl cobalt(I) complexes, complex 1 is the best catalyst for hydrosilylation of alkenes with excellent regioselectivity. For aromatic alkenes, catalyst 1 provided Markovnikov products, while for aliphatic alkenes, anti-Markovnikov products could be obtained. Both catalytic reaction mechanisms were proposed and discussed. The molecular structures of complexes 1-4 were confirmed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Peng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xinyu Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
20
|
Dhungana TP, Hashimoto H, Ray M, Tobita H. Synthesis of a Molybdenum Hydrido(hydrogermylene) Complex and Its Conversion to a Germylyne Complex: Another Route through Dehydrogenation with Nitriles. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tara Prasad Dhungana
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hisako Hashimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Mausumi Ray
- Surface Engineering, Research and Development, Tata Steel Limited, Jamshedpur 831007, India
| | - Hiromi Tobita
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
21
|
Tsuchido Y, Okuma K, Osakada K, Ide T. Transformation of Thiolatogold(I) to an Au Complex with an (Arylthio)silyl Ligand. Use of an (Aminosilyl)boronic Ester as a Silylene Precursor. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshitaka Tsuchido
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kazuki Okuma
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kohtaro Osakada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tomohito Ide
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida-machi, Hachioji-shi, Tokyo 193-0997, Japan
| |
Collapse
|
22
|
Osakada K, Tsuchido Y, Tanabe M. Multinuclear Pd and Pt complexes with bridging Si- and Ge-ligands. Stable and flexible coordination bonds and structures and reactions of the molecules. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Whited MT, Taylor BLH. Metal/Organosilicon Complexes: Structure, Reactivity, and Considerations for Catalysis. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1737026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew T. Whited
- Department of Chemistry, Carleton College, Northfield, Minnesota, USA
| | - Buck L. H. Taylor
- Department of Chemistry, University of Portland, Portland, Oregon, USA
| |
Collapse
|
24
|
Gold(I) complexes with chloro(diaryl)silyl ligand. Stoichiometric reactions and catalysis for O-functionalization of organosilane. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Dübek G, Hanusch F, Munz D, Inoue S. An Air-Stable Heterobimetallic Si 2 M 2 Tetrahedral Cluster. Angew Chem Int Ed Engl 2020; 59:5823-5829. [PMID: 31943662 PMCID: PMC7154520 DOI: 10.1002/anie.201916116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 02/03/2023]
Abstract
Air- and moisture-stable heterobimetallic tetrahedral clusters [Cp(CO)2 MSiR]2 (M=Mo or W; R=SitBu3 ) were isolated from the reaction of N-heterocyclic carbene (NHC) stabilized silyl(silylidene) metal complexes Cp(CO)2 M=Si(SitBu3 )NHC with a mild Lewis acid (BPh3 ). Alternatively, treatment of the NHC-stabilized silylidene complex Cp(CO)2 W=Si(SitBu3 )NHC with stronger Lewis acids such as AlCl3 or B(C6 F5 )3 resulted in the reversible coordination of the Lewis acid to one of the carbonyl ligands. Computational investigations revealed that the dimerization of the intermediate metal silylidyne (M≡Si) complex to a tetrahedral cluster instead of a planar four-membered ring is due to steric bulk.
Collapse
Affiliation(s)
- Gizem Dübek
- Department of ChemistryCatalysis Research Center and Institute of Silicon ChemistryTechnical University MunichLichtenbergstraße 485748Garching bei MünchenGermany
| | - Franziska Hanusch
- Department of ChemistryCatalysis Research Center and Institute of Silicon ChemistryTechnical University MunichLichtenbergstraße 485748Garching bei MünchenGermany
| | - Dominik Munz
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department of Chemistry and PharmacyGeneral and Inorganic ChemistryEgerlandstraße 191058ErlangenGermany
| | - Shigeyoshi Inoue
- Department of ChemistryCatalysis Research Center and Institute of Silicon ChemistryTechnical University MunichLichtenbergstraße 485748Garching bei MünchenGermany
| |
Collapse
|
26
|
Reza Ghiasi, Rahimi M, Jamaat PR. Quantum Chemical Study of the Effect of Solvent on Structure, Electronic Properties, and Electronic Spectrum of the Carbyne Complex trans-[ClRu(PH3)4(≡C–CH=CMe2)]2+. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Yoshimoto T, Hashimoto H, Ray M, Hayakawa N, Matsuo T, Chakrabarti J, Tobita H. Products of [2+2] Cycloaddition between a W≡Si Triple-bonded Complex and Alkynes: Isolation, Structure, and Non-classical Bonding Interaction. CHEM LETT 2020. [DOI: 10.1246/cl.190952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Yoshimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hisako Hashimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mausumi Ray
- Surface Engineering Research Group, Research and Development and Scientific Services Division, Tata Steel Limited, Jamshedpur-831001, India
- Department of Chemical Biological, and Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata-700106, India
| | - Naoki Hayakawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Jaydeb Chakrabarti
- Department of Chemical Biological, and Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata-700106, India
| | - Hiromi Tobita
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
28
|
Dübek G, Hanusch F, Munz D, Inoue S. An Air‐Stable Heterobimetallic Si
2
M
2
Tetrahedral Cluster. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gizem Dübek
- Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technical University Munich Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Franziska Hanusch
- Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technical University Munich Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Dominik Munz
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Department of Chemistry and Pharmacy General and Inorganic Chemistry Egerlandstraße 1 91058 Erlangen Germany
| | - Shigeyoshi Inoue
- Department of Chemistry Catalysis Research Center and Institute of Silicon Chemistry Technical University Munich Lichtenbergstraße 4 85748 Garching bei München Germany
| |
Collapse
|
29
|
Queen JD, Phung AC, Caputo CA, Fettinger JC, Power PP. Metathetical Exchange between Metal-Metal Triple Bonds. J Am Chem Soc 2020; 142:2233-2237. [PMID: 31951405 DOI: 10.1021/jacs.9b13604] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of the molybdenum-molybdenum triple-bonded dimer (CO)2CpMo≡MoCp(CO)2 (Cp = η5-C5H5) with the triple-bonded dimetallynes AriPr4MMAriPr4 or AriPr6MMAriPr6 (AriPr4 = C6H3-2,6-(C6H3-2,6-Pri2)2, AriPr6 = C6H3-2,6-(C6H2-2,4,6-Pri3)2; M = Ge, Sn, or Pb) under mild conditions (≤80 °C, 1 bar) afforded AriPr4M≡MoCp(CO)2 or AriPr6M≡MoCp(CO)2 in moderate to excellent yields. The reactions represent the first isolable products from a metathesis of two metal-metal triple bonds. Analogous exchange reactions with the single-bonded (CO)3CpMo-MoCp(CO)3 gave ArM̈-MoCp(CO)3 (Ar = AriPr4 or AriPr6; M = Sn or Pb). The products were characterized by NMR (1H, 13C, 119Sn, or 207Pb), electronic, and IR spectroscopy and by X-ray crystallography.
Collapse
Affiliation(s)
- Joshua D Queen
- Department of Chemistry , University of California , One Shields Ave , Davis , California 95616 , United States
| | - Alice C Phung
- Department of Chemistry , University of California , One Shields Ave , Davis , California 95616 , United States
| | - Christine A Caputo
- Department of Chemistry , University of California , One Shields Ave , Davis , California 95616 , United States
| | - James C Fettinger
- Department of Chemistry , University of California , One Shields Ave , Davis , California 95616 , United States
| | - Philip P Power
- Department of Chemistry , University of California , One Shields Ave , Davis , California 95616 , United States
| |
Collapse
|
30
|
Frisch P, Inoue S. Lewis base-stabilized silyliumylidene ions in transition metal coordination chemistry. Dalton Trans 2020; 49:6176-6182. [DOI: 10.1039/d0dt00659a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An overview of the progress made in the transition metal chemistry of isolable base-stabilized silyliumylidene ions.
Collapse
Affiliation(s)
- Philipp Frisch
- Department of Chemistry
- WACKER-Institute of Silicon Chemistry and Catalysis Research Center
- Technische Universität München
- 85748 Garching bei München
- Germany
| | - Shigeyoshi Inoue
- Department of Chemistry
- WACKER-Institute of Silicon Chemistry and Catalysis Research Center
- Technische Universität München
- 85748 Garching bei München
- Germany
| |
Collapse
|
31
|
Jacintomoreno A, Sharma HK, Metta-Magaña A, Pannell KH. Aminomethyl Transfer (Mannich) Reactions Between an O-Triethylsilylated Hemiaminal and Anilines, R n C 6 H 5-n NH 2 Leading to New Diamines, Triamines, Imines, or 1,3,5-Triazines Dependent upon Substituent R. Chemistry 2019; 25:11302-11307. [PMID: 31194896 DOI: 10.1002/chem.201901877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 11/11/2022]
Abstract
The reactions of the Mannich reagent Et3 SiOCH2 NMe2 (1) with a variety of anilines (mono-substituted RC6 H4 NH2 , R=H, 4-CN, 4-NO2 , 4-Ph, 4-Me, 4-MeO, 4-Me2 N; di-substituted R2 C6 H3 NH2 , R2 =3,5-(CH3 )2 , 3,5-(CF3 )2 ; tri-substituted R3 C6 H2 NH2 , R3 =3,5-Me2 -4-Br and a "super bulky" aniline (Ar*NH2 ) [Ar*=2,6-bis(diphenylmethyl)-4-tert-butylphenyl]) led to the formation of a range of products dependent upon the substituent. With electron-withdrawing substituents, previously unknown diamines, RC6 H4 NH(CH2 NMe2 ) [R=CN (2 a), NO2 (2 b)] and R2 C6 H3 NH(CH2 NMe2 ) [R2 =3,5-(CF3 )2 (2 c)] were formed. Further reaction of 2 a, b, c with 1 yielded the corresponding triamines RC6 H4 N(CH2 NMe2 )2 (R=CN (3 a), NO2 (3 b) and R2 C6 H3 N(CH2 NMe2 )2 , R2 =3,5-(CF3 )2 (3 c). The new polyamines were characterized by NMR spectroscopy, and for 2 a, 2 c, and 3 c, by single crystal XRD. In the case of electron-donating groups, R=4-OMe, 4-NMe2 , 4-Me, 3,5-Me2 , 3,5-Me2 -4-Br, and for R=4-Ph, the reactions with 1 immediately led to the formation of the related 1,3,5-triazines, R=4-MeO (5 a), 4-Me2 N (5 b), 4-Me (5 c), 3,5-Me2 (5 d), 3,5-Me2 -4-Br (5 e), 4-Ph (5 f), 4-Cl (5 g). The "super bulky" aniline rapidly produced a single product, namely the corresponding imine Ar*N=CH2 (4) which was also characterized by single crystal XRD. Imine 4 is both thermally and oxidatively stable. All reactions are very fast, thus based upon the presence of Si we are tempted to denote the reactions of 1 as examples of "Silick" chemistry.
Collapse
Affiliation(s)
- Anwar Jacintomoreno
- Department of Chemistry, University of Texas at El Paso, El Paso, TX., 79968-0513, USA
| | - Hemant K Sharma
- Department of Chemistry, University of Texas at El Paso, El Paso, TX., 79968-0513, USA
| | | | - Keith H Pannell
- Department of Chemistry, University of Texas at El Paso, El Paso, TX., 79968-0513, USA
| |
Collapse
|
32
|
Doddi A, Peters M, Tamm M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 2019; 119:6994-7112. [PMID: 30983327 DOI: 10.1021/acs.chemrev.8b00791] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Heterocyclic carbenes (NHC) are nowadays ubiquitous and indispensable in many research fields, and it is not possible to imagine modern transition metal and main group element chemistry without the plethora of available NHCs with tailor-made electronic and steric properties. While their suitability to act as strong ligands toward transition metals has led to numerous applications of NHC complexes in homogeneous catalysis, their strong σ-donating and adaptable π-accepting abilities have also contributed to an impressive vitalization of main group chemistry with the isolation and characterization of NHC adducts of almost any element. Formally, NHC coordination to Lewis acids affords a transfer of nucleophilicity from the carbene carbon atom to the attached exocyclic moiety, and low-valent and low-coordinate adducts of the p-block elements with available lone pairs and/or polarized carbon-element π-bonds are able to act themselves as Lewis basic donor ligands toward transition metals. Accordingly, the availability of a large number of novel NHC adducts has not only produced new varieties of already existing ligand classes but has also allowed establishment of numerous complexes with unusual and often unprecedented element-metal bonds. This review aims at summarizing this development comprehensively and covers the usage of N-heterocyclic carbene adducts of the p-block elements as ligands in transition metal chemistry.
Collapse
Affiliation(s)
- Adinarayana Doddi
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Marius Peters
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
33
|
Yoshimoto T, Hashimoto H, Takagi N, Sakaki S, Hayakawa N, Matsuo T, Tobita H. Reactions of a Silylyne Complex with Aldehydes: Formation of W-Si-O-C Four-Membered Metallacycles and Their Metathesis-Like Fragmentation. Chemistry 2019; 25:3795-3798. [PMID: 30706971 DOI: 10.1002/chem.201900457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 11/07/2022]
Abstract
A tungsten silylyne complex having a W≡Si triple bond reacted with two molecules of aldehydes at room temperature to give W-Si-O-C four-membered metallacycles by [2+2] cycloaddition and subsequent formyl hydrogen transfer from one aldehyde molecule to another. Upon heating to 70 °C, the four-membered metallacycles underwent metathesis-like fragmentation cleanly to afford carbyne complexes and "silanoic esters," in a manner similar to that of metallacyclobutadiene, an intermediate of alkyne metathesis reactions, and dimerization of the latter products gave 1,3-cyclodisiloxanes. The "silanoic ester" was also trapped by pivalaldehyde to give a [2+2] cycloaddition product in high yield.
Collapse
Affiliation(s)
- Takashi Yoshimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Hisako Hashimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Nozomi Takagi
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Nishikyo-ku, Kyoto, 615-8245, Japan
| | - Shigeyoshi Sakaki
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Nishikyo-ku, Kyoto, 615-8245, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8103, Japan
| | - Naoki Hayakawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Hiromi Tobita
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|