1
|
Chen D, Xu Y, Wang Y, Teng C, Li X, Yin D, Yan L. J-aggregates of strong electron-donating groups linked Aza-BODIPY adjusting by polypeptide for NIR-II phototheranostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124789. [PMID: 39013303 DOI: 10.1016/j.saa.2024.124789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
The commonly employed strategies for engineering second near-infrared (NIR-II) organic phototheranostic agents are based on expanding conjugated backbone length, strengthening donor (D)-acceptor (A) effect, or forming J-aggregates. We constructed the D-A-D' structure by incorporating strong electron-donating methoxy and tetraphenylethene (TPE) moieties on the electron-deficient Aza-BODIPY core, and simultaneously expanded the π-conjugation effect by introducing thiophene groups, to obtain a dye BDP-TPE. Next, the nanoparticles P-TPE were prepared via the assembly of BDP-TPE with amphiphilic polypeptides (mPEG2000-P(Asp)10), and successfully constructed the J-aggregates. The obtained P-TPE exhibited strong absorption and fluorescence with maxima at 808 and 1018 nm, respectively, with a conspicuous absolute quantum yield of 0.241 %. Moreover, P-TPE also showed excellent biocompatibility, and high photothermal conversion efficiency of 61.15 %, and excellent resistance to pH, long-term storage, and photobleaching. In vitro and in vivo experiments revealed that P-TPE exhibited good biocompatibility and effectively achieved NIR-II fluorescence imaging-guided PTT with complete tumor ablation under 808 nm laser irradiation. These results provided good evidence for the use of P-TPE as a NIR-II fluorescence imaging-guided PTT therapeutic agent in vivo.
Collapse
Affiliation(s)
- Dejia Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Yixuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Changchang Teng
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Xin Li
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China.
| |
Collapse
|
2
|
He YQ, Tang JH. Anthracene-Based Endoperoxides as Self-Sensitized Singlet Oxygen Carriers for Hypoxic-Tumor Photodynamic Therapy. Adv Healthc Mater 2024:e2403009. [PMID: 39506461 DOI: 10.1002/adhm.202403009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Singlet oxygen is a crucial reactive oxygen species (ROS) in photodynamic therapy (PDT). However, the hypoxic tumor microenvironment limits the production of cytotoxic singlet oxygen through the light irradiation of PDT photosensitizers (PSs). This restriction poses a major challenge in improving the effectiveness of PDT. To overcome this challenge, researchers have explored the development of singlet oxygen carriers that can capture and release singlet oxygen in physiological conditions. Among these developments, anthracene-based endoperoxides, initially discovered almost 100 years ago, have shown the ability to generate singlet oxygen controllably under thermal or photo stimuli. Recent advancements have led to the development of a new class of self-sensitized anthracene-endoperoxides, with potential applications in enhancing PDT effects for hypoxic tumors. This review discusses the current research progress in utilizing self-sensitized anthracene-endoperoxides as singlet oxygen carriers for improved PDT. It covers anthracene-conjugated small organic molecules, metal-organic complexes, polymeric structures, and other self-sensitized nano-structures. The molecular structural designs, mechanisms, and characteristics of these systems will be discussed. This review aims to provide valuable insights for developing high-performance singlet oxygen carriers for hypoxic-tumor PDT.
Collapse
Affiliation(s)
- Yan-Qin He
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Jian-Hong Tang
- School of Future technology, University of Chinese Academy of Sciences (UCAS), Beijing, 101408, P. R. China
| |
Collapse
|
3
|
Shi J, Cui G, Jin Y, Mi B, Liu K, Zhao L, Bao K, Lu Z, Liu J, Wang Y, He H, Guo Z. Glutathione-Depleted Photodynamic Nanoadjuvant for Triggering Nonferrous Ferroptosis to Amplify Radiotherapy of Breast Cancer. Adv Healthc Mater 2024:e2402474. [PMID: 39397336 DOI: 10.1002/adhm.202402474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Radiotherapy plays a crucial role in the treatment of advanced breast cancer, but the increased antioxidant system, especially the rise in glutathione (GSH), presents a significant obstacle to its effectiveness. To address this challenge, a versatile GSH-depleted photodynamic nanoadjuvant is developed to augment the efficacy of radiotherapy for breast cancer treatment. This nanoadjuvant operates within the tumor microenvironment to effectively deplete intracellular GSH through a sequence of cascaded processes, including GSH exhaustion, biosynthetic inhibition, and photodynamic oxidation. This leads to a notable accumulation of lipid peroxides (LPO) and subsequent suppression of glutathione peroxidase 4 (GPX4) activity. Consequently, the combined GSH depletion induced by the nanoadjuvant markedly promotes nonferrous ferroptosis, thereby contributing to the augmentation of antitumor efficiency during radiotherapy in breast cancer. This work presents an innovative approach to designing and synthesizing biocompatible nanoadjuvants with the goal of improving the efficacy of radiotherapy for breast cancer in prospective clinical scenarios.
Collapse
Affiliation(s)
- Jiangnan Shi
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Guoqing Cui
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yaqi Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Boyu Mi
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Kenan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Linqian Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Kewang Bao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ziyao Lu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jie Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Yuwei Wang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Hui He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhengqing Guo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Sherudillo AS, Kalyagin AA, Antina LA, Berezin MB, Antina EV. Aggregation Behavior of CHR-bis(BODIPY) Bichromophores in THF-water Mixtures: Effect of Linking Positions and Aryl-spacer Substituents. J Fluoresc 2024:10.1007/s10895-024-03980-7. [PMID: 39354188 DOI: 10.1007/s10895-024-03980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
Aggregation-caused quenching effect (ACQ) greatly limits the practical use of many organic luminophores in biomedicine, optics and electronics. The comparative analysis of aggregation characteristics of CHR-bis(BODIPY) bichromophores 1-6 with R = H, Ph, MeOPh and various linking positions (α,α-; α,β-; β,β- and β',β'-) in THF-water mixtures with different water fractions or dye concentrations is first presented in this article. Both the linking style 1-4 and the arylation of the spacer with phenyl (Ph-) 5 or methoxyphenyl (MeOPh-) 6 substituents strongly affect the formation of luminophore aggregated forms in binary THF-water mixtures. The α,α-and β,β-isomers (1 and 3) form non-fluorescent H-type aggregates in THF-water mixtures with fw > 70%. The α,β-; β',β'-isomers (2, 4) and the MeOPh-substituted β,β-bichromophore 6 are characterized by predominant formation fluorescent aggregates. All bichromophores are characterized by the presence of residual amounts of non-aggregated forms in binary mixtures with maximum water content. The results are useful for controlling the aggregation behavior and spectral characteristics of CHR-bis(BODIPY) bichromophores in aqueous-organic media, which is important in the development of biomarkers and PDT agents.
Collapse
Affiliation(s)
- Artem S Sherudillo
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo, Russia
| | - Alexander A Kalyagin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo, Russia
| | - Lubov A Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo, Russia.
| | - Mikhail B Berezin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo, Russia
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo, Russia
| |
Collapse
|
5
|
Nina-Diogo A, Hyzewicz J, Hamon MP, Forté J, Thorimbert S, Friguet B, Botuha C. Synthesis of New Bodipy Hydrazide Fluorescent Probes for the Detection of Carbonylated Proteins Generated by Oxidative Stress. Chembiochem 2024; 25:e202400093. [PMID: 38695553 DOI: 10.1002/cbic.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Indexed: 06/19/2024]
Abstract
Oxidative stress is a cellular disorder implicated in various severe diseases and redox biology and represents an important field of research for the last decades. One of the major consequences of oxidative stress is the carbonylation of proteins, which is also a reliable marker to assess protein oxidative modifications. Accumulation of carbonylated proteins has been associated with aging and age-related diseases and can ultimately causes cell death. Detection of these oxidative modifications is essential to understand and discover new treatments against oxidative stress. We describe the design and the synthetic pathway of new BODIPY fluorescent probes functionalized with hydrazide function for protein carbonyl labeling to improve existing methodologies such as 2D-Oxi electrophoresis. Hydrazide BODIPY analogues show very good fluorescent properties such as NIR emission up to 633 nm and quantum yield up to 0.88. These new probes were validated for the detection and quantification of carbonylated proteins with 2D-Oxi electrophoresis using mouse muscle protein extracts, as well as both flow cytometry and microscopy using oxidant stressed C2 C12 cells.
Collapse
Affiliation(s)
- Anthony Nina-Diogo
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75252, Paris, France
| | - Janek Hyzewicz
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine Biological Adaptation and Ageing (B2A-IBPS), F-75252, Paris, France
| | - Marie-Paule Hamon
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine Biological Adaptation and Ageing (B2A-IBPS), F-75252, Paris, France
| | - Jeremy Forté
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75252, Paris, France
| | - Serge Thorimbert
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75252, Paris, France
| | - Bertrand Friguet
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine Biological Adaptation and Ageing (B2A-IBPS), F-75252, Paris, France
| | - Candice Botuha
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75252, Paris, France
| |
Collapse
|
6
|
Yuan B, Zhang W, Wang H, Xu JF, Zhang X. A BODIPY-Ferrocene Conjugate for the Combined Photodynamic Therapy and Chemodynamic Therapy with Improved Antitumor Efficiency. Chemistry 2024; 30:e202401916. [PMID: 39023507 DOI: 10.1002/chem.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Photodynamic therapy (PDT) can destroy tumor cells by generating singlet oxygen (1O2) under light irradiation, which is limited by the hypoxia of the neoplastic tissue. Chemodynamic therapy (CDT) can produce toxic hydroxyl radical (⋅OH) to eradicate tumor cells by catalytic decomposition of endogenous hydrogen peroxide (H2O2), the therapeutic effect of which is highly dependent on the concentration of H2O2. Herein, we propose a BODIPY-ferrocene conjugate with a balanced 1O2 and ⋅OH generation capacity, which can serve as a high-efficiency antitumor agent by combining PDT and CDT. The ferrocene moieties endow the as-prepared conjugates with the ability of chemodynamic killing of tumor cells. Moreover, combined PDT/CDT therapy with improved antitumor efficiency can be realized after exposure to light irradiation. Compared with the monotherapy by PDT or CDT, the BODIPY-ferrocene conjugates can significantly increase the intracellular ROS levels of the tumor cells after light irradiation, thereby inducing the tumor cell apoptosis at low drug doses. In this way, a synergistic antitumor treatment is achieved by the combination of PDT and CDT.
Collapse
Affiliation(s)
- Bin Yuan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenhui Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Hua Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Bera A, Nepalia A, Upadhyay A, Saini DK, Chakravarty AR. Biotin-Pt(IV)-Ru(II)-Boron-Dipyrromethene Prodrug as "Platin Bullet" for Targeted Chemo- and Photodynamic Therapy. Inorg Chem 2024; 63:17249-17262. [PMID: 39235210 DOI: 10.1021/acs.inorgchem.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Using the principle of "Magic Bullet", a cisplatin-derived platinum(IV) prodrug heterobimetallic Pt(IV)-Ru(II) complex, cis,cis,trans-[Pt(NH3)2Cl2{Ru(tpy-BODIPY)(tpy-COO)}(biotin)]Cl2 (Pt-Ru-B, 2), having two axial ligands, namely, biotin as water-soluble B-vitamin for enhanced cellular uptake and a BODIPY-ruthenium(II) (Ru-B, 1) photosensitizer having N,N,N-donor tpy (4'-phenyl-2,2':6',2″-terpyridine) bonded to boron-dipyrromethene (BODIPY), is developed as a "Platin Bullet" for targeted photodynamic therapy (PDT). Pt-Ru-B exhibited intense absorption near 500 nm and emission near 513 nm (λex = 488 nm) in a 10% dimethyl sulfoxide-Dulbecco's phosphate-buffered saline medium (pH 7.2). The BODIPY complex on light activation generates singlet oxygen as the reactive oxygen species (ROS) giving a quantum yield (ΦΔ) of ∼0.64 from 1,3-diphenylisobenzofuran experiments. Pt-Ru-B exhibited preferential cellular uptake in cancer cells over noncancerous cells. The dichlorodihydrofluorescein diacetate assay confirmed the generation of cellular ROS. Confocal images revealed its mitochondrial internalization. Pt-Ru-B showed submicromolar photocytotoxicity in visible light (400-700 nm) in A549 and multidrug-resistant MDA-MB-231 cancer cells. It remained nontoxic in the dark and less toxic in nontumorigenic cells. Cellular apoptosis and alteration of the mitochondrial membrane potential were evidenced from the respective Annexin V-FITC/propidium iodide assay and JC-1 dye assay. A wound healing assay using A549 cells and Pt-Ru-B revealed inhibition of cancer cell migration, highlighting its potential as an antimetastatic agent.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Amrita Nepalia
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Liang G, Montesdeoca N, Tang D, Wang B, Xiao H, Karges J, Shang K. Facile one-pot synthesis of Ir(III) Bodipy polymeric gemini nanoparticles for tumor selective NIR photoactivated anticancer therapy. Biomaterials 2024; 309:122618. [PMID: 38797122 DOI: 10.1016/j.biomaterials.2024.122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Over the last decades, a variety of metal complexes have been developed as chemotherapeutic agents. Despite the promising therapeutic prospects, the vast majority of these compounds suffer from low solubility, poor pharmacological properties, and most importantly poor tumor accumulation. To circumvent these limitations, herein, the incorporation of cytotoxic Ir(III) complexes and a variety of photosensitizers into polymeric gemini nanoparticles that selectively accumulate in the tumorous tissue and could be activated by near-infrared (NIR) light to exert an anticancer effect is reported. Upon exposure to light, the photosensitizer is able to generate singlet oxygen, triggering the rapid dissociation of the nanostructure and the activation of the Ir prodrug, thereby initiating a cascade of mitochondrial targeting and damage that ultimately leads to cell apoptosis. While selectively accumulating into tumorous tissue, the nanoparticles achieve almost complete eradication of the cisplatin-resistant cervical carcinoma tumor in vivo upon exposure to NIR irradiation.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
9
|
Zhang L, Zhang Q, Cao Z. Orthogonal Geometry Enhancing the Intersystem Crossing and Photosensitive Efficiency of Spiro Organoboron Compounds. Chemistry 2024:e202402606. [PMID: 39150690 DOI: 10.1002/chem.202402606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 08/17/2024]
Abstract
Based on the reported spiro organoboron compounds (PS1 and PS2 as potent 1O2 sensitizers), several new organoboron molecules (PS4-PS9) were constructed through structural modification, and their low-lying excited states and photophysical properties have been explored by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The predicted effective intersystem crossing (ISC) processes arise from the S1→T2 transition for PS4-PS6 and the S1→T4 transition for PS1, and corresponding KISC rate constants reach the order of magnitude of 109 (s-1). The organoboron compounds with a (N, N) chelate acceptor are predicted to exhibit relatively higher ISC efficiency than those bearing a (N, O) acceptor, and the planar C3NBN ring and the orthogonal configuration between the donor and acceptor moieties are responsible for the ISC rate enhancement. Importantly, the geometric features of the lowest singlet excited state (S1) for these compounds play a decisive role in their photosensitive efficiency. The present results provide a basis for better understanding of the photosensitivity of these spiro organoboron compounds and the structural modification effect.
Collapse
Affiliation(s)
- Lin Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Qing Zhang
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Zexing Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| |
Collapse
|
10
|
Snyder G, Abuhadba S, Lin N, Lee WT, Mani T, Esipova TV. Pd and Pt Complexes of Benzo-Fused Dipyrrins: Synthesis, Structure, Electrochemical, and Optical Properties. Inorg Chem 2024; 63:11944-11952. [PMID: 38900061 DOI: 10.1021/acs.inorgchem.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Benzo-fused dipyrrins are π-extended analogs of conventional dipyrrins, which exhibit bathochromically shifted absorption and possess the synthetic capability to bind various metal ions. We aimed to investigate the synthetic potential of benzo-fused dipyrrins in the complexation with transition metals. Two new complexes with Pd2+ and Pt2+ were synthesized and characterized. X-ray crystallography reveals that both complexes exhibit a zigzag geometry with square planar coordination of the central metal. The Pd2+ complex possesses a very weak fluorescence at 665 nm, while the Pt2+ complex is completely nonemissive. Transient absorption spectroscopy confirmed triplet excited state formation for both complexes; however, they are short-lived and no phosphorescence was observed even at 77K. DFT calculations support the experimental observation, revealing the existence of the low-lying ligand-metal charge-transfer (LMCT) triplet state acting as an energy sink.
Collapse
Affiliation(s)
- Graden Snyder
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Sara Abuhadba
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Neo Lin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Wei-Tsung Lee
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Tatiana V Esipova
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| |
Collapse
|
11
|
Mula S, Koli M. Helical BODIPY Dyes as Heavy-Atom-Free Triplet Photosensitizers for Photodynamic Therapy of Cancer. ChemMedChem 2024; 19:e202400041. [PMID: 38359274 DOI: 10.1002/cmdc.202400041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
Despite of having many advantages over the popular cancer therapies, photodynamic therapy still is not widely acceptable for clinical applications. Scarcity of efficient triplet photosensitizers (PSs) is one of the main bottlenecks for this. Although numerous heavy atom attached PSs are developed as PDT agents, but these are not suitable for clinical applications due to several reasons. Thus, development of heavy-atom-free organic PSs is urgently required. In this context, development of new type of helical BODIPYs as PSs for PDT is discussed. BODIPYs have rich photophysical properties and structural helicity further enhances their triplet conversion rates. This new concept of structural helicity to enhance the triplet conversion of BODIPYs is discussed with reported helical BODIPYs. Helical geometries of these dyes are checked by X-ray crystallography studies and their high triplet conversions as compared to planar BODIPYs are also confirmed. Importantly, these dyes have high triplet lifetimes and are capable of generating high singlet oxygens even in hypoxia condition as compared to conventional heavy atom attached BODIPYs. All these make the helical BODIPYs excellent candidates as PDT agents. Finally, their successful applications as PDT agents in killing of various types of cancer cells are also discussed. The results are encouraging which indicate that helical BODIPYs could be next generation heavy-atom-free PSs for PDT applications.
Collapse
Affiliation(s)
- Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
12
|
Chen G, Xiong M, Jiang C, Zhao Y, Chen L, Ju Y, Jiang J, Xu Z, Pan J, Li X, Wang K. Novel BODIPY-based nano-biomaterials with enhanced D-A-D structure for NIR-triggered photodynamic and photothermal therapy. Bioorg Chem 2024; 148:107494. [PMID: 38797067 DOI: 10.1016/j.bioorg.2024.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Near-infrared (NIR) responsive nanoparticles are an important platform for multimodal phototherapy. Importantly, the simultaneous NIR-triggered photodynamic (PDT) and photothermal (PTT) therapy is a powerful approach to increase the antitumor efficiency of phototherapic nanoparticles due to the synergistic effect. Herein, a boron dipyrromethene (BODIPY)-based amphiphilic dye with enhanced electron donor-acceptor-donor (D-A-D) structure (BDP-AP) was designed and synthesized, which could self-assemble into stable nanoparticles (BDP-AP NPs) for the synergistic NIR-triggered PDT/PTT therapy. BDP-AP NPs synchronously generated singlet oxygen (1O2) and achieved preeminent photothermal conversion efficiency (61.42%). The in vitro and in vivo experiments showed that BDP-AP NPs possessed negligible dark cytotoxicity and infusive anticancer performance. BDP-AP NPs provide valuable guidance for the construction of PDT/PTT-synergistic NIR nanoagents to improve the efficiency of photoinduced cancer therapy in the future.
Collapse
Affiliation(s)
- Gang Chen
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Mengmeng Xiong
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Chen Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Yimei Zhao
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| | - Li Chen
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Yunlong Ju
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Jun Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China; Hubei Province Engineering Centre of Performance Chemicals, Wuhan 430062, PR China.
| | - Zekun Xu
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Jie Pan
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| | - Kai Wang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| |
Collapse
|
13
|
Pham TC, Cho M, Nguyen VN, Nguyen VKT, Kim G, Lee S, Dehaen W, Yoon J, Lee S. Charge Transfer-Promoted Excited State of a Heavy-Atom-Free Photosensitizer for Efficient Application of Mitochondria-Targeted Fluorescence Imaging and Hypoxia Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21699-21708. [PMID: 38634764 DOI: 10.1021/acsami.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Conventional photosensitizers (PSs) used in photodynamic therapy (PDT) have shown preliminary success; however, they are often associated with several limitations including potential dark toxicity in healthy tissues, limited efficacy under acidic and hypoxic conditions, suboptimal fluorescence imaging capabilities, and nonspecific targeting during treatment. In response to these challenges, we developed a heavy-atom-free PS, denoted as Cz-SB, by incorporating ethyl carbazole into a thiophene-fused BODIPY core. A comprehensive investigation into the photophysical properties of Cz-SB was conducted through a synergistic approach involving experimental and computational investigations. The enhancement of intersystem crossing (kISC) and fluorescence emission (kfl) rate constants was achieved through a donor-acceptor pair-mediated charge transfer mechanism. Consequently, Cz-SB demonstrated remarkable efficiency in generating reactive oxygen species (ROS) under acidic and low-oxygen conditions, making it particularly effective for hypoxic cancer PDT. Furthermore, Cz-SB exhibited good biocompatibility, fluorescence imaging capabilities, and a high degree of localization within the mitochondria of living cells. We posit that Cz-SB holds substantial prospects as a versatile PS with innovative molecular design, representing a potential "one-for-all" solution in the realm of cancer phototheranostics.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Moonyeon Cho
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Van Kieu Thuy Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Seongman Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Songyi Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
14
|
Yıldız Gül E, Aydin Karataş E, Aydin Doğan H, Yenilmez Çiftçi G, Tanrıverdi Eçik E. BODIPY precursors and their cyclotriphosphazene Derivatives: Synthesis, photochemical properties and their application in PDT. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124006. [PMID: 38350411 DOI: 10.1016/j.saa.2024.124006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Photodynamic therapy (PDT) is a treatment method consisting of common combination of oxygen, light energy and a light absorbing molecule called a photosensitizer. In this work, four new compounds consisting of BODIPY precursors and BODIPY-cyclotriphosphazene derivatives were synthesized to investigate the PDT effects. The chemical structures of the compounds were characterized and then their photophysical properties were determined by spectroscopic techniques. The precursor BODIPYs and their cyclotriphosphazene derivatives exhibited similar properties such as strong absorption intensity, high photostability and low fluorescence profile in the NIR region. Additionally, the singlet oxygen production capacities of these compounds were determined using the photobleaching technique of 1,3-diphenylisobenzofuran (DPBF) under light illumination. By introducing iodine atoms into the molecule, which are responsible for the intersystem transition (ISC) enhancement, a more efficient singlet oxygen production was achieved in both the iodinated-BODIPY and its cyclotriphosphazene derivative. Anticancer activities of the precursor BODIPYs and their cyclotriphosphazene derivatives in the absence and presence of light illumination were evaluated on cancerous cell lines (PC3 and DU145) and non-tumorigenic prostate epithelial PNT1a cell. The compounds triggered the death of cancer cell PC3 the more significantly in the presence of red light compared to the healthy cells (PNT1a).
Collapse
Affiliation(s)
- Elif Yıldız Gül
- Department of Chemistry, Atatürk University, Erzurum, Turkey
| | - Elanur Aydin Karataş
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Hatice Aydin Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | | | | |
Collapse
|
15
|
Jana A, Sahoo S, Paul S, Sahoo S, Jayabaskaran C, Chakravarty AR. Photodynamic Therapy with Targeted Release of Boron-Dipyrromethene Dye from Cobalt(III) Prodrugs in Red Light. Inorg Chem 2024; 63:6822-6835. [PMID: 38560761 DOI: 10.1021/acs.inorgchem.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ ∼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 μM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.
Collapse
Affiliation(s)
- Avishek Jana
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Subhadarsini Sahoo
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Subhadeep Paul
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Chelliah Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
16
|
Fu X, Man Y, Yu C, Sun Y, Hao E, Wu Q, Hu A, Li G, Wang CC, Li J. Unsymmetrical Benzothieno-Fused BODIPYs as Efficient NIR Heavy-Atom-Free Photosensitizers. J Org Chem 2024; 89:4826-4839. [PMID: 38471124 DOI: 10.1021/acs.joc.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Heavy-atom-free photosensitizers are potentially suitable for use in photodynamic therapy (PDT). In this contribution, a new family of unsymmetrical benzothieno-fused BODIPYs with reactive oxygen efficiency up to 50% in air-saturated toluene was reported. Their efficient intersystem crossing (ISC) resulted in the generation of both 1O2 and O2-• under irradiation. More importantly, the PDT efficacy of a respective 4-methoxystyryl-modified benzothieno-fused BODIPY in living cells exhibited an extremely high phototoxicity with an ultralow IC50 value of 2.78 nM. The results revealed that the incorporation of an electron-donating group at the α-position of the unsymmetrical benzothieno-fused BODIPY platform might be an effective approach for developing long-wavelength absorbing heavy-atom-free photosensitizers for precision cancer therapy.
Collapse
Affiliation(s)
- Xiaofan Fu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yingxiu Man
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yingzhu Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Anzhi Hu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Guangyao Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chang-Cheng Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
17
|
Lu B, Lu X, Mu M, Meng S, Feng Y, Zhang Y. Novel near-infrared BODIPY-cyclodextrin complexes for photodynamic therapy. Heliyon 2024; 10:e26907. [PMID: 38449663 PMCID: PMC10915388 DOI: 10.1016/j.heliyon.2024.e26907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
To meet the requirements of diagnosis and treatment, photodynamic therapy (PDT) is a promising cancer treatment with less side-effect. A series of novel BODIPY complexes (BODIPY-CDs) served as PDT agents were first reported to enhance the biocompatibility and water solubility of BODIPY matrix through the click reaction of alkynyl-containing BODIPY and azide-modified cyclodextrin (CD). BODIPY-CDs possessed superior water solubility due to the introduction of CD and their fluorescence emission apparently redshifted (>90 nm) on account of triazole units as the linkers compared to alkynyl-containing BODIPY. Moreover, all the BODIPY-CDs were no cytotoxicity toward NIH 3T3 in different drug concentrations from 12.5 to 200 μg/mL, and had a certain inhibitory effect on tumor HeLa cells. Particularly, BODIPY-β-CD exhibited high reactive oxygen species generation and excellent photodynamic therapy activity against HeLa cells compared to other complexes. The cell viability of BODIPY-β-CD was dramatically reduced up to 20% in the concentration of 100 μg/mL upon 808 nm laser irradiation. This architecture might provide a new opportunity to develop valuable photodynamic therapy agents for tumor cells.
Collapse
Affiliation(s)
- Bowei Lu
- School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin, China
| | - Xu Lu
- Ministry of Health and Medical, General Hospital of Tianjin Medical University, Tianjin, China
| | - Manman Mu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Shuxian Meng
- School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin, China
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin, China
| | - Yi Zhang
- School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| |
Collapse
|
18
|
Liu JY, Tian Y, Dong L. Galactosyl BODIPY-based nanoparticles as a type-I photosensitizer for HepG2 cell targeted photodynamic therapy. RSC Adv 2024; 14:8735-8739. [PMID: 38495974 PMCID: PMC10938552 DOI: 10.1039/d4ra00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
We report a galactosyl diiodo-BODIPY-based nanoparticles as type-I photosensitizer (PS) with high water solubility for HepG2 cell targeted photodynamic therapy. Functionalized galactoside and glucoside were introduced into diiodo-BODIPY to obtain BP1 and BP2, respectively. The glycolyl PSs could self-assemble to form the nanoparticles BP1-NP and BP2-NP with red-shifted near-infrared (NIR) absorption and fluorescence at 682 nm and 780 nm, as well as excellent chemo- and photo-stability. In comparison to the monomer in DMSO, the aggregated photosensitizers in the nanoparticles enabled the sensitization of oxygen to superoxide (O2˙-) through a type-I process, while repressing the generation of singlet oxygen (1O2) through a type-II process. The galactosyl-modified BP1-NPs could target and concentrate on HepG2 cells, subsequently generating O2˙- and 1O2 to trigger cell death under 660 nm light irradiation. This work provides an efficient strategy for the construction of glycoside-recognized type-I photosensitizers for tumor cell imaging and photodynamic therapy.
Collapse
Affiliation(s)
- Jin-Yu Liu
- School of Chemical Engineering, Lanzhou University of Arts and Science Lanzhou 730000 Gansu P. R. China
| | - Ye Tian
- Shandong Provincial No. 4 Institute of Geological and Mineral Survey 2375 Xiangyang Rd Weifang 261053 P. R. China
| | - Lei Dong
- School of Pharmacy, Shandong Second Medical University 7166 Baotong West St Weifang 261053 P. R. China
| |
Collapse
|
19
|
Cui M, Zhu S, Xiong M, Zuo H, Li X, Wang K, Jiang J. Novel naphthalimide bridged zinc porphyrin/BODIPY nanomaterials with D-A structure for photodynamic therapy. J PORPHYR PHTHALOCYA 2024; 28:166-172. [DOI: 10.1142/s1088424624500093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
As a non-invasive cancer therapy method, photodynamic therapy (PDT) shows tremendous promise in clinical cancer treatment. Light-activated singlet oxygen production of photosensitizers (PSs) is the prerequisite for cancer PDT, and the use of organic photosensitizers is always limited by visible light-based activation, hydrophilicity, biocompatibility, selectivity and quantum yield of singlet oxygen. Currently, both zinc porphyrin- and BODIPY-based structures have been widely used in the development of PDT PSs. Here, we developed a novel naphthalimide bridged zinc porphyrin/BODIPY molecule (Por-BDP-1) with two poly(ethylene glycol) (PEG) chains, in which D-A structure was constructed between the naphthalimide group and porphyrin group. After self-assembly into nanoparticles, Por-BDP-1 NPs (Diameter: 122.4 nm) could quench fluorescence in 600–700 nm, bind with calf thymus-DNA, and produce singlet oxygen during light-irradiation (laser: 680 nm, 1.0 W/cm[Formula: see text]. In addition, Por-BDP-1 NPs effectively killed HeLa cells with a IC[Formula: see text] value = 44.8 μg/mL and showed a lower dark toxicity under the same conditions. All our results demonstrated that our naphthalimide bridged zinc porphyrin/BODIPY nano-photosensitizer is a promising nanoagent for PDT in the clinic.
Collapse
Affiliation(s)
- Min Cui
- Wuhan Asia General Hospital, Wuhan, 430050, Hubei, P. R. China
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Sijie Zhu
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Mengmeng Xiong
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Huijie Zuo
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| | - Kai Wang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| | - Jun Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
- Hubei Jiangxia Laboratory, Wuhan 430200, Hubei, P. R. China
| |
Collapse
|
20
|
Bozzi ÍAO, Machado LA, Diogo EBT, Delolo FG, Barros LOF, Graça GAP, Araujo MH, Martins FT, Pedrosa LF, da Luz LC, Moraes ES, Rodembusch FS, Guimarães JSF, Oliveira AG, Röttger SH, Werz DB, Souza CP, Fantuzzi F, Han J, Marder TB, Braunschweig H, da Silva Júnior EN. Electrochemical Diselenation of BODIPY Fluorophores for Bioimaging Applications and Sensitization of 1 O 2. Chemistry 2024; 30:e202303883. [PMID: 38085637 DOI: 10.1002/chem.202303883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 01/19/2024]
Abstract
We report a rapid, efficient, and scope-extensive approach for the late-stage electrochemical diselenation of BODIPYs. Photophysical analyses reveal red-shifted absorption - corroborated by TD-DFT and DLPNO-STEOM-CCSD computations - and color-tunable emission with large Stokes shifts in the selenium-containing derivatives compared to their precursors. In addition, due to the presence of the heavy Se atoms, competitive ISC generates triplet states which sensitize 1 O2 and display phosphorescence in PMMA films at RT and in a frozen glass matrix at 77 K. Importantly, the selenium-containing BODIPYs demonstrate the ability to selectively stain lipid droplets, exhibiting distinct fluorescence in both green and red channels. This work highlights the potential of electrochemistry as an efficient method for synthesizing unique emission-tunable fluorophores with broad-ranging applications in bioimaging and related fields.
Collapse
Affiliation(s)
- Ícaro A O Bozzi
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luana A Machado
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Emilay B T Diogo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Fábio G Delolo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiza O F Barros
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela A P Graça
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria H Araujo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Felipe T Martins
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, Brazil
| | - Leandro F Pedrosa
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Fluminense, Volta Redonda, RJ, 27213-145, Brazil
| | - Lilian C da Luz
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil
| | - Emmanuel S Moraes
- Universidade Estadual de Campinas (Unicamp), Cidade Universitária, 13083970 -, Campinas, SP, Brazil
| | - Fabiano S Rodembusch
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil
| | - João S F Guimarães
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André G Oliveira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sebastian H Röttger
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg (Breisgau), Germany
| | - Daniel B Werz
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg (Breisgau), Germany
| | - Cauê P Souza
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Jianhua Han
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eufrânio N da Silva Júnior
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
21
|
Zheng X, Liu M, Wu Y, Chen Y, He W, Guo Z. An AIE-based monofunctional Pt(ii) complex for photodynamic therapy through synergism of necroptosis-ferroptosis. RSC Chem Biol 2024; 5:141-147. [PMID: 38333194 PMCID: PMC10849126 DOI: 10.1039/d3cb00113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 02/10/2024] Open
Abstract
Side effects and drug resistance are among the major problems of platinum-based anticancer chemotherapies. Photodynamic therapy could show improved tumor targeting ability and better anticancer effect by region-selective light irradiation. Here, we report an aggregation-induced emission (AIE)-based monofunctional Pt(ii) complex (TTC-Pt), which shows enhanced singlet oxygen production by introduction of a Pt atom to elevate the intersystem crossing (ISC) rate. Moreover, TTC-Pt exhibits decent capacity of inhibition on tumor cell growth upon light irradiation, with negligible dark toxicity compared to the commonly used chemodrug cisplatin. Mechanistic study suggests that TTC-Pt enters HeLa cells via the endocytosis pathway and locates mainly in lysosomes, causing FSP1 down-regulation and intracellular lipid peroxidation accumulation under irradiation, finally leading to ferroptosis and necroptosis. The synergistic dual cell death pathways could help to kill apoptosis-resistant tumor cells. Therefore, TTC-Pt could serve as a potent antitumor photosensitizer, which overcomes the drug resistance with minimum side effects.
Collapse
Affiliation(s)
- Xiaoxue Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Minglun Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Yanping Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
- Nanchuang (Jiangsu) Institute of Chemistry and Health Nanjing 210000 China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
- Nanchuang (Jiangsu) Institute of Chemistry and Health Nanjing 210000 China
| |
Collapse
|
22
|
Sun T, Kang L, Zhao H, Zhao Y, Gu Y. Photoacid Generators for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302875. [PMID: 38039443 PMCID: PMC10837391 DOI: 10.1002/advs.202302875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/26/2023] [Indexed: 12/03/2023]
Abstract
Photoacid generators (PAGs) are compounds capable of producing hydrogen protons (H+ ) upon irradiation, including irreversible and reversible PAGs, which have been widely studied in photoinduced polymerization and degradation for a long time. In recent years, the applications of PAGs in the biomedical field have attracted more attention due to their promising clinical value. So, an increasing number of novel PAGs have been reported. In this review, the recent progresses of PAGs for biomedical applications is systematically summarized, including tumor treatment, antibacterial treatment, regulation of protein folding and unfolding, control of drug release and so on. Furthermore, a concept of water-dependent reversible photoacid (W-RPA) and its antitumor effect are highlighted. Eventually, the challenges of PAGs for clinical applications are discussed.
Collapse
Affiliation(s)
- Tianzhen Sun
- School of Medical TechnologyBeijing Institute of TechnologyNo. 5 South Street, ZhongguancunHaidian DistrictBeijing100081China
| | - Lin Kang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of SciencesNo. 29 Zhongguancun East Road, Haidian DistrictBeijing100190China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Hongyou Zhao
- School of Medical TechnologyBeijing Institute of TechnologyNo. 5 South Street, ZhongguancunHaidian DistrictBeijing100081China
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of SciencesNo. 29 Zhongguancun East Road, Haidian DistrictBeijing100190China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Ying Gu
- Department of Laser MedicineThe First Medical CentreChinese PLA General HospitalNo. 28 Fuxing Road, Haidian DistrictBeijing100853China
| |
Collapse
|
23
|
Liu R, Qian Y. NIR ditriphenylamine Indole-BODIPY photosensitizer: synthesis, photodynamic therapy in A549 cells and two-photon fluorescence imaging in zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123387. [PMID: 37725882 DOI: 10.1016/j.saa.2023.123387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
In this study, the ditriphenylamine Indole-BODIPY photosensitizer T2BDP-lyso was synthesized for near-infrared photodynamic therapy and two-photon fluorescence imaging. The photosensitizer T2BDP-lyso exhibits absorption above 700 nm and emission above 800 nm, respectively. Theoretical calculations show the energy gap from the excited state S1 to the excited state T2 is 0.14 eV, which indicated that the photosensitizer T2BDP-lyso could reach the triplet state by intersystem crossing from the singlet state. Under NIR light, the singlet oxygen yield of photosensitizer T2BDP-lyso was calculated to be 0.64 in CH2Cl2. The photosensitizer T2BDP-lyso can effectively produce reactive oxygen species in A549 cells and zebrafish under 660 nm light for 5 min. The photosensitizer T2BDP-lyso exhibited lower dark toxicity and higher phototoxicity (IC50 = 1.49 μM), as well as lysosomal targeting ability (Pearson coefficient = 0.89). In the AO/EB double staining assay simulating photodynamic therapy at the cellular level, 3 μM of T2BDP-lyso light for 10 min was effective in killing cancer cells. Moreover, the photosensitizer T2BDP-lyso has a large two-photon absorption cross section at 1050 nm, which was calculated to be 138.7 GM in THF by Z-scan method, and two-photon fluorescence imaging was performed in zebrafish. The above results indicate the potential application of the photosensitizer T2BDP-lyso in near-infrared photodynamic therapy and two-photon fluorescence imaging.
Collapse
Affiliation(s)
- Ruibo Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
24
|
Liu X, Yu S, Zhang Y. pH-Sensitive and Lysosome Targetable Photosensitizers Based on BODIPYs. J Fluoresc 2024:10.1007/s10895-023-03562-z. [PMID: 38170426 DOI: 10.1007/s10895-023-03562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Photodynamic therapy (PDT) is an effective and U.S. Food and Drug Administration (FDA) approved treatment for cancer and other diseases. Photosensitizer is one of the three key components that harvest the energy of light at a certain wavelength. Compared to the conventional fluorophores used as photosensitizers, boron dipyrromethene (BODIPY) derivatives have grown fast in recent years due to their low dark toxicity, versatile tunable sites, and easiness of being paired with other treatments. In this paper, two pH-sensitive BODIPY-based photosensitizers (BDC and BDBrC) were synthesized by adding carbazole moieties onto the BODIPY cores (BD and BDBr) through condensation reactions. BDBrC has two Br atoms at the BODIPY core that promote singlet oxygen generation and further red-shift the absorption maximum peak. Both compounds showed sensitivity toward pH change and generated more singlet oxygen under acidic conditions. The cellular uptake and cell imaging experiments showed that BDBrC can selectively target the lysosome organelle. The further dark cell viability and light cytotoxicity indicate the light triggered PDT treatment can be accomplished with BDBrC.
Collapse
Affiliation(s)
- Xiangshan Liu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, University Heights, Newark, NJ, 07102, USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, University Heights, Newark, NJ, 07102, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, University Heights, Newark, NJ, 07102, USA.
| |
Collapse
|
25
|
Can Karanlık C, Karanlık G, Özdemir S, Tollu G, Erdoğmuş A. Synthesis and characterization of novel BODIPYs and their antioxidant, antimicrobial, photodynamic antimicrobial, antibiofilm and DNA interaction activities. Photochem Photobiol 2024; 100:101-114. [PMID: 37317040 DOI: 10.1111/php.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
In the current study, we synthesized and characterized new BODIPY derivatives (1-4) having pyridine or thienyl-pyridine substituents at meso- position and 4-dibenzothienyl or benzo[b]thien-2-yl moieties at 2-,6- positions. We investigated fluorescence properties and the ability to form singlet oxygen. In addition, various biological activities of BODIPYs such as DPPH scavenging, DNA binding/cleavage ability, cell viability inhibition, antimicrobial activity, antimicrobial photodynamic therapy (aPDT) and biofilm inhibition properties were performed. BODIPY derivatives BDPY-3 (3) and BDPY-4 (4) have high fluorescence quantum yields as 0.50 and 0.61 and 1 O2 quantum yields were calculated as 0.83 for BDPY-1 (1), 0.12 for BDPY-2 (2), 0.11 for BDPY-3 and 0.23 for BDPY-4. BODIPY derivatives BDPY-2, BDPY-3 and BDPY-4 displayed 92.54 ± 5.41%, 94.20 ± 5.50%, and 95.03 ± 5.54% antioxidant ability, respectively. BODIPY compounds showed excellent DNA chemical nuclease activity. BDPY-2, BDPY-3 and BDPY-4 also exhibited 100% APDT activity against E. coli at all tested concentrations. In addition to these, they demonstrated a highly effective biofilm inhibition activity against Staphyloccous aureus and Pseudomans aeruginosa. BDPY-4 showed the most effective antioxidant and DNA cleavage activity, while BDPY-3 exhibited the most effective antimicrobial and antibiofilm activity.
Collapse
Affiliation(s)
| | - Gürkan Karanlık
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | - Gülşah Tollu
- Department of Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| |
Collapse
|
26
|
Li Z, Huan W, Wang Y, Yang YW. Multimodal Therapeutic Platforms Based on Self-Assembled Metallacycles/Metallacages for Cancer Radiochemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306245. [PMID: 37658495 DOI: 10.1002/smll.202306245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Discrete organometallic complexes with defined structures are proceeding rapidly in combating malignant tumors due to their multipronged treatment modalities. Many innovative superiorities, such as high antitumor activity, extremely low systemic toxicity, active targeting ability, and enhanced cellular uptake, make them more competent for clinical applications than individual precursors. In particular, coordination-induced regulation of luminescence and photophysical properties of organic light-emitting ligands has demonstrated significant potential in the timely evaluation of therapeutic efficacy by bioimaging and enabled synergistic photodynamic therapy (PDT) or photothermal therapy (PTT). This review highlights instructive examples of multimodal radiochemotherapy platforms for cancer ablation based on self-assembled metallacycles/metallacages, which would be classified by functions in a progressive manner. Finally, the essential demands and some plausible prospects in this field for cancer therapy are also presented.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
27
|
Nisa K, Lone IA, Arif W, Singh P, Rehmen SU, Kumar R. Applications of supramolecular assemblies in drug delivery and photodynamic therapy. RSC Med Chem 2023; 14:2438-2458. [PMID: 38107171 PMCID: PMC10718592 DOI: 10.1039/d3md00396e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
One of the world's serious health challenges is cancer. Anti-cancer agents delivered to normal cells and tissues pose several problems and challenges. In this connection, photodynamic therapy (PDT) is a minimally invasive therapeutic technique used for selectively destroying malignant cells while sparing the normal tissues. Development in photosensitisers (PSs) and light sources have to be made for PDT as a first option treatment for patients. In the pursuit of developing new attractive molecules and their formulations for PDT, researchers are working on developing such type of PSs that perform better than those being currently used. For the widespread clinical utilization of PDT, effective PSs are of particular importance. Host-guest interactions based on nanographene assemblies such as functionalized hexa-cata-hexabenzocoronenes, hexa-peri-hexabenzocoronenes and coronene have attracted increasing attention owing to less complicated synthetic steps and purification processes (gel permeation chromatography) during fabrication. Noncovalent interactions provide easy and facile approaches for building supramolecular PSs and enable them to have sensitive and controllable photoactivities, which are important for maximizing photodynamic effects and minimizing side effects. Various versatile supramolecular assemblies based on cyclodextrins, cucurbiturils, calixarenes, porphyrins and pillararenes have been designed in order to make PDT an effective therapeutic technique for curing cancer and tumours. The supramolecular assemblies of porphyrins display efficient electron transfer and fluorescence for use in bioimaging and PDT. The multifunctionalization of supramolecular assemblies is used for designing biomedically active PSs, which are helpful in PDT. It is anticipated that the development of these functionalized supramolecular assemblies will provide more fascinating advances in PDT and will dramatically expand the potential and possibilities in cancer treatments.
Collapse
Affiliation(s)
- Kharu Nisa
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ishfaq Ahmad Lone
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Waseem Arif
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Preeti Singh
- Department of Chemistry, Faculty of Science, Swami Vivekanand Subharti University Meerut-250005 India
| | - Sajad Ur Rehmen
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ravi Kumar
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| |
Collapse
|
28
|
Li XL, Han N, Zhang RZ, Niu KK, Dong RZ, Liu H, Yu S, Wang YB, Xing LB. Host-Guest Photosensitizer of a Cationic BODIPY Derivative and Cucurbit[7]uril for High-Efficiency Visible Light-Induced Photooxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55803-55812. [PMID: 37983520 DOI: 10.1021/acsami.3c12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been a notable surge of interest in the fields of organic and pharmaceutical research about photocatalysts (PCs) and photosensitizers (PSs). In this study, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) molecule adorned with quaternary ammonium (TMB) functionality was meticulously designed and synthesized. This compound has remarkable characteristics such as exceptional water solubility, great optical qualities, and commendable photostability. It can form a 1:1 complex (TMB-CB[7]) with cucurbit[7]uril (CB[7]) through host-guest interactions in the aqueous solution and shows obvious fluorescence enhancement. The reactive oxygen species (ROS) including superoxide anion radical (O2·-) and singlet oxygen (1O2) generation ability of TMB-CB[7] were promoted compared with that of TMB in the aqueous solution. More interestingly, the ROS generated from TMB-CB[7] can be used as PCs for aerobic cross dehydrogenation coupling reactions and photooxidation reactions in water with high yields of 89 and 95%, respectively. Therefore, the utilization of a host-guest PS presents a novel and environmentally friendly approach for conducting photocatalyzed organic processes under ambient conditions using visible light.
Collapse
Affiliation(s)
- Xin-Long Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yue-Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
29
|
Zlatić K, Popović M, Uzelac L, Kralj M, Basarić N. Antiproliferative activity of meso-substituted BODIPY photocages: Effect of electrophiles vs singlet oxygen. Eur J Med Chem 2023; 259:115705. [PMID: 37544182 DOI: 10.1016/j.ejmech.2023.115705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
A series of BODIPY compounds with a methylphenol substituent at the meso-position and halogen atoms on the BODIPY core, or OCH3 or OAc substituents at the phenolic moiety was synthesized. Their spectral and photophysical properties and the photochemical reactivity upon irradiation in CH3OH were investigated. The molecules with the phenolic substituent at the meso-position undergo more efficient photo-methanolysis at the boron atom, while the introduction of the OCH3 group at the phenolic moiety changes the reaction selectivity towards the cleavage at the meso-position. The introduction of the halogen atoms into the BODIPY increases the photo-cleavage reaction efficiency, as well as the ability of the molecules to sensitize oxygen and form reactive oxygen species (ROS). The efficiency of the ROS formation was measured in comparison with that of tetraphenylporphyrin. The antiproliferative effect of BODIPY molecules was investigated against three human cancer cell lines MCF-7 (breast carcinoma), H460 (lung carcinoma), HCT116 (colon carcinoma), and two non-cancer cell lines, HEK293T (embryonic kindey) and HaCaT (keratinocytes), with the cells kept in the dark or irradiated with visible light. For most of the compounds a modest or no antiproliferative activity was observed for cells in the dark. However, when cells were irradiated, a dramatic increase in cytotoxicity was observed (more than 100-fold), with IC50 values in the submicromolar concentration range. The enhancement of the cytotoxic effect was explained by the formation of ROS, which was studied for cells in vitro. However, for some BODIPY compounds, the effects due to the formation of electrophilic species (carbocations and quinone methides, which react with biomolecules) cannot be disregarded. Confocal fluorescence microscopy images of H460 cells and HEK293T show that the compounds enter the cells and are retained in the cytoplasm and membranes of the various organelles. When the cells treated with the compounds are irradiated, photo-processes lead to cell death by apoptosis. The study performed is important because it provides bases for the development of novel photo-therapeutics capable of exerting photo-cytotoxic effects in both oxygenated and hypoxic cells.
Collapse
Affiliation(s)
- Katarina Zlatić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia; Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia; Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| | - Matija Popović
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Lidija Uzelac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
30
|
Upadhyay A, Nepalia A, Bera A, Saini DK, Chakravarty AR. A Platinum(II) Boron-dipyrromethene Complex for Cellular Imaging and Mitochondria-targeted Photodynamic Therapy in Red Light. Chem Asian J 2023; 18:e202300667. [PMID: 37706570 DOI: 10.1002/asia.202300667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Cisplatin-derived platinum(II) complexes [Pt(NH3 )2 (pacac)](NO3 ) (1, DPP-Pt) and [Pt(NH3 )2 (Acac-RB)](NO3 ) (2, Acacplatin-RB), where Hpacac is 1,3-diphenyl-1,3-propanedione and HAcac-RB is a red-light active distyryl-BODIPY-appended acetylacetone ligand, are prepared, characterized and their photodynamic therapy (PDT) activity studied (RB abbreviated for red-light BODIPY). Complex 2 displayed an intense absorption band at λ=652 nm (ϵ=7.3×104 M-1 cm-1 ) and 601 nm (ϵ=3.1×104 M-1 cm-1 ) in 1 : 1 DMSO-DPBS (Dulbecco's Phosphate Buffered Saline). Its emission profile includes a broad maximum at ~673 nm (λex =630 nm). The fluorescence quantum yield (ΦF ) of HAcac-RB and 2 are 0.19 and 0.07, respectively. Dichlorodihydrofluorescein diacetate and 1,3-diphenylisobenzofuran assay of complex 2 indicated photogeneration of singlet oxygen (ΦΔ : 0.36) as reactive oxygen species (ROS). Light irradiation caused only minor extent of ligand release forming chemo-active cisplatin analogue. The complex showed ~70-100 fold enhancement in cytotoxicity on light exposure in A549 lung cancer cells and MDA-MB-231 multidrug resistant breast cancer cells, giving half maximal inhibitory concentration (IC50 ) of 0.9-1.8 μM. Confocal imaging showed its mitochondrial localization and complex 2 exhibited anti-metastasis properties. Immunostaining of β-tubulin and Annexin V-FITC/propidium iodide staining displayed complex 2 induced photo-selective microtubule rupture and cellular apoptosis, respectively.
Collapse
Affiliation(s)
- Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| | - Amrita Nepalia
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| |
Collapse
|
31
|
Koli M, Gupta S, Chakraborty S, Ghosh A, Ghosh R, Wadawale AP, Ghanty TK, Patro BS, Mula S. Design and Synthesis of BODIPY-Hetero[5]helicenes as Heavy-Atom-Free Triplet Photosensitizers for Photodynamic Therapy of Cancer. Chemistry 2023; 29:e202301605. [PMID: 37314387 DOI: 10.1002/chem.202301605] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
Designing heavy-atom-free triplet photosensitizers (PSs) is a challenge for the efficient photodynamic therapy (PDT) of cancer. Helicenes are twisted polycyclic aromatic hydrocarbons (PAHs) with an efficient intersystem crossing (ISC) that is proportional to their twisting angle. But their difficult syntheses and weak absorption profile in the visible spectral region restrict their use as heavy-atom-free triplet PSs for PDT. On the other hand, boron-containing PAHs, BODIPYs are highly recognized for their outstanding optical properties. However, planar BODIPY dyes has low ISC and thus they are not very effective as PDT agents. We have designed and synthesized fused compounds containing both BODIPY and hetero[5]helicene structures to develop red-shifted chromophores with efficient ISC. One of the pyrrole units of the BODIPY core was also replaced by a thiazole unit to further enhance the triplet conversion. All the fused compounds have helical structure, and their twisting angles are also increased by substitutions at the boron centre. The helical structures of the BODIPY-hetero[5]helicenes were confirmed by X-ray crystallography and DFT structure optimization. The designed BODIPY-hetero[5]helicenes showed superior optical properties and high ISC with respect to [5]helicene. Interestingly their ISC efficiencies increase proportionally with their twisting angles. This is the first report on the relationship between the twisting angle and the ISC efficiency in twisted BODIPY-based compounds. Theoretical calculations showed that energy gap of the S1 and T1 states decreases in BODIPY-hetero[5]helicene as compared to planar BODIPY. This enhances the ISC rate in BODIPY-hetero[5]helicene, which is responsible for their high generation of singlet oxygen. Finally, their potential applications as PDT agents were investigated, and one BODIPY-hetero[5]helicene showed efficient cancer cell killing upon photo-exposure. This new design strategy will be very useful for the future development of heavy-atom-free PDT agents.
Collapse
Affiliation(s)
- Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Sonali Gupta
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Saikat Chakraborty
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ayan Ghosh
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rajib Ghosh
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Birija S Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
32
|
Sandoval JS, Gong Q, Jiao L, McCamant DW. Stimulated Resonance Raman and Excited-State Dynamics in an Excitonically Coupled Bodipy Dimer: A Test for TD-DFT and the Polarizable Continuum Model. J Phys Chem A 2023; 127:7156-7167. [PMID: 37594191 PMCID: PMC10476205 DOI: 10.1021/acs.jpca.3c02978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Bodipy is one of the most versatile and studied functional dyes due to its myriad applications and tunable spectral properties. One of the strategies to adjust their properties is the formation of Bodipy dimers and oligomers whose properties differ significantly from the corresponding monomer. Recently, we have developed a novel strategy for synthesizing α,α-ethylene-bridged Bodipy dimers; however, their excited-state dynamics was heretofore unknown. This work presents the ultrafast excited-state dynamics of a novel α,α-ethylene-bridge Bodipy dimer and its monomeric parent. The dimer's steady-state absorption and fluorescence suggest a Coulombic interaction between the monomeric units' transition dipole moments (TDMs), forming what is often termed a "J-dimer". The excited-state properties of the dimer were studied using molecular excitonic theory and time-dependent density functional theory (TD-DFT). We chose the M06 exchange-correlation functional (XCF) based on its ability to reproduce the experimental oscillator strength and resonance Raman spectra. Ultrafast laser spectroscopy reveals symmetry-breaking charge separation (SB-CS) in the dimer in polar solvents and the subsequent population of the charge-separated ion-pair state. The charge separation rate falls into the normal regime, while the charge recombination is in the inverted regime. Conversely, in nonpolar solvents, the charge separation is thermodynamically not feasible. In contrast, the monomer's excited-state dynamics shows no dependence on the solvent polarity. Furthermore, we found no evidence of significant structural rearrangement upon photoexcitation, regardless of the deactivation pathway. After an extensive analysis of the electronic transitions, we concluded that the solvent fluctuations in the local environment around the dimer create an asymmetry that drives and stabilizes the charge separation. This work sheds light on the charge-transfer process in this new set of molecular systems and how excited-state dynamics can be modeled by combining the experiment and theory.
Collapse
Affiliation(s)
- Juan S. Sandoval
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Qingbao Gong
- School
of Chemistry and Materials Science, Anhui
Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- School
of Chemistry and Materials Science, Anhui
Normal University, Wuhu 241002, China
| | - David W. McCamant
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
33
|
Yuan X, Kang Y, Dong J, Li R, Ye J, Fan Y, Han J, Yu J, Ni G, Ji X, Ming D. Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy. Nat Commun 2023; 14:5140. [PMID: 37612298 PMCID: PMC10447553 DOI: 10.1038/s41467-023-40954-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
The exogenous excitation requirement and electron-hole recombination are the key elements limiting the application of catalytic therapies. Here a tumor microenvironment (TME)-specific self-triggered thermoelectric nanoheterojunction (Bi0.5Sb1.5Te3/CaO2 nanosheets, BST/CaO2 NSs) with self-built-in electric field facilitated charge separation is fabricated. Upon exposure to TME, the CaO2 coating undergoes rapid hydrolysis, releasing Ca2+, H2O2, and heat. The resulting temperature difference on the BST NSs initiates a thermoelectric effect, driving reactive oxygen species production. H2O2 not only serves as a substrate supplement for ROS generation but also dysregulates Ca2+ channels, preventing Ca2+ efflux. This further exacerbates calcium overload-mediated therapy. Additionally, Ca2+ promotes DC maturation and tumor antigen presentation, facilitating immunotherapy. It is worth noting that the CaO2 NP coating hydrolyzes very slowly in normal cells, releasing Ca2+ and O2 without causing any adverse effects. Tumor-specific self-triggered thermoelectric nanoheterojunction combined catalytic therapy, ion interference therapy, and immunotherapy exhibit excellent antitumor performance in female mice.
Collapse
Affiliation(s)
- Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Ruiyan Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Jiamin Ye
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Jingwen Han
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Junhui Yu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Guangjian Ni
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China.
- Medical College, Linyi University, 276000, Linyi, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
34
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
35
|
Kawamura K, Yamasaki T, Fujinaga M, Kokufuta T, Zhang Y, Mori W, Kurihara Y, Ogawa M, Tsukagoe K, Nengaki N, Zhang MR. Automated radiosynthesis and in vivo evaluation of 18F-labeled analog of the photosensitizer ADPM06 for planning photodynamic therapy. EJNMMI Radiopharm Chem 2023; 8:14. [PMID: 37458904 DOI: 10.1186/s41181-023-00199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND A family of BF2-chelated tetraaryl-azadipyrromethenes was developed as non-porphyrin photosensitizers for photodynamic therapy. Among the developed photosensitizers, ADPM06 exhibited excellent photochemical and photophysical properties. Molecular imaging is a useful tool for photodynamic therapy planning and monitoring. Radiolabeled photosensitizers can efficiently address photosensitizer biodistribution, providing helpful information for photodynamic therapy planning. To evaluate the biodistribution of ADPM06 and predict its pharmacokinetics on photodynamic therapy with light irradiation immediately after administration, we synthesized [18F]ADPM06 and evaluated its in vivo properties. RESULTS [18F]ADPM06 was automatically synthesized by Lewis acid-assisted isotopic 18F-19F exchange using ADPM06 and tin (IV) chloride at room temperature for 10 min. Radiolabeling was carried out using 0.4 μmol of ADPM06 and 200 μmol of tin (IV) chloride. The radiosynthesis time was approximately 60 min, and the radiochemical purity was > 95% at the end of the synthesis. The decay-corrected radiochemical yield from [18F]F- at the start of synthesis was 13 ± 2.7% (n = 5). In the biodistribution study of male ddY mice, radioactivity levels in the heart, lungs, liver, pancreas, spleen, kidney, small intestine, muscle, and brain gradually decreased over 120 min after the initial uptake. The mean radioactivity level in the thighbone was the highest among all organs investigated and increased for 120 min after injection. Upon co-injection with ADPM06, the radioactivity levels in the blood and brain significantly increased, whereas those in the heart, lung, liver, pancreas, kidney, small intestine, muscle, and thighbone of male ddY mice were not affected. In the metabolite analysis of the plasma at 30 min post-injection in female BALB/c-nu/nu mice, the percentage of radioactivity corresponding to [18F]ADPM06 was 76.3 ± 1.6% (n = 3). In a positron emission tomography study using MDA-MB-231-HTB-26 tumor-bearing mice (female BALB/c-nu/nu), radioactivity accumulated in the bone at a relatively high level and in the tumor at a moderate level for 60 min after injection. CONCLUSIONS We synthesized [18F]ADPM06 using an automated 18F-labeling synthesizer and evaluated the initial uptake and pharmacokinetics of ADPM06 using biodistribution of [18F]ADPM06 in mice to guide photodynamic therapy with light irradiation.
Collapse
Affiliation(s)
- Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan.
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Tomomi Kokufuta
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
- SHI Accelerator Service Ltd., 7-1-1 Nishigotanda, Shinagawa-Ku, Tokyo, 141-0032, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
- SHI Accelerator Service Ltd., 7-1-1 Nishigotanda, Shinagawa-Ku, Tokyo, 141-0032, Japan
| | - Kaito Tsukagoe
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
- SHI Accelerator Service Ltd., 7-1-1 Nishigotanda, Shinagawa-Ku, Tokyo, 141-0032, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
- SHI Accelerator Service Ltd., 7-1-1 Nishigotanda, Shinagawa-Ku, Tokyo, 141-0032, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| |
Collapse
|
36
|
Lima E, Reis LV. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023; 28:5092. [PMID: 37446758 DOI: 10.3390/molecules28135092] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Lucinda V Reis
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
37
|
Zhang S, Yang W, Lu X, Zhang X, Pan Z, Qu DH, Mei D, Mei J, Tian H. Near-infrared AIEgens with high singlet-oxygen yields for mitochondria-specific imaging and antitumor photodynamic therapy. Chem Sci 2023; 14:7076-7085. [PMID: 37389256 PMCID: PMC10306102 DOI: 10.1039/d3sc00588g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
AIE-active photosensitizers (PSs) are promising for antitumor therapy due to their advantages of aggregation-promoted photosensitizing properties and outstanding imaging ability. High singlet-oxygen (1O2) yield, near-infrared (NIR) emission, and organelle specificity are vital parameters to PSs for biomedical applications. Herein, three AIE-active PSs with D-π-A structures are rationally designed to realize efficient 1O2 generation, by reducing the electron-hole distribution overlap, enlarging the difference on the electron-cloud distribution at the HOMO and LUMO, and decreasing the ΔEST. The design principle has been expounded with the aid of time-dependent density functional theory (TD-DFT) calculations and the analysis of electron-hole distributions. The 1O2 quantum yields of AIE-PSs developed here can be up to 6.8 times that of the commercial photosensitizer Rose Bengal under white-light irradiation, thus among the ones with the highest 1O2 quantum yields reported so far. Moreover, the NIR AIE-PSs show mitochondria-targeting capability, low dark cytotoxicity but superb photo-cytotoxicity, and satisfactory biocompatibility. The in vivo experimental results demonstrate good antitumor efficacy for the mouse tumour model. Therefore, the present work will shed light on the development of more high-performance AIE-PSs with high PDT efficiency.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Wenfang Yang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xiao Lu
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health 56 South Lishi Road, Xicheng District Beijing 100045 P. R. China
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Zhichao Pan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Dong Mei
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health 56 South Lishi Road, Xicheng District Beijing 100045 P. R. China
| | - Ju Mei
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
38
|
Karanlık CC, Karanlık G, Gok B, Budama-Kilinc Y, Kecel-Gunduz S, Erdoğmuş A. Exploring anticancer properties of novel Nano-Formulation of BODIPY Compound, Photophysicochemical, in vitro and in silico evaluations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122964. [PMID: 37302199 DOI: 10.1016/j.saa.2023.122964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
A new BODIPY complex (C4) composed of meso- thienyl-pyridine substituted core unit diiodinated from 2- and 6- positions and distyryl moieties at 3- and 5- positions is synthesized. Nano-sized formulation of C4 is prepared by single emulsion method using poly(ε-caprolactone)(PCL) polymer. Encapsulation efficiency and loading capacity values of C4 loaded PCL nanoparticles (C4@PCL-NPs) are calculated and in vitro release profile of C4 is determined. The cytotoxicity and anti-cancer activity are conducted on the L929 and MCF-7 cell lines. Cellular uptake study is performed and interaction between C4@PCL-NPs and MCF-7 cell line is investigated. Anti-cancer activity of C4 is predicted with molecular docking studies and the inhibition property on EGFR, ERα, PR and mTOR are investigated for its anticancer properties. Molecular interactions, binding positions and docking score energies between C4 and EGFR, ERα, PR and mTOR targets are revealed using in silico methods. The druglikeness and pharmacokinetic properties of C4 are evaluated using the SwissADME and its bioavailability and toxicity profiles are assessed using the SwissADME, preADMET and pkCSM servers. In conclusion, the potential use of C4 as an anti-cancer agent is evaluated in vitro and in silico methods. Also, photophysicochemical properties are studied to investigate the potential of using Photodynamic Therapy (PDT). In photochemical studies, the calculated singlet oxygen quantum yield (ΦΔ) value was 0.73 for C4 and in photopysical studies, the calculated fluorescence quantum yield ΦF value was 0.19 for C4.
Collapse
Affiliation(s)
- Ceren Can Karanlık
- Department of Chemistry, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey.
| | - Gürkan Karanlık
- Department of Chemistry, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey.
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey.
| | - Yasemin Budama-Kilinc
- Department of Bioengineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220, Istanbul, Turkey.
| | | | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220, Istanbul, Turkey.
| |
Collapse
|
39
|
Li H, Xu H, Wang G, Chen J, Ji D, Huang Y, Cui G, He H, Guo Z. Rational Design of Mesoporous Coordination Polymer Nanophotosensitizers for Photodynamic Tumor Ablation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21746-21753. [PMID: 37126007 DOI: 10.1021/acsami.2c22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Effective clinical practice of precise photodynamic therapy (PDT) is severely impeded by the inherent drawbacks and aggregation propensity of conventional photosensitizers. An all-in-one approach is highly desired to optimize structural features, photophysical properties, and pharmacokinetic behaviors of photosensitizers. Herein, we have fabricated mesoporous boron dipyrromethene-bridged coordination polymer nanophotosensitizers (BCP-NPs) for high-performance PDT via a unique solvent-assisted assembly strategy. Distinctive photophysical and structural characteristics of BCP-NPs confer enhanced photodynamic activities, together with high cellular uptake and ultrahigh stability. Moreover, BCP-NPs showed excellent tumor accumulation and prolonged tumor retention, achieving eradication of the triple-negative breast cancer (TNBC) model under low-power-density LED irradiation. This work has provided a valuable paradigm for the construction of mesoporous photoactive nanomaterials for biophotonic applications.
Collapse
Affiliation(s)
- Hongyu Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Han Xu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Dandan Ji
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yangyang Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Guoqing Cui
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hui He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhengqing Guo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
40
|
Wang D, Wang X, Zhou S, Gu P, Zhu X, Wang C, Zhang Q. Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
41
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
42
|
Li C, Tu L, Yang J, Liu C, Xu Y, Li J, Tuo W, Olenyuk B, Sun Y, Stang PJ, Sun Y. Acceptor engineering of metallacycles with high phototoxicity indices for safe and effective photodynamic therapy. Chem Sci 2023; 14:2901-2909. [PMID: 36937588 PMCID: PMC10016620 DOI: 10.1039/d2sc06936a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Although metallacycle-based photosensitizers have attracted increasing attention in biomedicine, their clinical application has been hindered by their inherent dark toxicity and unsatisfactory phototherapeutic efficiency. Herein, we employ a π-expansion strategy for ruthenium acceptors to develop a series of Ru(ii) metallacycles (Ru1-Ru4), while simultaneously reducing dark toxicity and enhancing phototoxicity, thus obtaining a high phototoxicity index (PI). These metallacycles enable deep-tissue (∼7 mm) fluorescence imaging and reactive oxygen species (ROS) production and exhibit remarkable anti-tumor activity even under hypoxic conditions. Notably, Ru4 has the lowest dark toxicity, highest ROS generation ability and an optimal PI (∼146). Theoretical calculations verify that Ru4 exhibits the largest steric bulk and the lowest singlet-triplet energy gap (ΔE ST, 0.62 eV). In vivo studies confirm that Ru4 allows for effective and safe phototherapy against A549 tumors. This work thus is expected to open a new avenue for the design of high-performance metal-based photosensitizers for potential clinical applications.
Collapse
Affiliation(s)
- Chonglu Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Le Tu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Jingfang Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Chang Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Junrong Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Wei Tuo
- Ministry of Education Key Laboratory for Special Functional Materials, Henan University Kaifeng 475004 China
- Department of Chemistry, University of Utah Salt Lake City Utah 84112 USA
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine 505 Coast Boulevard South La Jolla CA 92037 USA
| | - Yan Sun
- Ministry of Education Key Laboratory for Special Functional Materials, Henan University Kaifeng 475004 China
| | - Peter J Stang
- Department of Chemistry, University of Utah Salt Lake City Utah 84112 USA
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| |
Collapse
|
43
|
Miao W, Guo X, Yan X, Shang Y, Yu C, Dai E, Jiang T, Hao E, Jiao L. Red-to-Near-Infrared Emitting PyrrolylBODIPY Dyes: Synthesis, Photophysical Properties and Bioimaging Application. Chemistry 2023; 29:e202203832. [PMID: 36650103 DOI: 10.1002/chem.202203832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Near-infrared (NIR) fluorophores with characteristics such as deep tissue penetration, minimal damage to the biological samples, and low background interference, are highly sought-after materials for in vivo and deep-tissue fluorescence imaging. Herein, series of 3-pyrrolylBODIPY derivatives and 3,5-dipyrrolylBODIPY derivatives have been prepared by a facile regioselective nucleophilic aromatic substitution reaction (SN Ar) on 3,5-halogenated BODIPY derivatives (3,5-dibromo or 2,3,5,6-tetrachloroBODIPYs) with pyrroles. The installation of a pyrrolic unit onto the 3-position of the BODIPY chromophore leads to a dramatic red shift of both the absorption (up to 160 nm) and the emission (up to 260 nm) in these resultant 3-pyrrolylBODIPYs with respect to that of the BODIPY chromophore. Their further 5-positional functionalization provides a facile way to fine tune their photophysical properties, and these resulting dipyrrolylBODIPYs and functionalized pyrrolylBODIPYs show strong absorption in the deep red-to-NIR regions (595-684 nm) and intense NIR fluorescence emission (650-715 nm) in dichloromethane. To demonstrate the applicability of these functionalized pyrrolylBODIPYs as NIR fluorescent probes for cell imaging, pyrrolylBODIPY 6 a containing mitochondrion-targeting butyltriphenylphosphonium cationic species was also prepared. It selectively localized in mitochondria of HeLa cells, with low cytotoxicity and intense deep red fluorescence emission.
Collapse
Affiliation(s)
- Wei Miao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.,Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Xi Yan
- Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China
| | - Yingjian Shang
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - En Dai
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Ting Jiang
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| |
Collapse
|
44
|
Hohlfeld BF, Steen D, Wieland GD, Achazi K, Kulak N, Haag R, Wiehe A. Bromo- and glycosyl-substituted BODIPYs for application in photodynamic therapy and imaging. Org Biomol Chem 2023; 21:3105-3120. [PMID: 36799212 DOI: 10.1039/d2ob02174a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The introduction of heavy atoms into the BODIPY-core structure has proven to be a straightforward strategy for optimizing the design of such dyes towards enhanced generation of singlet oxygen rendering them suitable as photosensitizers for photodynamic therapy (PDT). In this work, BODIPYs are presented by combining the concept of bromination with nucleophilic aromatic substitution (SNAr) of a pentafluorophenyl or a 4-fluoro-3-nitrophenyl moiety to introduce functional groups, thus improving the phototoxic effect of the BODIPYs as well as their solubility in the biological environment. The nucleophilic substitution enabled functionalization with various amines and alcohols as well as unprotected thiocarbohydrates. The phototoxic activity of these more than 50 BODIPYs has been assessed in cellular assays against four cancer cell lines in order to more broadly evaluate their PDT potential, thus accounting for the known variability between cell lines with respect to PDT activity. In these investigations, dibrominated polar-substituted BODIPYs, particularly dibrominated glyco-substituted compounds, showed promising potential as photomedicine candidates. Furthermore, the cellular uptake of the glycosylated BODIPYs has been confirmed via fluorescence microscopy.
Collapse
Affiliation(s)
- Benjamin F Hohlfeld
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| | - Dorika Steen
- Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| | | | - Katharina Achazi
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Nora Kulak
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Rainer Haag
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Arno Wiehe
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| |
Collapse
|
45
|
Tu L, Li C, Xiong X, Hyeon Kim J, Li Q, Mei L, Li J, Liu S, Seung Kim J, Sun Y. Engineered Metallacycle-Based Supramolecular Photosensitizers for Effective Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202301560. [PMID: 36786535 DOI: 10.1002/anie.202301560] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
Although metallacycle-based supramolecular photosensitizers (PSs) have attracted increasing attention in biomedicine, their clinical translation is still hindered by their inherent dark toxicity. Herein, we report what to our knowledge is the first example of a molecular engineering approach to building blocks of metallacycles for constructing a series of supramolecular PSs (RuA-RuD), with the aim of simultaneously reducing dark toxicity and enhancing phototoxicity, and consequently obtaining high phototoxicity indexes (PI). Detailed in vitro investigations demonstrate that RuA-RuD display high cancer cellular uptake and remarkable antitumor activity even under hypoxic conditions. Notably, RuD exhibited no dark toxicity and displayed the highest PI value (≈406). Theoretical calculations verified that RuD has the largest steric hindrance and the lowest singlet-triplet energy gap (ΔEST , 0.61 eV). Further in vivo studies confirmed that RuD allows safe and effective phototherapy against A549 tumors.
Collapse
Affiliation(s)
- Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Chonglu Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Qian Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Qingdao University of Science & Technology, Qingdao, 266100, China
| | - Longcan Mei
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Junrong Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
46
|
Wang C, Ebel K, Heinze K, Resch-Genger U, Bald I. Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby. Chemistry 2023; 29:e202203719. [PMID: 36734093 DOI: 10.1002/chem.202203719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Photodynamic therapy (PDT) used for treating cancer relies on the generation of highly reactive oxygen species, for example, singlet oxygen 1 O2 , by light-induced excitation of a photosensitizer (PS) in the presence of molecular oxygen, inducing DNA damage in close proximity of the PS. Although many precious metal complexes have been explored as PS for PDT and received clinical approval, only recently, the potential of photoactive complexes of non-noble metals as PS has been discovered. Using the DNA origami technology that can absolutely quantify DNA strand break cross sections, we assessed the potential of the luminescent transition metal complex [Cr(ddpd)2 ]3+ (ddpd=N,N'-dimethyl-N,N'-dipyridine-2-ylpyridine-2,6-diamine) to damage DNA in an air-saturated aqueous environment upon UV/Vis illumination. The quantum yield for strand breakage, that is, the ratio of DNA strand breaks to the number of absorbed photons, was determined to 1-4 %, indicating efficient transformation of photons into DNA strand breaks by [Cr(ddpd)2 ]3+ .
Collapse
Affiliation(s)
- Cui Wang
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter Strasse 11, 12489, Berlin, Germany.,present address: Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Kenny Ebel
- Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter Strasse 11, 12489, Berlin, Germany
| | - Ilko Bald
- Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
47
|
The influence of structural effects and the solvent properties on spectral, generation characteristics, photostability and lipophilicity of 1,3,5,7-tetramethyl-BODIPY and its alkylated and iodinated derivatives. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
48
|
Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Shah S, Naithani N, Sahoo SC, Neelakandan PP, Tyagi N. Multifunctional BODIPY embedded non-woven fabric for CO release and singlet oxygen generation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112631. [PMID: 36630766 DOI: 10.1016/j.jphotobiol.2022.112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Materials that can simultaneously release CO and generate singlet oxygen upon visible light irradiation under ambient conditions are highly desirable for therapeutic applications. Furthermore, materials that can sequester the undesirable side products into the matrix without affecting the release of CO and singlet oxygen generation would allow them to be used for practical applications. Focussing on these aspects, we prepared two dipicolylamine appended BODIPY‑manganese(I) tricarbonyl complexes wherein the metal core was systematically tethered at 5- and 8- positions of the BODIPY core. The complexes were embedded into a polymer matrix via electrospinning and the resulting non-woven fabrics showed CO release as well as singlet oxygen generation upon irradiation. While the hybrid materials were non-toxic in dark, they were strongly photocytotoxic to c6 cancer cells when exposed to light. Rapid CO release alongside significant singlet oxygen generation, indefinite dark stability, good biocompatibility and negligible dark toxicity makes these fabrics a potent candidate for phototherapeutic applications.
Collapse
Affiliation(s)
- Sanchita Shah
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Neeraj Naithani
- Semi-Conductor Laboratory, Department of Space, Sector 72, Mohali 160071, Punjab, India
| | - Subash Chandra Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh 160014, Punjab, India
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Nidhi Tyagi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| |
Collapse
|
50
|
Ye C, Zhang S, Zhang D, Shen Y, Wang Z, Wang H, Ren J, Jiang XD, Du J, Shang R, Wang G. Engineering J-aggregates for NIR-induced meso-CF3-BODIPY nanoparticles by activated apoptosis mechanism in photothermal therapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|