1
|
Bhawnani RR, Sartape R, Gande VV, Barsoum ML, Kallon EM, Reis RD, Dravid VP, Singh MR. Non-Aqueous Electrochemical CO 2 Reduction to Multivariate C 2-Products Over Single Atom Catalyst at Current Density up to 100 mA cm -2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408010. [PMID: 39648565 DOI: 10.1002/smll.202408010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Indexed: 12/10/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2-RR) in non-aqueous electrolytes offers significant advantages over aqueous systems, as it boosts CO2 solubility and limits the formation of HCO3 - and CO3 2- anions. Metal-organic frameworks (MOFs) in non-aqueous CO2-RR makes an attractive system for CO2 capture and conversion. However, the predominantly organic composition of MOFs limits their electrical conductivity and stability in electrocatalysis, where they suffer from electrolytic decomposition. In this work, electrically conductive and stable Zirconium (Zr)-based porphyrin MOF, specifically PCN-222, metalated with a single-atom Cu has been explored, which serves as an efficient single-atom catalyst (SAC) for CO2-RR. PCN- 222(Cu) demonstrates a substantial enhancement in redox activity due to the synergistic effect of the Zr matrix and the single-atom Cu site, facilitating complete reduction of C2 species under non-aqueous electrolytic conditions. The current densities achieved (≈100 mA cm- 2) are 4-5 times higher than previously reported values for MOFs, with a faradaic efficiency of up to 40% for acetate production, along with other multivariate C2 products, which have never been achieved previously in non-aqueous systems. Characterization using X-ray and various spectroscopic techniques, reveals critical insights into the role of the Zr matrix and Cu sites in CO2 reduction, benchmarking PCN-222(Cu) for MOF-based SAC electrocatalysis.
Collapse
Affiliation(s)
- Rajan R Bhawnani
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Rohan Sartape
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Vamsi V Gande
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Michael L Barsoum
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Elias M Kallon
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Roberto Dos Reis
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Vinayak P Dravid
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
2
|
Mrozińska Z, Kaczmarek A, Świerczyńska M, Juszczak M, Kudzin MH. Biochemical Behavior, Influence on Cell DNA Condition, and Microbiological Properties of Wool and Wool-Copper Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2878. [PMID: 38930247 PMCID: PMC11204859 DOI: 10.3390/ma17122878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The paper presents the study concerning the preparation and physio-chemical and biological properties of wool-copper (WO-Cu) materials obtained by the sputter deposition of copper onto the wool fibers. The WO-Cu material was subjected to physio-chemical and biological investigations. The physio-chemical investigations included the elemental analysis of materials (C, N, O, S, and Cu), their microscopic analysis, and surface properties analysis (specific surface area and total pore volume). The biological investigations consisted of the antimicrobial activity tests of the WO-Cu materials against colonies of Gram-positive (Staphylococcus aureus) bacteria, Gram-negative (Escherichia coli) bacteria, and fungal mold species (Chaetomium globosum). Biochemical-hematological tests included the evaluation of the activated partial thromboplastin time and pro-thrombin time. The tested wool-copper demonstrated the ability to interact with the DNA in a time-dependent manner. These interactions led to the DNA's breaking and degradation. The antimicrobial and antifungal activities of the WO-Cu materials suggest a potential application as an antibacterial/antifungal material. Wool-copper materials may be also used as customized materials where the blood coagulation process could be well controlled through the appropriate copper content.
Collapse
Affiliation(s)
- Zdzisława Mrozińska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Anna Kaczmarek
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Michał Juszczak
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| |
Collapse
|
3
|
Naher M, Su C, Harmer JR, Williams CM, Bernhardt PV. Macrocyclic Copper(II) Complexes as Catalysts for Electrochemically Mediated Atom Transfer. Inorg Chem 2024; 63:6453-6464. [PMID: 38526552 DOI: 10.1021/acs.inorgchem.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Copper-catalyzed electrochemical atom transfer radical addition (eATRA) is a new method for the creation of new C-C bonds under mild conditions. In this work, we have explored the reactivity of an analogous series of N4 macrocyclic CuII complexes as eATRA precatalysts, which are primed by reduction to their monovalent oxidation state. These complexes were fully characterized structurally, spectroscopically, and electrochemically. A spectrum of radical activation reactivity was found across the series [CuI(Me4cyclen)(NCMe)]+ (Me4cyclen = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane), [CuI(Me4cyclam)(NCMe)]+ (Me4cyclam = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), and [CuI(Me2py2clen)(NCMe)]+ (Me2py2clen = 3,7-dimethyl-3,7-diaza-1,5(2,6)-dipyridinacyclo-octaphane). The rate of radical production by [Cu(Me2py2clen)(NCMe)]+ was modest, but rapid radical capture to form the organocopper complex [CuI(Me2py2clen)(CH2CN)] led to a dramatic acceleration in catalysis, greater than seen in any comparable Cu complex, but this led to rapid radical self-termination instead of radical addition.
Collapse
Affiliation(s)
- Masnun Naher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Chuyi Su
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
4
|
Naher M, Su C, Harmer JR, Williams CM, Bernhardt PV. Electrocatalytic Atom Transfer Radical Addition with Turbocharged Organocopper(II) Complexes. Inorg Chem 2023; 62:15575-15583. [PMID: 37712595 DOI: 10.1021/acs.inorgchem.3c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The utility and scope of Cu-catalyzed halogen atom transfer chemistry have been exploited in the fields of atom transfer radical polymerization and atom transfer radical addition, where the metal plays a key role in radical formation and minimizing unwanted side reactions. We have shown that electrochemistry can be employed to modulate the reactivity of the Cu catalyst between its active (CuI) and dormant (CuII) states in a variety of ligand systems. In this work, a macrocyclic pyridinophane ligand (L1) was utilized, which can break the C-Br bond of BrCH2CN to release •CH2CN radicals when in complex with CuI. Moreover, the [CuI(L1)]+ complex can capture the •CH2CN radical to form a new species [CuII(L1)(CH2CN)]+ in situ that, on reduction, exhibits halogen atom transfer reactivity 3 orders of magnitude greater than its parent complex [CuI(L1)]+. This unprecedented rate acceleration has been identified by electrochemistry, successfully reproduced by simulation, and exploited in a Cu-catalyzed bulk electrosynthesis where [CuII(L1)(CH2CN)]+ participates as a radical donor in the atom transfer radical addition of BrCH2CN to a selection of styrenes. The formation of these turbocharged catalysts in situ during electrosynthesis offers a new approach to the Cu-catalyzed organic reaction methodology.
Collapse
Affiliation(s)
- Masnun Naher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Chuyi Su
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
5
|
Interplay of electronic and geometric structure on Cu phenanthroline, bipyridine and derivative complexes, synthesis, characterization, and reactivity towards oxygen. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Establishing Fe-Cu interaction in a novel free-standing material to boost the catalytic activity for ligand-free Suzuki-Miyaura cross-couplings. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Recent Advances in Metal-Based Molecular Photosensitizers for Artificial Photosynthesis. Catalysts 2022. [DOI: 10.3390/catal12080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Artificial photosynthesis (AP) has been extensively applied in energy conversion and environment pollutants treatment. Considering the urgent demand for clean energy for human society, many researchers have endeavored to develop materials for AP. Among the materials for AP, photosensitizers play a critical role in light absorption and charge separation. Due to the fact of their excellent tunability and performance, metal-based complexes stand out from many photocatalysis photosensitizers. In this review, the evaluation parameters for photosensitizers are first summarized and then the recent developments in molecular photosensitizers based on transition metal complexes are presented. The photosensitizers in this review are divided into two categories: noble-metal-based and noble-metal-free complexes. The subcategories for each type of photosensitizer in this review are organized by element, focusing first on ruthenium, iridium, and rhenium and then on manganese, iron, and copper. Various examples of recently developed photosensitizers are also presented.
Collapse
|
8
|
Gonzálvez MA, Su C, Williams CM, Bernhardt PV. Organocopper( ii) complexes: new catalysts for carbon–carbon bond formation via electrochemical atom transfer radical addition ( eATRA). Chem Sci 2022; 13:10506-10511. [PMID: 36277651 PMCID: PMC9473645 DOI: 10.1039/d2sc03418b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Electrochemical generation of a novel organocopper(ii) complex offers a new way to carry out atom transfer radical addition to alkenes under mild conditions with high yields and low catalyst loadings.
Collapse
Affiliation(s)
- Miguel A. Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Chuyi Su
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
9
|
Zhang Y, Jiang W, Bao X, Qiu Y, Yuan Y, Yang C, Huo C. Photocatalyzed Reverse Polarity Oxidative Povarov Reaction of Glycine Derivatives with Maleimides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yongxin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Wei Jiang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yifeng Qiu
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Caixia Yang
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water‐Retention Chemical Functional Materials; Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education; College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
10
|
Chen Y, Wei M, Lee J, Zhao J, Lin P, Wang Q, Li F, Ling D. Neurodegenerative Disease Diagnosis via Ion‐Level Detection in the Brain. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ying Chen
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Min Wei
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Jing Zhao
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Peihua Lin
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Qiyue Wang
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Fangyuan Li
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education College of Biomedical Engineering & Instrument Science Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Daishun Ling
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education College of Biomedical Engineering & Instrument Science Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 P.R. China
| |
Collapse
|
11
|
Gonzálvez MA, Harmer JR, Bernhardt PV. Mapping the Pathway to Organocopper(II) Complexes Relevant to Atom Transfer Radical Polymerization. Inorg Chem 2021; 60:10648-10655. [PMID: 34185989 DOI: 10.1021/acs.inorgchem.1c01309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rare organocopper(II) complex [Cu(Me6tren)(CH2CN)]+ (Me6tren = tris(2-(dimethylamino)ethyl)amine) has emerged as an important model of potential byproducts in copper-catalyzed atom transfer radical polymerization. This complex has been generated by controlled potential electrolysis of [Cu(Me6tren)(NCMe)]2+ in the presence of BrCH2CN. Time-resolved UV-vis and continuous wave and pulse electron paramagnetic resonance (EPR) spectra identified [Cu(Me6tren)Br]+ as an intermediate. Hyperfine sublevel correlation and electron nuclear double resonance spectroscopy of samples at different timepoints reveal signals that are assigned to a C-bound cyanomethylate ligand, with distinct 14N and 1H hyperfine coupling constants in comparison with the corresponding N-bound acetonitrile and bromido complexes. The experimental EPR data are supported by density functional theory calculations to understand how the geometries of the species involved produce distinct spectroscopic signatures, and a clear picture of how this unusual organocopper(II) complex is formed has emerged.
Collapse
Affiliation(s)
- Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
12
|
Melville JN, Bernhardt PV. Electrochemical Exploration of Active Cu-Based Atom Transfer Radical Polymerization Catalysis through Ligand Modification. Inorg Chem 2021; 60:9709-9719. [PMID: 34142823 DOI: 10.1021/acs.inorgchem.1c01001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intersection between Cu-catalyzed atom transfer radical polymerization (ATRP) and organometallic mediated radical polymerization (OMRP) has been recently shown to be a result of competition between the CuI and CuII complexes of polyamine ligands for the same organic free radical. The tetradentate ligands N,N'-bis-2'-pyridylmethyl-ethane-1,2-diamine (L1) and N,N'-dimethyl-N,N'-bis-2'-pyridylmethyl-ethane-1,2-diamine (L2) form stable Cu complexes which, depending on their oxidation state, can either liberate or complex organic radicals. Herein, we show that this process may be affected by subtle changes to the ligand system. Switching from a tertiary amine (L2) to a secondary amine (L1) retains ATRP and OMRP activity through a series of cyclic voltammetry measurements in the presence of the initiator bromoacetonitrile.
Collapse
Affiliation(s)
- Jamie N Melville
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
13
|
Zhang M, Liang G, Xing M. Theoretical Investigation of Hydrogen‐Bond‐Assisted Tetradentate N4 Copper(I) Chloride and
trans
‐1,2‐Peroxodicopper Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Min Zhang
- Department of Chemistry Mississippi State University Mississippi State Mississippi 39762 United States
| | - Guangchao Liang
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109 United States
| | - Mengjiang Xing
- State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P. R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| |
Collapse
|
14
|
Rentschler M, Schmid MA, Frey W, Tschierlei S, Karnahl M. Multidentate Phenanthroline Ligands Containing Additional Donor Moieties and Their Resulting Cu(I) and Ru(II) Photosensitizers: A Comparative Study. Inorg Chem 2020; 59:14762-14771. [PMID: 32212646 DOI: 10.1021/acs.inorgchem.9b03687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To bind or not to bind: Driven by the motivation to increase the (photo)stability of traditional Cu(I) photosensitizers, multidentate diimine ligands, which contain two additional donor sites, were designed. To this end, a systematic series of four 1,10-phenanthroline ligands with either OR or SR (R = iPr or Ph) donor groups at the 2 and 9 positions and their resulting hetero- and homoleptic Cu(I) complexes were prepared. In addition, the related Ru(II) complexes were also synthesized to study the effect of another metal center. In the following, a combination of NMR spectroscopy and X-ray analysis was used to evaluate the impact of the additional donor moieties on the coordination behavior. Most remarkably, for the homoleptic bis(diimine)copper(I) complexes, a pentacoordinated copper center, corresponding to a (4 + 1)-fold coordination mode, was found in the solid state. This additional binding is the first indication that the extra donor might also occupy a free coordination site in the excited-state complex, modifying the nature of the excited states and their respective deactivation processes. Therefore, the electrochemical and photophysical properties of all novel complexes (in total 13) were studied in detail to assess the potential of these photosensitizers for future applications within solar energy conversion schemes. Finally, the photostabilities and a potential degradation mechanism were analyzed for representative samples.
Collapse
Affiliation(s)
- Martin Rentschler
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Marie-Ann Schmid
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Llanos L, Vera C, Vega A, Aravena D, Lemus L. Reactivity of Cu IN 4 Flattened Complexes: Interplay between Coordination Geometry and Ligand Flexibility. Inorg Chem 2020; 59:15061-15073. [PMID: 33021785 DOI: 10.1021/acs.inorgchem.0c02037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The relation between redox activity and coordination geometry in CuIN4 complexes indicates that more flattened structures tend to be more reactive. Such a preorganization of the ligand confers to the complex geometries closer to a transition state, which has been termed the "entatic" state in metalloproteins, more recently extending this concept for copper complexes. However, many aspects of the redox chemistry of CuI complexes cannot be explained only by flattening. For instance, the role of ligand flexibility in this context is an open debate nowadays. To analyze this point, we studied oxidation properties of a series of five monometallic CuI Schiff-base complexes, [CuI(Ln)]+, which span a range of geometries from a distorted square planar (n = 3) to a distorted tetrahedron (n = 6, 7). This stepped control of the structure around the CuI atom allows us to explore the effect of the flattening distortion on both the electronic and redox properties through the series. Experimental studies were complemented by a theoretical analysis based on density functional theory calculations. As expected, oxidation was favored in the flattened structures, spanning a broad potential window of 370 mV for the complete series. This orderly behavior was tested in the reductive dehalogenation reaction of tetrachloroethane (TCE). Kinetic studies show that CuI oxidation by TCE is faster as the flattening distortion is higher and the oxidation potentials of the metal are lower. However, the most reactive complex was not the more planar, contradicting the trend expected from oxidation potentials. The origin of this irregularity is related to ligand flexibility and its connection with the atom/electron transfer reaction path, highlighting the need to consider effects beyond flattening distortion to better understand the reactivity of this important class of complexes.
Collapse
Affiliation(s)
- Leonel Llanos
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estacio'n Central, Santiago, Chile
| | - Cristian Vera
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estacio'n Central, Santiago, Chile
| | - Andrés Vega
- Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile.,Centro para el Desarrollo de Nanociencias y Nanotecnología, CEDENNA, Santiago, Chile
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estacio'n Central, Santiago, Chile
| | - Luis Lemus
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estacio'n Central, Santiago, Chile
| |
Collapse
|
16
|
Zhang ZY, Su Y, Shi LX, Li SF, Fabunmi F, Li SL, Yu T, Chen ZN, Su Z, Liu HK. Coordination-Bond-Driven Dissolution-Recrystallization Structural Transformation with the Expansion of Cuprous Halide Aggregate. Inorg Chem 2020; 59:13326-13334. [PMID: 32862642 DOI: 10.1021/acs.inorgchem.0c01698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) with cuprous-halide-aggregates have shown superiority as organic LED (OLED) and semiconductor materials, while engineering MOF flexibility by involving the expansion of cuprous aggregates remains a great challenge. In this particular work, a dissolution-recrystallization structural transformation (DRST) with the dramatic growth of CuI-I aggregates, from 2D NJNU-100 to 3D NJNU-101 has been successfully realized. The unsaturated coordination nodes (2-positional nitrogen atoms) in NJNU-100 have been demonstrated to be the driven force for DRST to NJNU-101 via the formation of coordination bonds. The structural transformation process was irreversible and observed with optical microscopy and powder XRD. The expansion of CuI-I aggregates was also computational simulated accompanying with the rotation of the neutral tripodal TTTMB ligand (1,3,5-tris(1,2,4-triazol-1-ylmethyl)-2,4,6-trimethylbenzene) and the reduction of CuII to CuI. Moreover, the intermediate product NJNU-102 was captured by adding the planar molecular anthrancene to shut down the reaction, where only partial 2-positional nitrogen atoms coordinated to the aggregates and the anthrancene was oxidized to anthraquinone. NJNU-102 has further confirmed that DRST involved the breakage and recombination of coordination bonds and the electron transfer. NJNU-100 and NJNU-101 could be applied as semiconductor and OLED materials. This work has provided insights for crystal engineering, especially for the construction of the CuIxXy aggregates, and illustrated that DRST could be controlled with a rational design (as the unsaturated coordination modes).
Collapse
Affiliation(s)
- Zi-You Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Lin-Xi Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shu-Fang Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Florence Fabunmi
- Department of Chemistry, Tennessee Tech University, 1 William L. Jones Drive, Cookeville, Tennessee 38505, United States
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Tao Yu
- Department of Chemistry, Tennessee Tech University, 1 William L. Jones Drive, Cookeville, Tennessee 38505, United States
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
17
|
Kang L, Huo S, Meng L, Li X. Reaction Mechanism and Kinetics study on Addition of CCl
4
to 1‐hexene Catalyzed by Mo‐Mo Quintuply‐bond. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lixia Kang
- College of Chemistry and Material Science Hebei Normal University Road East of 2nd Ring South Shijiazhuang 050024 China
| | - Suhong Huo
- College of Chemistry and Material Science Hebei Normal University Road East of 2nd Ring South Shijiazhuang 050024 China
| | - Lingpeng Meng
- National Demonstratin Center for Experimental Chemistry Hebei Normal University Road East of 2nd Ring South Shijiazhuang 050024 China
| | - Xiaoyan Li
- College of Chemistry and Material Science Hebei Normal University Road East of 2nd Ring South Shijiazhuang 050024 China
| |
Collapse
|
18
|
Rentschler M, Iglesias S, Schmid MA, Liu C, Tschierlei S, Frey W, Zhang X, Karnahl M, Moonshiram D. The Coordination Behaviour of Cu I Photosensitizers Bearing Multidentate Ligands Investigated by X-ray Absorption Spectroscopy. Chemistry 2020; 26:9527-9536. [PMID: 32162730 PMCID: PMC7496955 DOI: 10.1002/chem.201905601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Indexed: 12/05/2022]
Abstract
A systematic series of four novel homo‐ and heteroleptic CuI photosensitizers based on tetradentate 1,10‐phenanthroline ligands of the type X^N^N^X containing two additional donor moieties in the 2,9‐position (X=SMe or OMe) were designed. Their solid‐state structures were assessed by X‐ray diffraction. Cyclic voltammetry, UV‐vis absorption, emission and X‐ray absorption spectroscopy were then used to determine their electrochemical, photophysical and structural features in solution. Following, time‐resolved X‐ray absorption spectroscopy in the picosecond time scale, coupled with time‐dependent density functional theory calculations, provided in‐depth information on the excited state electron configurations. For the first time, a significant shortening of the Cu−X distance and a change in the coordination mode to a pentacoordinated geometry is shown in the excited states of the two homoleptic complexes. These findings are important with respect to a precise understanding of the excited state structures and a further stabilization of this type of photosensitizers.
Collapse
Affiliation(s)
- Martin Rentschler
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Sirma Iglesias
- Instituto Madrileño de Estudios Avanzados en, Nanociencia (IMDEA Nanociencia), Calle Faraday, 9, 28049, Madrid, Spain
| | - Marie-Ann Schmid
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en, Nanociencia (IMDEA Nanociencia), Calle Faraday, 9, 28049, Madrid, Spain
| |
Collapse
|
19
|
Enciso AE, Lorandi F, Mehmood A, Fantin M, Szczepaniak G, Janesko BG, Matyjaszewski K. p
‐Substituted Tris(2‐pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alan E. Enciso
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Arshad Mehmood
- Department of Chemistry and Biochemistry Texas Christian University 2800 South University Drive Fort Worth TX 76129 USA
| | - Marco Fantin
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Grzegorz Szczepaniak
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Benjamin G. Janesko
- Department of Chemistry and Biochemistry Texas Christian University 2800 South University Drive Fort Worth TX 76129 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
20
|
Enciso AE, Lorandi F, Mehmood A, Fantin M, Szczepaniak G, Janesko BG, Matyjaszewski K. p-Substituted Tris(2-pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. Angew Chem Int Ed Engl 2020; 59:14910-14920. [PMID: 32416006 DOI: 10.1002/anie.202004724] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/10/2020] [Indexed: 12/28/2022]
Abstract
A facile and efficient two-step synthesis of p-substituted tris(2-pyridylmethyl)amine (TPMA) ligands to form Cu complexes with the highest activity to date in atom transfer radical polymerization (ATRP) is presented. In the divergent synthesis, p-Cl substituents in tris(4-chloro-2-pyridylmethyl)amine (TPMA3Cl ) were replaced in one step and high yield by electron-donating cyclic amines (pyrrolidine (TPMAPYR ), piperidine (TPMAPIP ), and morpholine (TPMAMOR )) by nucleophilic aromatic substitution. The [CuII (TPMANR2 )Br]+ complexes exhibited larger energy gaps between frontier molecular orbitals and >0.2 V more negative reduction potentials than [CuII (TPMA)Br]+ , indicating >3 orders of magnitude higher ATRP activity. [CuI (TPMAPYR )]+ exhibited the highest reported activity for Br-capped acrylate chain ends in DMF, and moderate activity toward C-F bonds at room temperature. ATRP of n-butyl acrylate using only 10-25 part per million loadings of [CuII (TPMANR2 )Br]+ exhibited excellent control.
Collapse
Affiliation(s)
- Alan E Enciso
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Arshad Mehmood
- Department of Chemistry and Biochemistry, Texas Christian University, 2800 South University Drive, Fort Worth, TX, 76129, USA
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Benjamin G Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, 2800 South University Drive, Fort Worth, TX, 76129, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
21
|
Metal Chlorides Grafted on SAPO-5 (MClx/SAPO-5) as Reusable and Superior Catalysts for Acylation of 2-Methylfuran Under Non-Microwave Instant Heating Condition. Processes (Basel) 2020. [DOI: 10.3390/pr8050603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Highly active metal chlorides grafted on silicoaluminophosphate number 5, MClx/SAPO-5 (M = Cu, Co, Sn, Fe and Zn) catalysts via simple grafting of respective metal chlorides (MClx) onto SAPO-5 are reported. The study shows that thermochemical treatment after grafting is essential to ensure the formation of chemical bondings between MClx and SAPO-5. In addition, the microscopy, XRD and nitrogen adsorption analyses reveal the homogeneous distribution of MClx species on the SAPO-5 surface. Furthermore, the elemental microanalysis confirms the formation of Si–O–M covalent bonds in ZnClx/SAPO-5, SnClx/SAPO-5 and FeClx/SAPO-5 whereas only dative bondings are formed in CoClx/SAPO-5 and CuClx/SAPO-5. The acidity of MClx/SAPO-5 is also affected by the type of metal chloride grafted. Thus, their catalytic behavior is evaluated in the acid-catalyzed acylation of 2-methylfuran under novel non-microwave instant heating conditions (90–110 °C, 0–20 min). ZnClx/SAPO-5, which has the largest amount of acidity (mainly Lewis acid sites), exhibits the best catalytic performance (94.5% conversion, 100% selective to 2-acetyl-5-methylfuran) among the MClx/SAPO-5 solids. Furthermore, the MClx/SAPO-5 solids, particularly SnClx/SAPO-5, FeClx/SAPO-5 and ZnClx/SAPO-5, also show more superior catalytic performance than common homogeneous acid catalysts (H2SO4, HNO3, CH3COOH, FeCl3, ZnCl2) with higher reactant conversion and catalyst reusability, thus offering a promising alternative for the replacement of hazardous homogeneous catalysts in Friedel–Crafts reactions.
Collapse
|
22
|
Mukherjee A, Basu S, Bhattacharya S. Copper complexes of 1,4-diazabutadiene ligands: Tuning of metal oxidation state and, application in catalytic C-C and C-N bond formation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Zerk TJ, Saouma CT, Mayer JM, Tolman WB. Low Reorganization Energy for Electron Self-Exchange by a Formally Copper(III,II) Redox Couple. Inorg Chem 2019; 58:14151-14158. [PMID: 31577145 DOI: 10.1021/acs.inorgchem.9b02185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rate constant for electron self-exchange (k11) between LCuOH and [LCuOH]- (L = bis-2,6-(2,6-diisopropylphenyl)carboximidopyridine) was determined using the Marcus cross relation. This work involved measurement of the rate of the cross-reaction between [Bu4N][LCuOH] and [Fc][BAr4F] (Fc+ = ferrocenium; BAr4F = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate)) by stopped-flow methods at -88 °C in CH2Cl2 and measurement of the equilibrium constant for the redox process by UV-vis titrations under the same conditions. A value of k11 = 3 × 104 M-1 s-1 (-88 °C) led to estimation of a value 9 × 106 M-1 s-1 at 25 °C, which is among the highest values known for copper redox couples. Further Marcus analysis enabled determination of a low reorganization energy, λ = 0.95 ± 0.17 eV, attributed to minimal structural variation between the redox partners. In addition, the reaction entropy (ΔS°) associated with the LCuOH/[LCuOH]- self-exchange was determined from the temperature dependence of the redox potentials, and found to be dependent upon ionic strength. Comparisons to other Cu redox systems and potential new applications for the formally CuIII,II system are discussed.
Collapse
Affiliation(s)
- Timothy J Zerk
- Department of Chemistry , Washington University in St. Louis , One Brookings Hall, Campus Box 1134 , St. Louis , Missouri 63130-4899 , United States
| | - Caroline T Saouma
- Department of Chemistry , University of Utah , 315 S 1400 E , Salt Lake City , Utah 84112 , United States
| | - James M Mayer
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520-8107 , United States
| | - William B Tolman
- Department of Chemistry , Washington University in St. Louis , One Brookings Hall, Campus Box 1134 , St. Louis , Missouri 63130-4899 , United States
| |
Collapse
|
24
|
Fedorov OV, Scherbinina SI, Levin VV, Dilman AD. Light-Mediated Dual Phosphine-/Copper-Catalyzed Atom Transfer Radical Addition Reaction. J Org Chem 2019; 84:11068-11079. [DOI: 10.1021/acs.joc.9b01649] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oleg V. Fedorov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Sofya I. Scherbinina
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
25
|
Fang C, Fantin M, Pan X, de Fiebre K, Coote ML, Matyjaszewski K, Liu P. Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP). J Am Chem Soc 2019; 141:7486-7497. [PMID: 30977644 PMCID: PMC6634993 DOI: 10.1021/jacs.9b02158] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Copper-catalyzed atom transfer radical polymerization (Cu-ATRP) is one of the most widely used controlled radical polymerization techniques. Notwithstanding the extensive mechanistic studies in the literature, the transition states of the activation/deactivation of the growing polymer chain, a key equilibrium in Cu-ATRP, have not been investigated computationally. Therefore, the understanding of the origin of ligand and initiator effects on the rates of activation/deactivation is still limited. Here, we present the first computational analysis of Cu-ATRP activation transition states to reveal factors that affect the rates of activation and deactivation. The Br atom transfer between the polymer chain and the Cu catalyst occurs through an unusual bent geometry that involves pronounced interactions between the polymer chain end and the ancillary ligand on the Cu catalyst. Therefore, the rates of activation/deactivation are determined by both the electronic properties of the Cu catalyst and the ligand-initiator steric repulsions. In addition, our calculations revealed the important role of ligand backbone flexibility on the activation. These theoretical analyses led to the identification of three chemically meaningful descriptors, namely HOMO energy of the catalyst ( EHOMO), percent buried volume ( Vbur%), and distortion energy of the catalyst (Δ Edist), to describe the electronic, steric, and flexibility effects on reactivity, respectively. A robust and simple predictive model for ligand effect on reactivity is thereby established by correlating these three descriptors with experimental activation rate constants using multivariate linear regression. Validation using a structurally diverse set of ligands revealed the average error is less than ±2 kcal/mol compared to the experimentally derived activation energies. The same approach was also applied to develop a predictive model for reactivity of different alkyl halide initiators using R-X bond dissociation energy (BDE) and Cu-X halogenophilicity as descriptors.
Collapse
Affiliation(s)
- Cheng Fang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
- Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Xiangcheng Pan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Kurt de Fiebre
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
| |
Collapse
|
26
|
Zerk TJ, Gahan LR, Krenske EH, Bernhardt PV. The fate of copper catalysts in atom transfer radical chemistry. Polym Chem 2019. [DOI: 10.1039/c8py01688g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pathway of atom transfer radical polymerisation (ATRP) is influenced by the nature of the alkyl bromide initiator (RBr) to the extent that reactions between the radical R˙ and the original copper(i) catalyst can divert the reaction toward different products.
Collapse
Affiliation(s)
- Timothy J. Zerk
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane 4072
- Australia
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane 4072
- Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane 4072
- Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane 4072
- Australia
| |
Collapse
|
27
|
Ribelli TG, Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: Billion Times More Active Catalysts and New Initiation Systems. Macromol Rapid Commun 2018; 40:e1800616. [DOI: 10.1002/marc.201800616] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas G. Ribelli
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Marco Fantin
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
28
|
Martínez-Camarena Á, Liberato A, Delgado-Pinar E, Algarra AG, Pitarch-Jarque J, Llinares JM, Mañez MÁ, Domenech-Carbó A, Basallote MG, García-España E. Coordination Chemistry of Cu 2+ Complexes of Small N-Alkylated Tetra-azacyclophanes with SOD Activity. Inorg Chem 2018; 57:10961-10973. [PMID: 30129755 DOI: 10.1021/acs.inorgchem.8b01492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new tetraaza-pyridinophane macrocycle (L1) N-alkylated with two isopropyl and one methyl groups symmetrically disposed has been prepared and its behavior compared with those of the unsubstituted pyridinophane (L3) and the related compound with three methyl groups (L2). The protonation studies show that, first, a proton binds to the central methylated amine group of L1, while, second protonation leads to a reorganization of the protons that are at this stage attached to the lateral isopropylated amines. The X-ray structure of [HL1]+ agrees with the UV-vis and NMR studies as well as with the results of DFT calculations. The stability of the Cu2+ complexes decreases on increasing the bulkiness of the alkyl substituents of the amine groups. The crystal structures of [CuL1Cl](ClO4) and [CuL1(H2O)](ClO4)2·H2O show square pyramidal coordination geometries with the ligands disposed in a bent L-shaped conformation. Kinetic studies indicate that the rates of both complexation and ligand dissociation decrease with the bulkiness of the substituents, so that the stability changes are surely the results of compensating effects, complex formation dominating over complex dissociation. The pH dependence of the rate constants for complex formation cannot be explained by consideration of rapid pre-equilibria involving the different protonated forms of the ligand, and it has been interpreted in terms of a mechanism involving an acid-base equilibrium for a reaction intermediate. NBT SOD studies show that the Cu2+ complex of the bulkiest L1 ligand is the one having the highest activity (IC50 = 0.26(5) μM, kcat = 13.7 × 106 M-1 s-1) which can be associated with the poorer σ-donor ability of the tertiary amino groups, and the rigidity of the system, caused by the bulky isopropyl groups.
Collapse
Affiliation(s)
- Álvaro Martínez-Camarena
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica , Universidad de Valencia , C/Catedrático José Beltrán 2 , 46980 , Paterna , Valencia , Spain
| | - Andrea Liberato
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias , Universidad de Cádiz , Avda República Saharahui s/n , Puerto Real , 11510 , Cádiz , Spain
| | - Estefanía Delgado-Pinar
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica , Universidad de Valencia , C/Catedrático José Beltrán 2 , 46980 , Paterna , Valencia , Spain
| | - Andrés G Algarra
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias , Universidad de Cádiz , Avda República Saharahui s/n , Puerto Real , 11510 , Cádiz , Spain
| | - Javier Pitarch-Jarque
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica , Universidad de Valencia , C/Catedrático José Beltrán 2 , 46980 , Paterna , Valencia , Spain
| | - José M Llinares
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica , Universidad de Valencia , C/Catedrático José Beltrán 2 , 46980 , Paterna , Valencia , Spain.,Departamento de Química Orgánica , Universidad de Valencia , C/Dr. Moliner s/n , 46100 , Burjassot , Valencia , Spain
| | - M Ángeles Mañez
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias , Universidad de Cádiz , Avda República Saharahui s/n , Puerto Real , 11510 , Cádiz , Spain
| | - Antonio Domenech-Carbó
- Departamento de Química Analítica , Universidad de Valencia , C/Dr. Moliner s/n , 46100 , Burjassot , Valencia , Spain
| | - Manuel G Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias , Universidad de Cádiz , Avda República Saharahui s/n , Puerto Real , 11510 , Cádiz , Spain
| | - Enrique García-España
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica , Universidad de Valencia , C/Catedrático José Beltrán 2 , 46980 , Paterna , Valencia , Spain
| |
Collapse
|
29
|
Ribelli TG, Fantin M, Daran JC, Augustine KF, Poli R, Matyjaszewski K. Synthesis and Characterization of the Most Active Copper ATRP Catalyst Based on Tris[(4-dimethylaminopyridyl)methyl]amine. J Am Chem Soc 2018; 140:1525-1534. [PMID: 29320170 DOI: 10.1021/jacs.7b12180] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The tris[(4-dimethylaminopyridyl)methyl]amine (TPMANMe2) as a ligand for copper-catalyzed atom transfer radical polymerization (ATRP) is reported. In solution, the [CuI(TPMANMe2)Br] complex shows fluxionality by variable-temperature NMR, indicating rapid ligand exchange. In the solid state, the [CuII(TPMANMe2)Br][Br] complex exhibits a slightly distorted trigonal bipyramidal geometry (τ = 0.89). The UV-vis spectrum of [CuII(TPMANMe2)Br]+ salts is similar to those of other pyridine-based ATRP catalysts. Electrochemical studies of [Cu(TPMANMe2)]2+ and [Cu(TPMANMe2)Br]+ showed highly negative redox potentials (E1/2 = -302 and -554 mV vs SCE, respectively), suggesting unprecedented ATRP catalytic activity. Cyclic voltammetry (CV) in the presence of methyl 2-bromopropionate (MBrP; acrylate mimic) was used to determine activation rate constant ka = 1.1 × 106 M-1 s-1, confirming the extremely high catalyst reactivity. In the presence of the more active ethyl α-bromoisobutyrate (EBiB; methacrylate mimic), total catalysis was observed and an activation rate constant ka = 7.2 × 106 M-1 s-1 was calculated with values of KATRP ≈ 1. ATRP of methyl acrylate showed a well-controlled polymerization using as little as 10 ppm of catalyst relative to monomer, while side reactions such as CuI-catalyzed radical termination (CRT) could be suppressed due to the low concentration of L/CuI at a steady state.
Collapse
Affiliation(s)
- Thomas G Ribelli
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jean-Claude Daran
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse , UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Kyle F Augustine
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse , UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France.,Institut Universitaire de France , 1 Rue Descartes, 75231 Paris Cedex 05, France
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|