1
|
Zhao K, Zhang B, Cui X, Chao X, Song F, Chen H, He B. An electrochemical aptamer-sensing strategy based on a Ti 3C 2Tx MXene synergistic Ti-MOF amplification signal for highly sensitive detection of zearalenone. Food Chem 2024; 461:140828. [PMID: 39151347 DOI: 10.1016/j.foodchem.2024.140828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
A refined electrochemical aptamer sensing technique using PEI@Ti-MOF@Ti3C2Tx-MXene was developed for the sensitive detection of ZEN in food samples. A titanium-based metal-organic skeleton (NH2-MIL-125) was synthesized in situ using 2-aminoterephthalic acid as the organic ligand and tetrabutyl titanate as the metal center, followed by the simultaneous hybridization of Ti3C2Tx-MXene to synthesize a Ti-MOF@Ti3C2Tx-MXene composite material. These composites were subsequently functionalized with PEI and covalently linked to form a sensing platform on gold electrodes. Integrating a metal-organic framework (MOF) with MXene materials not only improved the electrochemical properties compared to those of individual elements but also decreased the stacking effect and increased the number of binding sites for the aptamer. The limit of detection (LOD) of this sensor was 1.64 fg mL-1. Additionally, the sensor could efficaciously detect ZEN in cornmeal and beer samples, exhibiting outstanding stability, reproducibility, and selectivity. This highlighted its effectiveness in applications in quality supervision and food safety.
Collapse
Affiliation(s)
- Ke Zhao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China.
| | - Xiaoying Cui
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China
| | - Xipeng Chao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China
| | - Fangfei Song
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China.
| |
Collapse
|
2
|
Tang C, Rao H, Li S, She P, Qin JS. A Review of Metal-Organic Frameworks Derived Hollow-Structured Photocatalysts: Synthesis and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405533. [PMID: 39212632 DOI: 10.1002/smll.202405533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis is a most important approach to addressing global energy shortages and environmental issues due to its environmentally friendly and sustainable properties. The key to realizing efficient photocatalysis relies on developing appropriate catalysts with high efficiency and chemical stability. Among various photocatalysts, Metal-organic frameworks (MOFs)-derived hollow-structured materials have drawn increased attention in photocatalysis based on advantages like more active sites, strong light absorption, efficient transfer of pho-induced charges, excellent stability, high electrical conductivity, and better biocompatibility. Specifically, MOFs-derived hollow-structured materials are widely utilized in photocatalytic CO2 reduction (CO2RR), hydrogen evolution (HER), nitrogen fixation (NRR), degradation, and other reactions. This review starts with the development story of MOFs, the commonly adopted synthesis strategies of MOFs-derived hollow materials, and the latest research progress in various photocatalytic applications are also introduced in detail. Ultimately, the challenges of MOFs-derived hollow-structured materials in practical photocatalytic applications are also prospected. This review holds great potential for developing more applicable and efficient MOFs-derived hollow-structured photocatalysts.
Collapse
Affiliation(s)
- Chenxi Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Feng J, Feng Z, Xu L, Meng H, Chen X, Ma M, Wang L, Song B, Tang X, Dai S, Wei F, Cheng T, Shen B. Real-space imaging for discovering a rotated node structure in metal-organic framework. Nat Commun 2024; 15:6962. [PMID: 39138219 PMCID: PMC11322488 DOI: 10.1038/s41467-024-51384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Resolving the detailed structures of metal organic frameworks is of great significance for understanding their structure-property relation. Real-space imaging methods could exhibit superiority in revealing not only the local structure but also the bulk symmetry of these complex porous materials, compared to reciprocal-space diffraction methods, despite the technical challenges. Here we apply a low-dose imaging technique to clearly resolve the atomic structures of building units in a metal-organic framework, MIL-125. An unexpected node structure is discovered by directly imaging the rotation of Ti-O nodes, different from the unrotated structure predicted by previous X-ray diffraction. The imaged structure and symmetry can be confirmed by the structural simulations and energy calculations. Then, the distribution of node rotation from the edge to the center of a MIL-125 particle is revealed by the image analysis of Ti-O rotation. The related defects and surface terminations in MIL-125 are also investigated in the real-space images. These results not only unraveled the node symmetry in MIL-125 with atomic resolution but also inspired further studies on discovering more unpredicted structural changes in other porous materials by real-space imaging methods.
Collapse
Affiliation(s)
- Jiale Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhipeng Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Liang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Haibing Meng
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China.
| | - Mengmeng Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Lei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China.
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China.
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| | - Boyuan Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China.
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Ma X, Wang S, Fan Q, Wang P, Wang L, Luo Y, Du L, Zhao QH. A Highly Stable Multifunctional Bi-Based MOF for Rapid Visual Detection of S 2- and H 2S Gas with High Proton Conductivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33865-33876. [PMID: 38904983 DOI: 10.1021/acsami.4c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metal organic frameworks (MOFs) constructed with bismuth metal have not been widely reported, especially multifunctional Bi-MOFs. Therefore, developing multifunctional MOFs is of great significance due to the increasing requirements of materials. In this work, a 3D Bi-MOF (Bi-TCPE) with multifunctionality was successfully constructed, demonstrating high thermal stability, water stability, a porous structure, and strong blue fluorescence emission. We evaluated the properties of Bi-TCPE in detecting anions (S2-, Cr2O72-, and CrO42-) in aqueous solution, along with the rapid visual detection of H2S gas and proton conduction. In terms of anion detection, Bi-TCPE achieved the rapid detection of trace S2- in aqueous solutions, while the Ksv value was 1.224 × 104 M-1 with a limit of detection (LOD) value of 1.93 μM through titration experiments. Furthermore, Bi-TCPE could sensitively detect Cr2O72- and CrO42-, with Ksv values of 1.144 × 104 and 1.066 × 104 M-1, respectively, while LOD reached 2.07 and 2.18 μM. Subsequently, we conducted H2S gas detection experiments, and the results indicated that Bi-TCPE could selectively detect H2S gas at extremely low concentrations (2.08 ppm) and with a fast response time (<10 s). We also observed significant color changes under both UV light and sunlight. Therefore, we developed a H2S detection test paper for the rapid visual detection of H2S gas. Finally, we evaluated the proton conductivity of Bi-TCPE, and the experimental results showed that the proton conductivity of Bi-TCPE reached 4.77 × 10-2 S·cm-1 at 98% RH and 90 °C, achieving an excellent value for unmodified and encapsulated MOFs. In addition, Bi-TCPE showed high stability in proton conduction experiments (it remained stable after 21 consecutive days of testing and 12 cycles of testing), demonstrating relatively high application value. These results indicate that Bi-TCPE is a multifunctional MOF material with great application potential.
Collapse
Affiliation(s)
- Xun Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Shuyu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Qianhong Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Peng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Lei Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Yujie Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | | | | |
Collapse
|
5
|
Reischauer S, Smoljan CS, Rabeah J, Xie H, Formalik F, Chen Z, Vornholt SM, Sha F, Chapman KW, Snurr RQ, Notestein JM, Farha OK. A Titanium-Based Metal-Organic Framework For Tandem Metallaphotocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33371-33378. [PMID: 38915181 DOI: 10.1021/acsami.4c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Metal-organic frameworks (MOFs) have garnered substantial attention for their unique properties, such as high porosity and tunable structures, making them versatile for various applications. This paper constructs photoactive titanium-organic frameworks by combining Ti(IV) clusters and a bipyridine linker. The MOF is synthesized in situ through imine condensation, resulting in NU-2300. Subsequent ex situ nickel salt complexation results in NU-2300-Ni, which is then used for light-mediated carbon-heteroatom cross-couplings. The photophysical properties of the metallaphotocatalyst were investigated by UV-vis and EPR analyses, and both the Ti cluster and the bipyridine linker were found to contribute to successful catalysis, making it a tandem catalyst. The heterogeneous material retained its performance through five cycles of thioetherification. This work contributes not only to MOF synthetic strategies but also to expanding MOF applications as recyclable, tandem metallaphotocatalysts.
Collapse
Affiliation(s)
- Susanne Reischauer
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Courtney S Smoljan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jabor Rabeah
- Leibniz Institute for Catalysis (LIKAT Rostock), Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Filip Formalik
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Torkashvand Z, Sepehrmansourie H, Zolfigol MA, Gu Y. Ti-based MOFs with acetic acid pendings as an efficient catalyst in the preparation of new spiropyrans with biological moieties. Sci Rep 2024; 14:14101. [PMID: 38890358 PMCID: PMC11189590 DOI: 10.1038/s41598-024-62757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The strategy of designing heterogeneous porous catalysts by a post-modification method is a smart strategy to increase the catalytic power of desired catalysts. Accordingly, in this report, metal-organic frameworks based on titanium with acetic acid pending were designed and synthesized via post-modification method. The structure of the target catalyst has been investigated using different techniques such as FT-IR, XRD, SEM, EDX, Mapping, and N2 adsorption/desorption (BET/the BJH) the correctness of its formation has been proven. The catalytic application of Ti-based MOFs functionalized with acetic acid was evaluated in the preparation of new spiropyrans, and the obtained results show that the catalytic performance is improved by this modification. The strategy of designing heterogeneous porous catalysts through post-modification methods presents a sophisticated approach to enhancing the catalytic efficacy of desired catalysts. In this context, our study focuses on the synthesis and characterization of metal-organic frameworks (MOFs) based on titanium, functionalized with acetic acid pendants, using a post-modification method. Various characterization techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), mapping, and N2 adsorption/desorption (BET/BJH), were employed to investigate the structure and composition of the synthesized catalyst. These techniques collectively confirmed the successful formation and structural integrity of the target catalyst. The structure of the synthesized products was confirmed by melting point, 1H-NMR and 13C-NMR and FT-IR techniques. Examining the general process of catalyst synthesis and its catalytic application shows that the mentioned modification is very useful for catalytic purposes. The presented catalyst was used in synthesis of a wide range of biologically active spiropyrans with good yields. The simultaneous presence of several biologically active cores in the synthesized products will highlight the biological properties of these compounds. The present study offers a promising insight into the rational design, synthesis, and application of task-specific porous catalysts, particularly in the context of synthesizing biologically active candidate molecules.
Collapse
Affiliation(s)
- Zahra Torkashvand
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| |
Collapse
|
7
|
Tang S, Wang Y, He P, Wang Y, Wei G. Recent Advances in Metal-Organic Framework (MOF)-Based Composites for Organic Effluent Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2660. [PMID: 38893925 PMCID: PMC11173850 DOI: 10.3390/ma17112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Environmental pollution caused by organic effluents emitted by industry has become a worldwide issue and poses a serious threat to the public and the ecosystem. Metal-organic frameworks (MOFs), comprising metal-containing clusters and organic bridging ligands, are porous and crystalline materials, possessing fascinating shape and size-dependent properties such as high surface area, abundant active sites, well-defined crystal morphologies, and huge potential for surface functionalization. To date, numerous well designated MOFs have emerged as critical functional materials to solve the growing challenges associated with water environmental issues. Here we present the recent progress of MOF-based materials and their applications in the treatment of organic effluents. Firstly, several traditional and emerging synthesis strategies for MOF composites are introduced. Then, the structural and functional regulations of MOF composites are presented and analyzed. Finally, typical applications of MOF-based materials in treating organic effluents, including chemical, pharmaceutical, textile, and agricultural wastewaters are summarized. Overall, this review is anticipated to tailor design and regulation of MOF-based functional materials for boosting the performance of organic effluent remediation.
Collapse
Affiliation(s)
| | | | | | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (S.T.); (Y.W.); (P.H.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (S.T.); (Y.W.); (P.H.)
| |
Collapse
|
8
|
Wang Z, Liu Y, Wang L, Zha S, Zhang S, Jin J. Bendable and Chemically Stable Metal-Organic Hybrid Membranes for Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17016-17024. [PMID: 38514388 DOI: 10.1021/acsami.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Crystalline porous metal-organic materials are ideal building blocks for separation membranes because of their molecular-sized pores and highly ordered pore structure. However, creating ultrathin, defect-free crystalline membranes is challenging due to inevitable grain boundaries. Herein, we reported an amorphous metal-organic hybrid (MOH) membrane with controlled microporosity. The synthesis of the MOH membrane entails the use of titanium alkoxide and organic linkers containing di/multicarboxyl groups as monomers in the polymerization reaction. The resultant membranes exhibit similar microporosity to existing molecular sieve materials and high chemical stability against harsh chemical environments owing to the formation of stable Ti-O bonds between metal centers and organic linkers. An interfacial polymerization is developed to fabricate an ultrathin MOH membrane (thickness of the membrane down to 80 nm), which exhibits excellent rejections (>98% for dyes with molecular weights larger than 690 Da) and high water permeance (55 L m-2 h-1 bar-1). The membranes also demonstrate good flexibility, which greatly improves the processability of the membrane materials.
Collapse
Affiliation(s)
- Zhigang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Liyao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Shangwen Zha
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- Department of Research and Development, Shanghai ECO Polymer Sci.&Tech. CO., Ltd, Shanghai 201306, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
9
|
Chacón-García AJ, Rojas S, Grape ES, Salles F, Willhammar T, Inge AK, Pérez Y, Horcajada P. SU-101 for the removal of pharmaceutical active compounds by the combination of adsorption/photocatalytic processes. Sci Rep 2024; 14:7882. [PMID: 38570568 PMCID: PMC10991395 DOI: 10.1038/s41598-024-58014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Pharmaceutical active compounds (PhACs) are some of the most recalcitrant water pollutants causing undesired environmental and human effects. In absence of adapted decontamination technologies, there is an urgent need to develop efficient and sustainable alternatives for water remediation. Metal-organic frameworks (MOFs) have recently emerged as promising candidates for adsorbing contaminants as well as providing photoactive sites, as they possess exceptional porosity and chemical versatility. To date, the reported studies using MOFs in water remediation have been mainly focused on the removal of a single type of PhACs and rarely on the combined elimination of PhACs mixtures. Herein, the eco-friendly bismuth-based MOF, SU-101, has been originally proposed as an efficient adsorbent-photocatalyst for the elimination of a mixture of three challenging persistent PhACs, frequently detected in wastewater and surface water in ng L-1 to mg·L-1 concentrations: the antibiotic sulfamethazine (SMT), the anti-inflammatory diclofenac (DCF), and the antihypertensive atenolol (At). Adsorption experiments of the mixture revealed that SU-101 exhibited a great adsorption capacity towards At, resulting in an almost complete removal (94.1 ± 0.8% for combined adsorption) in only 5 h. Also, SU-101 demonstrated a remarkable photocatalytic activity under visible light to simultaneously degrade DCF and SMT (99.6 ± 0.4% and 89.2 ± 1.4%, respectively). In addition, MOF-contaminant interactions, the photocatalytic mechanism and degradation pathways were investigated, also assessing the toxicity of the resulting degradation products. Even further, recycling and regeneration studies were performed, demonstrating its efficient reuse for 4 consecutive cycles without further treatment, and its subsequent successful regeneration by simply washing the material with a NaCl solution.
Collapse
Affiliation(s)
- Antonio J Chacón-García
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain
| | - Sara Rojas
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain
- Department of Inorganic Chemistry, University of Granada, 18071, Granada, Spain
| | - Erik Svensson Grape
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, OR, 97403, USA
- Department of Chemistry - Ångström Laboratory, Uppsala University, 75120, Uppsala, Sweden
| | | | - Tom Willhammar
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Yolanda Pérez
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain.
- COMET-NANO Group, ESCET, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain.
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain.
| |
Collapse
|
10
|
Dhakshinamoorthy A, Li Z, Yang S, Garcia H. Metal-organic framework heterojunctions for photocatalysis. Chem Soc Rev 2024; 53:3002-3035. [PMID: 38353930 DOI: 10.1039/d3cs00205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heterojunctions combining two photocatalysts of staggered conduction and valence band energy levels can increase the photocatalytic efficiency compared to their individual components. This activity enhancement is due to the minimization of undesirable charge recombination by the occurrence of carrier migration through the heterojunction interface with separated electrons and holes on the reducing and oxidizing junction component, respectively. Metal-organic frameworks (MOFs) are currently among the most researched photocatalysts due to their tunable light absorption, facile charge separation, large surface area and porosity. The present review summarizes the current state-of-the-art in MOF-based heterojunctions, providing critical comments on the construction of these heterostructures. Besides including examples showing the better performance of MOF heterojunctions for three important photocatalytic processes, such as hydrogen evolution reaction, CO2 photoreduction and dye decolorization, the focus of this review is on describing synthetic procedures to form heterojunctions with MOFs and on discussing the experimental techniques that provide evidence for the operation of charge migration between the MOF and the other component. Special attention has been paid to the design of rational MOF heterojunctions with small particle size and controlled morphology for an appropriate interfacial contact. The final section summarizes the achievements of the field and provides our views on future developments.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
- School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Sihai Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Hermenegildo Garcia
- Departamento de Química/Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
11
|
Oloyede UN, Flowers RA. Coordination-induced bond weakening and small molecule activation by low-valent titanium complexes. Dalton Trans 2024; 53:2413-2441. [PMID: 38224159 DOI: 10.1039/d3dt03454b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Bond activation of small molecules through coordination to low valent metal complexes in M⋯X-H type interactions (where X = O, N, B, Si, etc.) leads to the formation of unusually weak X-H bonds and provides a powerful approach for the synthesis of target compounds under very mild conditions. Coordination of small molecules like water, amides, silanes, boranes, and dinitrogen to Ti(III) or Ti(II) complexes results in the synergetic redistribution of electrons between the metal orbitals and the ligand orbitals which weakens and enables the facile cleavage of the X-H or N-N bonds of the ligands. This review presents an overview of coordination-induced bond activation of small molecules by low valent titanium complexes. In particular, the applications of low valent titanium-induced bond weakening in nitrogen fixation are presented. The review concludes with potential future directions for work in this area including low-valent Ti-based PCET systems, photocatalytic nitrogen reduction, and approaches to tailoring complexes for optimal bond activation.
Collapse
Affiliation(s)
| | - Robert A Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| |
Collapse
|
12
|
Rehan M, Montaser AS, El-Shahat M, Abdelhameed RM. Decoration of viscose fibers with silver nanoparticle-based titanium-organic framework for use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13185-13206. [PMID: 38240971 PMCID: PMC10881727 DOI: 10.1007/s11356-024-31858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/01/2024] [Indexed: 02/23/2024]
Abstract
To effectively remove pharmaceuticals, nitroaromatic compounds, and dyes from wastewater, an efficient multifunctional material was created based on silver nanoparticles (Ag) and MIL-125-NH2 (MOF) immobilized on viscose fibers (VF) as a support substrate. Firstly, silver nanoparticles (Ag) were immobilized on the surface of viscose fibers (VF) via in situ synthesis using trisodium citrate (TSC) as a reducing agent to create (VF-Ag). Then, VF and VF-Ag were decorated with the titanium metal-organic framework MIL-125-NH2 (MOF) to create VF-MOF and VF-Ag-MOF. The influence of VF-Ag, VF-MOF, and VF-Ag-MOF on the sonocatalytic or sonophotocatalytic degradation of sulfa drugs was investigated. The results show that VF-Ag-MOF showed excellent sonocatalytic and sonophotocatalytic activity towards the degradation of sulfa drugs compared to VF-Ag and VF-MOF. Furthermore, sonophotodegradation showed a dramatic enhancement in the efficiency of degradation of sulfa drugs compared to sonodegradation. The sonophotodegradation degradation percentage of sulfanilamide, sulfadiazine, and sulfamethazine drugs in the presence of VF-Ag-MOF was 65, 90, and 95 after 45 min of ultrasonic and visible light irradiation. The catalytic activity of VF-Ag, VF-MOF, and VF-Ag-MOF was evaluated through the conversion of p-nitrophenol (4-NP) to p-aminophenol (4-AP). The results demonstrate that VF-Ag-MOF had the highest catalytic activity, followed by VF-Ag and VF-MOF. The conversion percentage of 4-NP to 4-AP was 69%. The catalytic or photocatalytic effects of VF-Ag, VF-MOF, and VF-Ag-MOF on the elimination of methylene blue (MB) dye were investigated. The results demonstrate that VF-Ag-MOF showed high efficiency in removing the MB dye through the reduction (65%) or photodegradation (71%) after 60 min. VF-Ag-MOF composites structure-activity relationships represent that doping within silver NPs enhanced the photocatalytic activity of MIL-125-NH2, which could be explained as follows: (i) Due to the formation of a Schottky barrier at the junction between MIL-125-NH2 and Ag NPs, the photogenerated electrons in the conduction band of MIL-125-NH2 were supposed to be quickly transferred to the valence band of the Ag NPs, and subsequently, the electrons were transferred to the conduction band of Ag NPs. This considerable electron transferring process, which is reported as Z scheme heterojunction, can efficiently suppress the recombination of electron/hole pairs in VF-Ag-MIL-125-NH2 composites. (ii) Sufficient separation between the photogenerated charge carriers (holes and electrons) and avoiding their recombination enhanced the photocatalytic activity of composites.
Collapse
Affiliation(s)
- Mohamed Rehan
- Department of Pretreatment and Finishing of Cellulosic-Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 Bohoth Street, Dokki, P.O. Box 12622, Giza, Egypt.
| | - Ahmed S Montaser
- Department of Pretreatment and Finishing of Cellulosic-Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 Bohoth Street, Dokki, P.O. Box 12622, Giza, Egypt
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
13
|
Li Z, Yao B, Cheng C, Song M, Qin Y, Wan Y, Du J, Zheng C, Xiao L, Li S, Yin PF, Guo J, Liu Z, Zhao M, Huang W. Versatile Structural Engineering of Metal-Organic Frameworks Enabling Switchable Catalytic Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308427. [PMID: 38109695 DOI: 10.1002/adma.202308427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/26/2023] [Indexed: 12/20/2023]
Abstract
The structure engineering of metal-organic frameworks (MOFs) forms the cornerstone of their applications. Nonetheless, realizing the simultaneous versatile structure engineering of MOFs remains a significant challenge. Herein, a dynamically mediated synthesis strategy to simultaneously engineer the crystal structure, defect structure, and nanostructure of MOFs is proposed. These include amorphous Zr-ODB nanoparticles, crystalline Zr-ODB-hz (ODB = 4,4'-oxalyldibenzoate, hz = hydrazine) nanosheets, and defective d-Zr-ODB-hz nanosheets. Aberration-corrected scanning transmission electron microscopy combined with low-dose high-angle annular dark-field imaging technique vividly portrays these engineered structures. Concurrently, the introduced hydrazine moieties confer self-reduction properties to the respective MOF structures, allowing the in situ installation of catalytic Pd nanoparticles. Remarkably, in the hydrogenation of vanillin-like biomass derivatives, Pd/Zr-ODB-hz yields partially hydrogenated alcohols as the primary products, whereas Pd/d-Zr-ODB-hz exclusively produces fully hydrogenated alkanes. Density functional theory calculations, coupled with experimental evidence, uncover the catalytic selectivity switch triggered by the change in structure type. The proposed strategy of versatile structure engineering of MOFs introduces an innovative pathway for the development of high-performance MOF-based catalysts for various reactions.
Collapse
Affiliation(s)
- Zhixi Li
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Bingqing Yao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Chuanqi Cheng
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Meina Song
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Yutian Qin
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Yue Wan
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Chaoyang Zheng
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Liyun Xiao
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Shaopeng Li
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Peng-Fei Yin
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Zhengqing Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Meiting Zhao
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
14
|
Liu N, Jiang J, Chen Z, Wu B, Zhang S, Zhang YQ, Cheng P, Shi W. Promoted Photocatalytic Hydrogen Evolution by Tuning the Electronic State of Copper Sites in Metal-Organic Supramolecular Assemblies. Angew Chem Int Ed Engl 2023; 62:e202312306. [PMID: 37755067 DOI: 10.1002/anie.202312306] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
The electronic state in terms of charge and spin of metal sites is fundamental to govern the catalytic activity of a photocatalyst. Herein, we show that modulation of the electronic states of Cu sites, without changing the coordination environments, of two metal-organic supramolecular assemblies based on π⋅⋅⋅π stacking can significantly improve photocatalytic activity. The use of these heterogeneous photocatalysts, without using noble metal cocatalysts, resulted in an increase of the hydrogen production rate from 522 to 3620 μmol h-1 g-1 . A systematical analysis revealed that the charge density and spin density of the metal centers are efficiently modulated via the modulation of the coordination fields around active copper (II) centers by the variation of the non-coordination groups of terminal ligands, leading to the significant enhancement of photocatalytic activity. This work provides an insight into the electronic state of active metal centers for designing high-performance photocatalysts.
Collapse
Affiliation(s)
- Ning Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jialong Jiang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhonghang Chen
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Boyuan Wu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shiqi Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi-Quan Zhang
- School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Yu S, Liu Z, Lyu JM, Guo CM, Wang YL, Hu ZY, Li Y, Sun MH, Chen LH, Su BL. Intraparticle ripening to create hierarchically porous Ti-MOF single crystals for deep oxidative desulfurization. Dalton Trans 2023; 52:12244-12252. [PMID: 37593831 DOI: 10.1039/d3dt01731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The catalytic oxidative desulfurization (ODS) technique is able to remove sulfur compounds from fuels, conducive to achieving deep desulfurization for the good of the ecological environment. Ti-based metal-organic frameworks (Ti-MOFs) possessing good affinity to organic reactants and considerable numbers of Ti active sites are promising catalysts for ODS. However, current Ti-MOFs suffer from severe diffusion limitations caused by the size mismatch between sole micropores and bulky sulfur compounds, leading to poor ODS performance. Here, a facile method of intraparticle ripening without any additive is developed to obtain hierarchically meso-microporous Ti-MIL-125 single crystals (Meso-Ti-MIL-125) for the first time. Such Meso-Ti-MIL-125 shows a BET surface area of 1401 m2 g-1 and a mesoporous volume that is 1.7 times as high as that of the conventional Ti-MIL-125. Our novel Meso-Ti-MIL-125 exhibits excellent catalytic performance in the ODS of a series of bulky thiophenic sulfur compounds, completely removing benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (DMDBT) from model fuels, which is, respectively, 2.4 times, 1.5 times, and 6.7 times higher than the removal achieved with conventional Ti-MIL-125. Such a facile synthetic strategy is envisioned to be applied in many kinds of crystalline materials, such as zeolites, for industrial production.
Collapse
Affiliation(s)
- Shen Yu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Zhan Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jia-Min Lyu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Chun-Mu Guo
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Zhi-Yi Hu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yu Li
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Ming-Hui Sun
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Li-Hua Chen
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Bao-Lian Su
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
16
|
Wang S, Ai Z, Niu X, Yang W, Kang R, Lin Z, Waseem A, Jiao L, Jiang HL. Linker Engineering of Sandwich-Structured Metal-Organic Framework Composites for Optimized Photocatalytic H 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302512. [PMID: 37421606 DOI: 10.1002/adma.202302512] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
While the microenvironment around catalytic sites is recognized to be crucial in thermocatalysis, its roles in photocatalysis remain subtle. In this work, a series of sandwich-structured metal-organic framework (MOF) composites, UiO-66-NH2 @Pt@UiO-66-X (X means functional groups), is rationally constructed for visible-light photocatalytic H2 production. By varying the ─X groups of the UiO-66-X shell, the microenvironment of the Pt sites and photosensitive UiO-66-NH2 core can be simultaneously modulated. Significantly, the MOF composites with identical light absorption and Pt loading present distinctly different photocatalytic H2 production rates, following the ─X group sequence of ─H > ─Br > ─NA (naphthalene) > ─OCH3 > ─Cl > ─NO2 . UiO-66-NH2 @Pt@UiO-66-H demonstrates H2 production rate up to 2708.2 µmol g-1 h-1 , ≈222 times that of UiO-66-NH2 @Pt@UiO-66-NO2 . Mechanism investigations suggest that the variation of the ─X group can balance the charge separation of the UiO-66-NH2 core and the proton reduction ability of Pt, leading to an optimal activity of UiO-66-NH2 @Pt@UiO-66-H at the equilibrium point.
Collapse
Affiliation(s)
- Siyuan Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiwen Ai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinwei Niu
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Rong Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Long Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
17
|
Chen Z, Kirlikovali KO, Shi L, Farha OK. Rational design of stable functional metal-organic frameworks. MATERIALS HORIZONS 2023; 10:3257-3268. [PMID: 37285170 DOI: 10.1039/d3mh00541k] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Functional porous metal-organic frameworks (MOFs) have been explored for a number of potential applications in catalysis, chemical sensing, water capture, gas storage, and separation. MOFs are among the most promising candidates to address challenges facing our society related to energy and environment, but the successful implementation of functional porous MOF materials are contingent on their stability; therefore, the rational design of stable MOFs plays an important role towards the development of functional porous MOFs. In this Focus article, we summarize progress in the rational design and synthesis of stable MOFs with controllable pores and functionalities. The implementation of reticular chemistry allows for the rational top-down design of stable porous MOFs with targeted topological networks and pore structures from the pre-selected building blocks. We highlight the reticular synthesis and applications of stable MOFs: (1) MOFs based on high valent metal ions (e.g., Al3+, Cr3+, Fe3+, Ti4+ and Zr4+) and carboxylate ligands; (2) MOFs based on low valent metal ions (e.g., Ni2+, Cu2+, and Zn2+) and azolate linkers. We envision that the synthetic strategies, including modulated synthesis and post-synthetic modification, can potentially be extended to other more complex systems like metal-phosphonate framework materials.
Collapse
Affiliation(s)
- Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
18
|
Hayes OR, Ibrahim AA, Adly MS, Samra SE, Ouf AMA, El-Hakam SA, Ahmed AI. Solar-driven seawater desalination via plasmonic hybrid MOF/polymer and its antibacterial activity. RSC Adv 2023; 13:18525-18537. [PMID: 37346961 PMCID: PMC10280044 DOI: 10.1039/d3ra02242k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
In recent years, solar seawater desalination has been considered to be a promising and cost-effective technique to produce clean sources for water treatment and water deficiency. In addition, this technique shows high photothermal conversion efficiency by solar collectors to transfer solar energy into heat and the transformation of molecules in the capillaries of solar evaporators. In this study, we report the preparation of graphene-supported MIL-125 with polyurethane foam (MGPU) for solar steam generation. We modified MGPU by using the plasmonic nanoparticles of Ag and a polymer of polyaniline to increase the evaporation rate. Polyurethane foam can float on the surface of water and self-pump water by its hydrophilic porous structure, superior thermal insulation capabilities, and easy fabrication. MIL-125 has a high salt rejection and higher water permeability. It can reduce the affinity between water molecules and the pore surface of membrane, making it simple for water molecules to move through the pores. GO is a great alternative for steam generation applications since it exhibits broad-band light. The strong solar absorption, photothermal conversion efficiency, and photoreaction efficiency are enhanced by the use of silver nanoparticles in the photoreaction. The salt resistance capability is enhanced in saline water in the presence of polyaniline in a composite. Under one solar irradiation, the Ag/PANI/GO@MIL-125 (Ag-PMG) nanocomposite demonstrates an average 1.26 kg m2 h-1 rate of evaporation and an efficiency as high as 90%. The composite exhibits remarkable stability and durability after more than 10 cycles of use without a noticeable decrease in activity. In addition, the composite exhibits excellent organic dye removal from contaminated water and generates pure condensed freshwater. The antibacterial photoactivity of the photocatalysts was examined against B. subtilis and E. coli. The results demonstrate that Ag-PMG shows higher antibacterial activity than MIL-125 and PMG. It was shown that the presence of rGO, PANI, and Ag in the sample enhances the antimicrobial activity.
Collapse
Affiliation(s)
- Ola R Hayes
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Amr Awad Ibrahim
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Mina Shawky Adly
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - S E Samra
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - A M A Ouf
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - S A El-Hakam
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Awad I Ahmed
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| |
Collapse
|
19
|
Lulich A, Amiri M, Stephen D, Shohel M, Mao Z, Nyman M. Bismuth Coordination Polymers with Fluorinated Linkers: Aqueous Stability, Bivolatility, and Adsorptive Behavior. ACS OMEGA 2023; 8:10476-10486. [PMID: 36969471 PMCID: PMC10034978 DOI: 10.1021/acsomega.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Bismuth metal-organic frameworks and coordination polymers (CP) are challenging to synthesize, given the poor solubility of bismuth precursors and asymmetric and labile ligation of Bi3+ due to its intrinsic lone pair. Here, we synthesize and structurally characterize three Bi3+-CPs, exploiting a tetrafluoroterephtalate (F4BDC) linker to determine the effect of high acidity on these synthesis and coordination challenges. Single-crystal X-ray diffraction characterization showed that pi-pi stacking of linkers directs framework arrangement and generally deters open porosity in the three structures, respectively featuring Bi chains (Bi chain -F 4 BDC), Bi dimers (Bi 2 -F 4 BDC) linked into chains, and Bi tetramers (Bi 4 -F 4 BDC). Powder X-ray diffraction and microscopic imaging show the high purity and stability of these compounds in water. Naphthalenedisulfonate (NDS) was used as a mineralizer in the synthesis of (Bi chain -F 4 BDC) and (Bi 4 -F 4 BDC), and studies of its role in assembly pathways yielded two additional structures featuring mixed NDS and F4BDC, respectively, linking monomer and octamer Bi nodes, and confirmed that F4BDC is the preferred (less labile) linker. Methylene blue (MB) adsorption studies show differing efficacies of the three Bi-F4BDC phases, attributed to surface characteristics of the preferential growth facets, while generally most effective adsorption is attributed to the hydrophobicity of fluorinated ligands. Finally, thermogravimetric analysis of all three Bi-F4BDC phases indicates simultaneous ligand degradation and in situ formation of volatile Bi compounds, which could be exploited in the chemical vapor deposition of Bi-containing thin films.
Collapse
Affiliation(s)
| | | | - Doctor Stephen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Mohammad Shohel
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Zhiwei Mao
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
20
|
Bariki R, Kumar Pradhan S, Panda S, Kumar Nayak S, Majhi D, Das K, Mishra B. In-situ synthesis of structurally oriented hierarchical UiO-66(-NH2)/CdIn2S4/CaIn2S4 heterostructure with dual S-scheme engineering for photocatalytic renewable H2 production and asulam degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
21
|
Yu S, Xiao Y, Liu Z, Lyu JM, Wang YL, Hu ZY, Li Y, Sun MH, Chen LH, Su BL. Ti-MOF single-crystals featuring an intracrystal macro-microporous hierarchy for catalytic oxidative desulfurization. Chem Commun (Camb) 2023; 59:1801-1804. [PMID: 36722396 DOI: 10.1039/d2cc06473a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
For the first time, we demonstrate a Ti-MOF (Ti-metal organic framework) single-crystal featuring an intracrystal macro-microporous hierarchy (Hier-NTU-9) by a vapor-assisted polymer-templated method. This Hier-NTU-9 possesses macropores (100-1000 nm) derived from polymer templates and enhanced transport ability of bulky molecules, exhibiting almost double the desulfurization activity compared to the conventional NTU-9.
Collapse
Affiliation(s)
- Shen Yu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China. .,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yu Xiao
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Zhan Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China. .,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China.,Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jia-Min Lyu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Zhi-Yi Hu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China. .,Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yu Li
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Ming-Hui Sun
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, Namur B-5000, Belgium.
| | - Li-Hua Chen
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Bao-Lian Su
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China. .,Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, Namur B-5000, Belgium.
| |
Collapse
|
22
|
Li T, Li R, Yang L, Wang R, Liu R, Chen Y, Yan S, Ramakrishna S, Long Y. Flexible PTh/GQDs/TiO 2 composite with superior visible-light photocatalytic properties for rapid degradation pollutants. RSC Adv 2023; 13:1765-1778. [PMID: 36712618 PMCID: PMC9830655 DOI: 10.1039/d2ra07084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Flexible fiber membranes for pollutant removal have received increasing attention due to their high adsorption performance and easy recycling characteristics. However, due to the lack of environmentally friendly regeneration, some adsorption membranes have low regeneration efficiency, especially in terms of chemical adsorption, so they lack reusability. This study prepares a series of conducting polymer [PAn (polyaniline) or PPy (polypyrrole) or PTh (polythiophene)] graphene quantum dots (GQDs, the size of GQDs is about 20 nm)/TiO2 ternary fiber membranes via a facile electrospinning method with chemical deposition. Remarkably, this creates an anatase TiO2 and π-conjugated system. The combination is beneficial to the photocatalytic degradation of organic pollutants, showing synergistic promotion in both the degradation rate and the degree of decomposition. The UV-vis test shows that the combination of GQDs broadens the optical response threshold of TiO2, from near ultraviolet region excitation to visible region excitation. At the same time, the conductive polymer load further reduces the energy required for photogenerated electron transfer, which theoretically improves the degradation effect. Photocatalytic degradation tests showed that the PTh/GQDs/TiO2 fiber membrane exhibited significant high photocatalytic activity of visible-light in the methylene blue (MB) and TC degradation. The degradation rate level is 92.90% and 80.58%, respectively and the MB removal is more than 4 times that of bare TiO2 membrane. After photocatalytic regeneration four times, the regeneration efficiency can be maintained above 95%. Notably, various experimental results show that the interface charge transfer mechanism between GQDs/TiO2 and PTh follows the Z-scheme heterojunction, which maximizes the retention of strong reducing electrons and oxidation holes. In the degradation, the active species of ·O2 - and ·OH, make different contributions in the photocatalysts, which oxidize and break down the pollutant molecules into small molecules and then to harmless substances. According to the electronegativity difference of the material itself, PTh acts as electron acceptor in the degradation system, and TiO2 fiber membrane doped with GQDs acts as electron donor. The present research, not only offers feasibility of the PTh/GQDs/TiO2 flexible fiber membrane as an environment-friendly catalyst, but also motivates researchers to develop flexible fiber materials for future photocatalytic technology.
Collapse
Affiliation(s)
- Tong Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao UniversityQingdao 266071China+86 13953290681
| | - Ru Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao UniversityQingdao 266071China+86 13953290681
| | - Lei Yang
- Research Center for Intelligent & Wearable Technology, College of Textiles & Clothing, Qingdao UniversityQingdao 2266071China
| | - Rongxu Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao UniversityQingdao 266071China+86 13953290681
| | - Rui Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao UniversityQingdao 266071China+86 13953290681
| | - Yelin Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao UniversityQingdao 266071China+86 13953290681
| | - Shiying Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao UniversityQingdao 266071China+86 13953290681
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of SingaporeSingapore
| | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao UniversityQingdao 266071China+86 13953290681,State Key Laboratory of Bio-Fibers & Eco-Textiles (Qingdao University)Qingdao 266071China
| |
Collapse
|
23
|
Efficient photocatalytic degradation of petroleum oil spills in seawater using a metal-organic framework (MOF). Sci Rep 2022; 12:22445. [PMID: 36575189 PMCID: PMC9794805 DOI: 10.1038/s41598-022-26295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Photocatalysis is a green approach that has appeared to be a viable option for the degradation of a variety of organic contaminants. This work outlines the process of preparing the titanium-based metal-organic framework (MIL-125) photocatalysts using a simple solvothermal method. Structural, morphological, and optical analysis of samples (MT18 and MT48) was carried out by XRD, FT-IR, Raman, SEM, TGA, BET, and UV-Vis. Results indicated that the sample prepared at 150 °C and reaction time of 48 h (MT48) has a low crystal size of 7 nm with an optical band gap of 3.2 eV and a surface area of 301 m2 g-1. Under UV-visible light irradiation, the as-prepared MOFs proved to upgrade photocatalytic activity in degrading crude oil spills in saltwater. Effects of catalyst dosage and exposure time on the degradation of an oil spill in seawater were studied and analyzed using UV-Vis spectrophotometry and gas chromatography (GC-MS) which emphasized that the use of 250 ppm of MT48 photocatalyst under UV-Vis irradiation can degrade about 99% of oil spills in water after 2 h of exposure. The study's data revealed that MIL-125 could be used to photocatalyzed the cleanup of crude oil spills.
Collapse
|
24
|
Zhu J, Xu T, Lu P, Chen W, Lu W. Visible-light-driven carbonylation reaction over palladium supported on spherical-like graphitic carbon nitride. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Bikash Baruah J. Coordination polymers in adsorptive remediation of environmental contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Liu X, Zhou J, Liu D, Liu S. Co isomorphic substitution for Cu-based metal organic framework based on electronic structure modulation boosts Fenton-like process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Gupta R, Rahi Alhachami F, Khalid I, Majdi HS, Nisar N, Mohamed Hasan Y, Sivaraman R, Romero Parra RM, Al Mashhadani ZI, Fakri Mustafa Y. Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Crit Rev Anal Chem 2022; 54:1707-1728. [PMID: 36197710 DOI: 10.1080/10408347.2022.2128634] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mycotoxin contamination in foodstuffs and agricultural products has posed a serious hazard to human health and raised international concern. The progress of cost-effective, facile, rapid and reliable analytical tools for mycotoxin determination is in urgent need. In this regard, the potential utility of metal-organic frameworks (MOFs) as a class of crystalline porous materials has sparked immense attention due to their large specific surface area, adjustable pore size, nanoscale framework structure and good chemical stability. The amalgamation of MOFs with high-affinity aptamers has resulted in the progress of advanced aptasensing methods for clinical and food/water safety diagnosis. Aptamers have many advantages over classical approaches as exceptional molecular recognition constituents for versatile bioassays tools. The excellent sensitivity and selectivity of the MOF-aptamer biocomposite nominate them as efficient lab-on-chip tools for portable, label-free, cost-effective and real-time screening of mycotoxins. Current breakthroughs in the concept, progress and biosensing applications of aptamer functionalized MOFs-derived electrochemical and optical sensors for mycotoxins have been discussed in this study. We first highlighted an overview part, which provides some insights into the functionalization mechanisms of MOFs with aptamers, offering a foundation to create MOFs-based aptasensors. Then, we discuss various strategies to design high-performance MOFs-based aptamer scaffolds, which serve as either signal nanoprobe carriers or signal nanoprobes and their applications. We perceived that applications of optical aptamers are in their infancy in comparison with electrochemical MOFs-derived aptasensors. Finally, current challenges and prospective trends of MOFs-aptamer sensors are discussed.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Imran Khalid
- Department of Agriculture Extension Education, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hilla, Iraq
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - R Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras Chennai, Arumbakkam, India
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
28
|
Nordin NA, Mohamed MA, Salehmin MNI, Mohd Yusoff SF. Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Bhasin H, Kashyap P, Fernandes P, Mishra D. Multi-topic Carboxylates as Versatile Building Blocks for the Design and Synthesis of Multifunctional MOFs Based on Alkaline Earth, Main Group and Transition Metals. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2121279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Hinaly Bhasin
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Priyanka Kashyap
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Patrick Fernandes
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
30
|
Zhong XL, Wang J, Shi C, Lu L, Srivastava D, Kumar A, Afzal M, Alarifi A. Photocatalytic applications of a new 3D Mn(II)-based MOF with mab topology. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Rojas S, García-González J, Salcedo-Abraira P, Rincón I, Castells-Gil J, Padial NM, Marti-Gastaldo C, Horcajada P. Ti-based robust MOFs in the combined photocatalytic degradation of emerging organic contaminants. Sci Rep 2022; 12:14513. [PMID: 36008470 PMCID: PMC9411604 DOI: 10.1038/s41598-022-18590-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Photocatalysis process is a promising technology for environmental remediation. In the continuous search of new heterogeneous photocatalysts, metal-organic frameworks (MOFs) have recently emerged as a new type of photoactive materials for water remediation. Particularly, titanium-based MOFs (Ti-MOFs) are considered one of the most appealing subclass of MOFs due to their promising optoelectronic and photocatalytic properties, high chemical stability, and unique structural features. However, considering the limited information of the reported studies, it is a hard task to determine if real-world water treatment is attainable using Ti-MOF photocatalysts. In this paper, via a screening with several Ti-MOFs, we originally selected and described the potential of a Ti-MOF in the photodegradation of a mixture of relevant Emerging Organic Contaminants (EOCs) in real water. Initially, two challenging drugs (i.e., the β-blocker atenolol (At) and the veterinary antibiotic sulfamethazine (SMT)) and four water stable and photoactive Ti-MOF structures have been rationally selected. From this initial screening, the mesoporous Ti-trimesate MIL-100(Ti) was chosen as the most promising photocatalyst, with higher At or SMT individual photodegradation (100% of At and SMT photodegradation in 2 and 4 h, respectively). Importantly, the safety of the formed by-products from the At and SMT photodegradation was confirmed. Finally, the At and SMT photodegradation capacity of MIL-100(Ti) was confirmed under realistic conditions, by using a mixture of contaminants in tap drinking water (100% of At and SMT photodegradation in 4 h), proven in addition its potential recyclability, which reinforces the potential of MIL-100(Ti) in water remediation.
Collapse
Affiliation(s)
- Sara Rojas
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute. Av. Ramón de La Sagra 3, 28935, Móstoles-Madrid, Spain.
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva S/N, 18071, Granada, Spain.
| | - Jessica García-González
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, 04120, Almería, Spain
| | - Pablo Salcedo-Abraira
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute. Av. Ramón de La Sagra 3, 28935, Móstoles-Madrid, Spain
| | - Irene Rincón
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute. Av. Ramón de La Sagra 3, 28935, Móstoles-Madrid, Spain
| | - Javier Castells-Gil
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán, 2, 46980, Paterna, Spain
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Natalia M Padial
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Carlos Marti-Gastaldo
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán, 2, 46980, Paterna, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute. Av. Ramón de La Sagra 3, 28935, Móstoles-Madrid, Spain.
| |
Collapse
|
32
|
Electrochemical aptasensing strategy based on a multivariate polymertitanium-metal-organic framework for zearalenone analysis. Food Chem 2022; 385:132654. [PMID: 35287107 DOI: 10.1016/j.foodchem.2022.132654] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
Abstract
An electrochemical aptasensing strategy was developed with a novel bioplatform based on a multivariate titanium metal-organic framework, i.e. MTV polyMOF(Ti), to detect zearalenone (ZEN). MTV polyMOF(Ti) was prepared by using mixed linkers of polyether polymer (pbdc-xa or L8, pbdc = poly(1,4-benzenedicarboxylate) and 1,4-benzenedicarboxylic acid (H2bdc or L0) as well as tetrabutyl titanate as nodes (MTV polyMOF(Ti)-L8,0). Compared with Ti-MOFs synthesized by using the single ligand of L8 or L0, MTV polyMOF(Ti)-L8,0 shows more porous structure assembled with multilayered nanosheets. In light of the improved electrochemical activity and strong bioaffinity to the aptamer, the aptasensor based on MTV polyMOF(Ti)-L8,0 shows excellent performance for detecting ZEN with the ultralow detection limit at fg mL-1 level in the linear range of 10 fg mL-1 to 10 ng mL-1, along with good selectivity, reproducibility, stability, regenerability, and applicability.
Collapse
|
33
|
A new heterometallic compound for the detection of acetylacetone and prevention activity on osteoarthritis. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Rassu P, Ma X, Wang B. Engineering of catalytically active sites in photoactive metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Surface Hydrophilicity Modification of Thin-Film Composite Membranes with Metal−Organic Frameworks (MOFs) Ti-UiO-66 for Simultaneous Enhancement of Anti-fouling Property and Desalination Performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Fawzi T, Rani S, Roy SC, Lee H. Photocatalytic Carbon Dioxide Conversion by Structurally and Materially Modified Titanium Dioxide Nanostructures. Int J Mol Sci 2022; 23:ijms23158143. [PMID: 35897719 PMCID: PMC9330242 DOI: 10.3390/ijms23158143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022] Open
Abstract
TiO2 has aroused considerable attentions as a promising photocatalytic material for decades due to its superior material properties in several fields such as energy and environment. However, the main dilemmas are its wide bandgap (3–3.2 eV), that restricts the light absorption in limited light wavelength region, and the comparatively high charge carrier recombination rate of TiO2, is a hurdle for efficient photocatalytic CO2 conversion. To tackle these problems, lots of researches have been implemented relating to structural and material modification to improve their material, optical, and electrical properties for more efficient photocatalytic CO2 conversion. Recent studies illustrate that crystal facet engineering could broaden the performance of the photocatalysts. As same as for nanostructures which have advantages such as improved light absorption, high surface area, directional charge transport, and efficient charge separation. Moreover, strategies such as doping, junction formation, and hydrogenation have resulted in a promoted photocatalytic performance. Such strategies can markedly change the electronic structure that lies behind the enhancement of the solar spectrum harnessing. In this review, we summarize the works that have been carried out for the enhancement of photocatalytic CO2 conversion by material and structural modification of TiO2 and TiO2-based photocatalytic system. Moreover, we discuss several strategies for synthesis and design of TiO2 photocatalysts for efficient CO2 conversion by nanostructure, structure design of photocatalysts, and material modification.
Collapse
Affiliation(s)
- Tarek Fawzi
- Department of Photonics, National Sun Yat-sen University, No. 70, Lien-Hai Rd, Kaohsiung 80424, Taiwan; or
| | - Sanju Rani
- Department of Physics, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, Tamil Nadu, India;
| | - Somnath C. Roy
- Semiconducting Oxide Materials, Nanostructures and Tailored Heterojunction (SOMNaTH) Lab, Functional Oxides Research Group (FORG) and 2D Materials and Innovation Centre, Department of Physics, IIT Madras, Chennai 600036, Tamil Nadu, India;
| | - Hyeonseok Lee
- Department of Photonics, National Sun Yat-sen University, No. 70, Lien-Hai Rd, Kaohsiung 80424, Taiwan; or
- Correspondence: ; Tel.: +886-7-525-2000 (ext. 4473)
| |
Collapse
|
37
|
Li HS, Gong Y, Ji C, Wu P, Gao B, Du Y, Wang J. Selective detection of sulfasalazine antibiotic and its controllable photodegradation into 5-aminosalicylic acid by visible-light-responsive metal-organic framework. Dalton Trans 2022; 51:11730-11736. [PMID: 35852461 DOI: 10.1039/d2dt01270g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extensive use of sulfasalazine (SSZ) antibiotics has brought potential threats to aquatic ecosystems and human health. Thus, necessary measures for the removal of SSZ must be taken to prevent arbitrary antibiotic exposure to the aquatic environment. However, not all the recent photocatalysts that have been used for the degradation of SSZ could not achieve the controlled release of SSZ and hence are losing their medicinal values. Herein, by utilizing an Eosin Y moiety as an efficient light-harvesting and emission site, an Eosin Y-based visible-light-responsive metal-organic framework has been synthesized and characterized, which exhibits high selectivity for detecting the antibiotic SSZ in water and simulated physiological conditions, with a detection limit of below 1 μM (0.4 μg mL-1). It also represents the first example of a MOF-based photocatalyst for the controllable degradation of SSZ into 5-aminosalicylic acid with excellent catalytic activity and recyclability.
Collapse
Affiliation(s)
- Han-Shu Li
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Yuxuan Gong
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Chen Ji
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Bingzhuo Gao
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Yufan Du
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| |
Collapse
|
38
|
Chester AM, Castillo‐Blas C, Wondraczek L, Keen DA, Bennett TD. Materials Formed by Combining Inorganic Glasses and Metal‐Organic Frameworks. Chemistry 2022; 28:e202200345. [PMID: 35416352 PMCID: PMC9400909 DOI: 10.1002/chem.202200345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 11/08/2022]
Abstract
Here, we propose the combination of glassy or crystalline metal‐organic frameworks (MOFs) with inorganic glasses to create novel hybrid composites and blends.The motivation behind this new composite approach is to improve the processability issues and mechanical performance of MOFs, whilst maintaining their ubiquitous properties. Herein, the precepts of successful composite formation and pairing of MOF and glass MOFs with inorganic glasses are presented. Focus is also given to the synthetic routes to such materials and the challenges anticipated in both their production and characterisation. Depending on their chemical nature, materials are classified as crystalline MOF‐glass composites and blends. Additionally, the potential properties and applications of these two classes of materials are considered, the key aim being the retention of beneficial properties of both components, whilst circumventing their respective drawbacks.
Collapse
Affiliation(s)
- Ashleigh M. Chester
- Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road CB3 0FS Cambridge UK
| | - Celia Castillo‐Blas
- Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road CB3 0FS Cambridge UK
| | - Lothar Wondraczek
- Otto Schott Institute Materials Research University of Jena Fraunhoferstrasse 6 07743 Jena Germany
| | - David A. Keen
- ISIS Facility Rutherford Appleton Laboratory Harwell Campus OX11, 0DE, Didcot Oxfordshire UK
| | - Thomas D. Bennett
- Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road CB3 0FS Cambridge UK
| |
Collapse
|
39
|
Wang X, Ma K, Goh T, Mian MR, Xie H, Mao H, Duan J, Kirlikovali KO, Stone AEBS, Ray D, Wasielewski MR, Gagliardi L, Farha OK. Photocatalytic Biocidal Coatings Featuring Zr 6Ti 4-Based Metal-Organic Frameworks. J Am Chem Soc 2022; 144:12192-12201. [PMID: 35786901 DOI: 10.1021/jacs.2c03060] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The world is currently suffering socially, economically, and politically from the recent pandemic outbreak due to the coronavirus disease 2019 (COVID-19), and those in hospitals, schools, and elderly nursing homes face enhanced threats. Healthcare textiles, such as masks and medical staff gowns, are susceptible to contamination of various pathogenic microorganisms, including bacteria and viruses. Metal-organic frameworks (MOFs) can potentially address these challenges due to their tunable reactivity and ability to be incorporated as porous coatings on textile materials. Here, we report how incorporating titanium into the zirconium-pyrene-based MOF NU-1000, denoted as NU-1012, generates a highly reactive biocidal photocatalyst. This MOF features a rare ligand migration phenomenon, and both the Ti/Zr center and the pyrene linker act synergistically as dual active centers and widen the absorption band for this material, which results in enhanced reactive oxygen species generation upon visible light irradiation. Additionally, we found that the ligand migration process is generally applicable to other csq topology Zr-MOFs. Importantly, NU-1012 can be easily incorporated onto cotton textile cloths as a coating, and the resulting composite material demonstrates fast and potent biocidal activity against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus epidermidis), and T7 bacteriophage virus with up to a 7-log(99.99999%) reduction within 1 h under simulated daylight.
Collapse
Affiliation(s)
- Xingjie Wang
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Teffanie Goh
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Mohammad Rasel Mian
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haochuan Mao
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jiaxin Duan
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Aaron E B S Stone
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Debmalya Ray
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55414, United States
| | - Michael R Wasielewski
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Omar K Farha
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
40
|
Amino-Functionalized Titanium Based Metal-Organic Framework for Photocatalytic Hydrogen Production. Molecules 2022; 27:molecules27134241. [PMID: 35807486 PMCID: PMC9268624 DOI: 10.3390/molecules27134241] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/31/2022] Open
Abstract
Photocatalytic hydrogen production using stable metal-organic frameworks (MOFs), especially the titanium-based MOFs (Ti-MOFs) as photocatalysts is one of the most promising solutions to solve the energy crisis. However, due to the high reactivity and harsh synthetic conditions, only a limited number of Ti-MOFs have been reported so far. Herein, we synthesized a new amino-functionalized Ti-MOFs, named NH2-ZSTU-2 (ZSTU stands for Zhejiang Sci-Tech University), for photocatalytic hydrogen production under visible light irradiation. The NH2-ZSTU-2 was synthesized by a facile solvothermal method, composed of 2,4,6-tri(4-carboxyphenylphenyl)-aniline (NH2-BTB) triangular linker and infinite Ti-oxo chains. The structure and photoelectrochemical properties of NH2-ZSTU-2 were fully studied by powder X-ray diffraction, scanning electron microscope, nitro sorption isotherms, solid-state diffuse reflectance absorption spectra, and Mott–Schottky measurements, etc., which conclude that NH2-ZSTU-2 was favorable for photocatalytic hydrogen production. Benefitting from those structural features, NH2-ZSTU-2 showed steady hydrogen production rate under visible light irradiation with average photocatalytic H2 yields of 431.45 μmol·g−1·h−1 with triethanolamine and Pt as sacrificial agent and cocatalyst, respectively, which is almost 2.5 times higher than that of its counterpart ZSTU-2. The stability and proposed photocatalysis mechanism were also discussed. This work paves the way to design Ti-MOFs for photocatalysis.
Collapse
|
41
|
Development of Efficient Photocatalyst MIL-68(Ga)_NH2 Metal-Organic Framework for the Removal of Cr(VI) and Cr(VI)/RhB from Wastewater under Visible Light. MATERIALS 2022; 15:ma15113761. [PMID: 35683060 PMCID: PMC9181230 DOI: 10.3390/ma15113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
Severe environmental pollution is caused by the massive discharge of complex industrial wastewater. The photocatalytic technology has been proved as an effective way to solve the problem, while an efficient photocatalyst is the most critical factor. Herein, a new photocatalyst MIL-68(Ga)_NH2 was obtained by hydrothermal synthesis and were characterized by PXRD, FTIR, 1H NMR, and TGA systematically. The result demonstrates that MIL-68(Ga)_NH2 crystallized in orthorhombic system and Cmcm space group with the unit cell parameters: a = 36.699 Å, b = 21.223 Å, c = 6.75 Å, V = 5257.6 Å3, which sheds light on the maintenance of the crystal structure of the prototype material after amino modification. The conversion of Cr(VI) and binary pollutant Cr(VI)/RhB in wastewater under visible light stimulation was characterized by the UV-vis DRS. Complementary experimental results indicate that MIL-68(Ga)_NH2 exhibits remarkable photocatalytic activity for Cr(VI) and the degradation rate reaches as high as 98.5% when pH = 2 and ethanol as hole-trapping agent under visible light irradiation with good reusability and stability. Owing to the synergistic effect between Cr(VI) and RhB in the binary pollutant system, MIL-68(Ga)_NH2 exhibits excellent catalytic activity for both the pollutants, the degradation efficiency of Cr(VI) and RhB was up to 95.7% and 94.6% under visible light irradiation for 120 min, respectively. The possible removal mechanism of Cr(VI)/RhB based on MIL-68(Ga)_NH2 was explored. In addition, Ga-based MOF was applied in the field of photocatalytic treatment of wastewater for the first time, which broadened the application of MOF materials in the field of photocatalysis.
Collapse
|
42
|
Constructing visible-light-driven self-cleaning UF membrane by quaternary ammonium-functionalized Ti-MOFs for water remediation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Ti(IV)-Exchanged Nano-ZIF-8 and Nano-ZIF-67 for Enhanced Photocatalytic Oxidation of Hydroquinone. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Excellent photoreduction performance of U(VI) on metal organic framework/covalent organic framework heterojunction by solar-driven. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Guo YC, Jiang ZY, Wang YC, Jin J, Yan WF, Zhao ZX, Ma YM, Yan LY, Jiang ZQ, Qiao QA. Synthesis, structure and photocatalytic property of the 1D oxalate-bridged coordination polymer of manganese(II). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Liu L, Du S, Guo X, Xiao Y, Yin Z, Yang N, Bao Y, Zhu X, Jin S, Feng Z, Zhang F. Water-Stable Nickel Metal-Organic Framework Nanobelts for Cocatalyst-Free Photocatalytic Water Splitting to Produce Hydrogen. J Am Chem Soc 2022; 144:2747-2754. [PMID: 35108010 DOI: 10.1021/jacs.1c12179] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Development of water-stable metal-organic frameworks (MOFs) for promising visible-light-driven photocatalytic water splitting is highly desirable but still challenging. Here we report a novel p-type nickel-based MOF single crystal (Ni-TBAPy-SC) and its exfoliated nanobelts (Ni-TBAPy-NB) that can bear a wide range of pH environment in aqueous solution. Both experimental and theoretical results indicate a feasible electron transfer from the H4TBAPy ligand (light-harvesting center) to the Ni-O cluster node (catalytic center), on which water splitting to produce hydrogen can be efficiently driven free of cocatalyst. Compared to the single crystal, the exfoliated two-dimensional (2D) nanobelts show more efficient charge separation due to its shortened charge transfer distance and remarkably enhanced active surface areas, resulting in 164 times of promoted water reduction activity. The optimal H2 evolution rate on the nanobelt reaches 98 μmol h-1 (ca. 5 mmol h-1 g-1) showing benchmarked apparent quantum efficiency (AQE) of 8.0% at 420 nm among water-stable MOFs photocatalysts.
Collapse
Affiliation(s)
- Lifang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwen Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xiangyang Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Yejun Xiao
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zixi Yin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nengcong Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfeng Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunjin Zhu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 00852-3411-5159, PR China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhaochi Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
47
|
Liu P, Wang Y, Chen Y, Wang X, Yang J, Li L, Li J. Stable titanium metal-organic framework with strong binding affinity for ethane removal. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Park S, Keum Y, Park J. Ti-Based porous materials for reactive oxygen species-mediated photocatalytic reactions. Chem Commun (Camb) 2022; 58:607-618. [PMID: 34950943 DOI: 10.1039/d1cc04858a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive oxidants that are typically generated by the irradiation of semiconducting materials with visible or UV light and are widely used for the photocatalytic degradation of toxic substances, photodynamic therapy, and selective organic transformations. In this context, TiO2 is considered to be among the most promising photocatalysts due to its high redox activity, structural stability, and natural abundance. In view of the extensive development of highly active photocatalysts, we herein briefly introduce TiO2 and the mechanisms of TiO2-mediated ROS generation, subsequently focusing on key advances in the design and synthesis of Ti-containing porous materials, such as porous TiO2, Ti-based metal-organic frameworks, and Ti-based metal-organic aerogels. In particular, this review highlights the significance of porosity and the structure-function relationship for the development of Ti-based photocatalysts. The structures, porosities, and ROS generation mechanisms of these materials as well as the related efficiencies of ROS-mediated photocatalytic organic transformations are discussed in detail to provide a useful reference for future researchers and to inspire the exploration of high-performance photocatalysts.
Collapse
Affiliation(s)
- Seonghun Park
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.
| | - Yesub Keum
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.
| | - Jinhee Park
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.
| |
Collapse
|
49
|
Wang X, Xu QW, Wei MM, Chen JY, Wang HH, Li X. Lanthanide ternary mixed-ligand coordination polymers as fluorescent sensors for the sensitive and selective detection of chlorogenic acid. CrystEngComm 2022. [DOI: 10.1039/d2ce00954d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of lanthanide coordination polymers constructed from ternary mixed ligands were synthesized. The Eu-CP has fluorescence sensing properties for chlorogenic acid. The film loaded with Eu-CP can be used for visual fluorescence detection.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qi-Wei Xu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Ming-Ming Wei
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jing-Yao Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hong-Hao Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xia Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
50
|
Wang C, Wang S, Kong F, Chen N. Ferrocene-Sensitized Titanium-Oxo Clusters with Effective Visible Light Absorption and Excellent Photoelectrochemical Activity. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01410b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitized Ti-oxo clusters have attracted growing attention as analogous molecular mode compounds of dye-sensitized titanium dioxide solar cells. However, reports on the introduction of metal complexes as photosensitizers into Ti-oxo...
Collapse
|