1
|
Trávníček Z, Vančo J, Belza J, Zoppellaro G, Dvořák Z. Dinuclear copper(II) complexes with a bridging bis(chalcone) ligand reveal considerable in vitro cytotoxicity on human cancer cells and enhanced selectivity. J Inorg Biochem 2024; 252:112481. [PMID: 38215536 DOI: 10.1016/j.jinorgbio.2024.112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
A bis(chalcone) molecule (H2L) was synthesized via Aldol's condensation from terephthalaldehyde and 2'-hydroxyacetophenone and it was used as bridging ligand for the preparation of five dinuclear copper(II) complexes of the composition [Cu(NN)(μ-L)Cu(NN)](NO3)2⋅nH2O (n = 0-2) (1-5), where NN stands for a bidentate N-donor ligand such as phen (1,10-phenanthroline, 1), bpy (2,2'-bipyridine, 2), mebpy (5,5'-dimethyl-2,2'-dipyridine, 3), bphen (bathophenanthroline, 4) and nphen (5-nitro-1,10-phenanthroline, 5). The compounds were characterized by different suitable techniques to confirm their purity, composition, and structure. Moreover, the products were evaluated for their in vitro cytotoxicity on a panel of human cancer cell lines: ovarian (A2780), ovarian resistant to cisplatin (A2780R), prostate (PC3), osteosarcoma (HOS), breast (MCF7) and lung (A549), and normal fibroblasts (MRC-5), showing significant cytotoxicity in most cases, with IC50 ≈ 0.35-7.8 μM. Additionally, the time-dependent cytotoxicity and cellular uptake of copper, together with flow cytometric studies concerning cell-cycle arrest, induction of cell death and autophagy and induction of intracellular ROS/superoxide production in A2780 cells, were also performed. The results of biological testing on A2780 cells pointed out a possible mechanism of action characterized by the G2/M cell cycle arrest and induction of apoptosis by triggering the intrinsic signalling pathway associated with the damage of mitochondrial structure and depletion of mitochondrial membrane potential. SYNOPSIS: Dinuclear Cu(II) complexes bearing a bridging bis(chalcone) ligand revealed high in vitro cytotoxicity, initiated A2780 cell arrest at G2/M phase and efficiently triggered intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic.
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| | - Jan Belza
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 772 00 Olomouc, Czech Republic
| |
Collapse
|
2
|
Roshal AD. Complexation of Flavonoids: Spectral Phenomena, Regioselectivity, Interplay with Charge and Proton Transfer. CHEM REC 2024; 24:e202300249. [PMID: 37786285 DOI: 10.1002/tcr.202300249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/13/2023] [Indexed: 10/04/2023]
Abstract
The review compiles information on the spectral classification of flavonoids, the changes in their electronic structure upon complex formation, and the manifestation of these changes in the absorption and emission spectra. Part of the review is devoted to the regioselectivity of the complex formation process, including types of complexation sites, the structure of chelates and 'open' complexes, and the correlation between the structure of complexes and their spectral properties. The interplay between complex formation and other processes occurring in flavonoids during electronic excitation is also considered, such as intramolecular inter-fragment charge transfer (ICT) and intramolecular proton transfer (ESIPT). The review also contains systematic data on the study of regioselectivity and spectral properties of flavone complexes, obtained by the author and their colleagues over the past decades.
Collapse
Affiliation(s)
- Alexander D Roshal
- Research Institute of Chemistry, V.N. Karazin Kharkiv National University, 4 Svoboda square, Kharkiv, 61022, Ukraine
| |
Collapse
|
3
|
Moon S, Kim C. A Fluorescent and Colorimetric Chemosensor Detecting Pd 2+ Based on Chalcone Structure with Triphenylamine. J Fluoresc 2023; 33:1739-1748. [PMID: 36826725 DOI: 10.1007/s10895-023-03176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
A fluorometric and colorimetric chemosensor DiPP ((E)-3-(4-(diphenylamino)phenyl)-1-(pyridin-2-yl)prop-2-en-1-one) based on chalcone structure with a triphenylamine group was synthesized. Sensor DiPP detected Pd2+ with fluorescence turn-off and via colorimetry variation of yellow to purple. The binding ratio of DiPP to Pd2+ turned out to be 1 : 1. Detection limits for Pd2+ by DiPP were analyzed to be 0.67 µM and 0.80 µM through the fluorescent and colorimetric methods. Additionally, the fluorescent and colorimetric test strips were applied for probing Pd2+ and displayed that DiPP could obviously discriminate Pd2+ from other metals. The binding feature of DiPP to Pd2+ was presented by ESI-mass, Job plot, NMR titration, ESI-mass, and DFT calculations.
Collapse
Affiliation(s)
- Sungjin Moon
- Dept of New and Renewable Energy Convergence and Fine Chem, Seoul National Univ. of Sci. and Tech. (SNUT), 01811, Seoul, Korea
| | - Cheal Kim
- Dept of New and Renewable Energy Convergence and Fine Chem, Seoul National Univ. of Sci. and Tech. (SNUT), 01811, Seoul, Korea.
| |
Collapse
|
4
|
Pérez-González A, Castañeda-Arriaga R, Guzmán-López EG, Hernández-Ayala LF, Galano A. Chalcone Derivatives with a High Potential as Multifunctional Antioxidant Neuroprotectors. ACS OMEGA 2022; 7:38254-38268. [PMID: 36340167 PMCID: PMC9631883 DOI: 10.1021/acsomega.2c05518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 05/28/2023]
Abstract
A systematic, rational search for chalcone derivatives with multifunctional behavior has been carried out, with the support of a computer-assisted protocol (CADMA-Chem). A total of 568 derivatives were constructed by incorporating functional groups into the chalcone structure. Selection scores were calculated from ADME properties, toxicity, and manufacturability descriptors. They were used to select a subset of molecules (23) with the best drug-like behavior. Reactivity indices were calculated for this subset. They were chosen to account for electron and hydrogen atom donating capabilities, which are key processes for antioxidant activity. The indexes showed that four chalcone derivatives (dCHA-279, dCHA-568, dCHA-553, and dCHA-283) are better electron and H donors than the parent molecule and some reference antioxidants (Trolox, ascorbic acid, and α-tocopherol). In addition, based on molecular docking, they are predicted to act as catechol-O-methyltransferase (COMT), acetylcholinesterase (AChE), and monoamine oxidase B (MAO-B) inhibitors. Therefore, these four molecules are proposed as promising candidates to act as multifunctional antioxidants with neuroprotective effects.
Collapse
Affiliation(s)
- Adriana Pérez-González
- CONACYT
- Universidad Autónoma Metropolitana - Iztapalapa Avenida Ferrocarril
San Rafael Atlixco, número 186, Colonia Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Código Postal 09310, Ciudad de México, México
| | - Romina Castañeda-Arriaga
- Departamento
de Química. Universidad Autónoma
Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, número 186, Colonia Leyes
de Reforma 1A Sección, Alcaldía
Iztapalapa, Código Postal 09310, Ciudad de México, México
| | - Eduardo Gabriel Guzmán-López
- Departamento
de Química. Universidad Autónoma
Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, número 186, Colonia Leyes
de Reforma 1A Sección, Alcaldía
Iztapalapa, Código Postal 09310, Ciudad de México, México
| | - Luis Felipe Hernández-Ayala
- Departamento
de Química. Universidad Autónoma
Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, número 186, Colonia Leyes
de Reforma 1A Sección, Alcaldía
Iztapalapa, Código Postal 09310, Ciudad de México, México
| | - Annia Galano
- Departamento
de Química. Universidad Autónoma
Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, número 186, Colonia Leyes
de Reforma 1A Sección, Alcaldía
Iztapalapa, Código Postal 09310, Ciudad de México, México
| |
Collapse
|
5
|
Karthikeyan A, Suresh J, Balaji K, Manikandan S, Sudhakar C, Sivakumar K, Arun A. Synthesis, Antioxidant and Antibacterial Effects of Chalcone-Triazine Hybrid Metal Complexes. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Karthikeyan A, Suresh J, Balaji K, Anandhakumar S, Arun A. Synthesis, characterization and antioxidant property of nano-scaled metal complexes of triazine based hydroxy chalcone. SMART SCIENCE 2022. [DOI: 10.1080/23080477.2022.2074660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A. Karthikeyan
- Department of Chemistry, Government Arts College, Tiruvannamalai, India
| | - J. Suresh
- Department of Chemistry, Government Arts College, Tiruvannamalai, India
| | - K. Balaji
- Department of Chemistry, Government Arts College, Tiruvannamalai, India
| | - S. Anandhakumar
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram, India
| | - A. Arun
- Department of Chemistry, Government Arts College, Tiruvannamalai, India
| |
Collapse
|
7
|
Quantifying up to 90 polyphenols simultaneously in human bio-fluids by LC-MS/MS. Anal Chim Acta 2022; 1216:339977. [DOI: 10.1016/j.aca.2022.339977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
|
8
|
Abstract
The first chalcone-based colorimetric chemosensor DPP (sodium (E)-2,4-dichloro-6-(3-oxo-3-(pyridine-2-yl)prop-1-en-1-yl)phenolate) was synthesized for detecting Ni2+ in near-perfect water. The synthesis of DPP was validated by using 1H, 13C NMR and ESI-MS. DPP selectively sensed Ni2+ through the color variation from yellow to purple. Detection limit of DPP for Ni2+ was calculated to be 0.36 μM (3σ/slope), which is below the standard (1.2 μM) set by the United States Environmental Protection Agency (EPA).The binding ratio of DPP to Ni2+ was determined as a 1:1 by using a Job plot and ESI-mass. The association constant of DPP and Ni2+ was calculated as 1.06 × 104 M−1 by the non-linear fitting analysis. In real samples, the sensing application of DPP for Ni2+ was successfully performed. DPP-coated paper-supported strips could also be used for detecting Ni2+. The binding mechanism of DPP to Ni2+ was proposed by ESI-MS, Job plot, UV-vis, FT-IR spectroscopy, and DFT calculations.
Collapse
|
9
|
Synthesis and biological evaluation of a new chalconate Co (II/III) complex with cytotoxic activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Patil P, Zangade S. Synthesis and comparative study of cytotoxicity and anticancer activity of Chalconoid-Co(II) metal complexes with 2-hydroxychalcones analogue containing naphthalene moiety. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Alkhatib FM, Farghaly TA, Harras MF, El-Ghamry HA. Copper(II) complexes based on 1,3,4-thiadiazolethiosemicarbazone NNS donor ligands: synthesis, molecular structure, DNA binding and in silico molecular docking approach. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.2011319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatmah M. Alkhatib
- Chemistry Department Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Marwa F. Harras
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hoda A. El-Ghamry
- Chemistry Department Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Yekrangi M, Benvidi A, Jahanbani S, Zare HR, Banaei M. Determination of lead ions in fish and oyster samples using a nano-adsorbent of functionalized magnetic graphene oxide nanosheets-humic acid and the flame atomic absorption technique. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:825. [PMID: 34792659 DOI: 10.1007/s10661-021-09613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
This study aims at the functionalization of magnetic graphene oxide nanosheets and the binding of humic acid as a lead complex ligand. Graphene oxide nanosheets possess a large surface area and various carboxylic acid groups which can be activated easily by activating agents. Therefore, they are suitable to be used for the extraction of heavy metals. To have a better process of extracting lead ions, magnetic graphene oxide was used in this research. Humic acid, as a lead metal complex agent, has an amine functional group which can be bound to modified graphene oxide from one side. The process of constructing the nano-adsorbent proposed for the preconcentration of lead ions as well as its characterization was studied by infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-visible), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The designed nano-adsorbent was tested to measure lead ions in simulated and real samples of sea water, fish, and oysters. The detection limit obtained in the simulated samples was 0.07 μg/L, and the linear range was 0.2-12 μg/L. The apparatus used to measure the ions was a flame atomic absorption device. In the analysis of the real samples, the values obtained through flame atomic absorption were compared with those obtained through furnace atomic absorption. The proposed technique is advantageous due to being cheap, precise, and sensitive for the trace measurement of lead ions.
Collapse
Affiliation(s)
- Manijeh Yekrangi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | - Ali Benvidi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran.
| | - Shahriar Jahanbani
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | - Hamid R Zare
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | - Maryam Banaei
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| |
Collapse
|
13
|
Johnson J, Yardily A. Spectral, modeling and biological studies on a novel (E)-3-(3‑bromo-4-methoxyphenyl)-1-(thiazol-2-yl)prop‑2-en-1-one and some bivalent metal(II) complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Johnson J, Yardily A. Co(II), Ni(II), Cu(II), and Zn(II) metal complexes of chalcone: Synthesis, characterization, thermal, antimicrobial, photocatalytic degradation of dye and molecular modeling studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jino Johnson
- Department of Chemistry and Research Centre Scott Christian College (Autonomous) Nagercoil India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India)
| | - Amose Yardily
- Department of Chemistry and Research Centre Scott Christian College (Autonomous) Nagercoil India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India)
| |
Collapse
|
15
|
Pawlaczyk M, Frański R, Cegłowski M, Schroeder G. Mass Spectrometric Investigation of Organo-Functionalized Magnetic Nanoparticles Binding Properties toward Chalcones. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4705. [PMID: 34443228 PMCID: PMC8398273 DOI: 10.3390/ma14164705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/03/2022]
Abstract
Chalcones are naturally occurring compounds exhibiting multiple biological functions related to their structure. The investigation of complexes formed by chalcones, namely 2',4'-dihydroxy-2-methoxychalcone (DH-2-MC) and 2',4'-dihydroxy-3-methoxychalcone (DH-3-MC), with organo-functionalized Fe3O4 magnetic nanoparticles using mass spectrometric techniques is reported. The magnetic nanoparticles were obtained by the silanization of Fe3O4 particles with 3-aminopropyltrimethosysilane, which were subsequently reacted with 3-hydroxybenzaldehyde (3-HBA) or 2-pyridinecarboxaldehyde (2-PCA), resulting in the formation of Schiff base derivatives. The formation of their complexes with chalcones was studied using electrospray (ESI) and flowing atmosphere-pressure afterglow (FAPA) mass spectrometric (MS) ionization techniques. The functional nanoparticles which were synthesized using 3-hydroxybenzaldehyde displayed higher affinity towards examined chalcones than their counterparts obtained using 2-pyridinecarboxaldehyde, which has been proved by both ESI and FAPA techniques. For the examined chalcones, two calibration curves were obtained using the ESI-MS method, which allowed for the quantitative analysis of the performed adsorption processes. The presence of Cu(II) ions in the system significantly hindered the formation of material-chalcone complexes, which was proved by the ESI and FAPA techniques. These results indicate that both mass spectrometric techniques used in our study possess a large potential for the investigation of the binding properties of various functional nanoparticles.
Collapse
Affiliation(s)
- Mateusz Pawlaczyk
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (R.F.); (M.C.); (G.S.)
| | | | | | | |
Collapse
|
16
|
Tong J, Wang J, Shen X, Zhang H, Wang Y, Fang Q, Chen L. One-Pot Synthesis of Schiff Bases by Defect-Induced TiO 2-x-Catalyzed Tandem Transformation from Alcohols and Nitro Compounds. Inorg Chem 2021; 60:10715-10721. [PMID: 34184890 DOI: 10.1021/acs.inorgchem.1c01406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schiff bases that are generally formed from condensation reactions of aldehydes (or ketones) and amino groups could also be produced by a photodriven one-pot tandem reaction between alcohols and nitro compounds, in our case. Herein, TiO2-x porous cages derived from NH2-MIL-125 by a self-sacrificing template route are used to study the organic transformation and exhibit 100% conversion efficiency of nitrobenzene and 100% selectivity for Schiff bases in the system of benzyl alcohol (5 mL) and nitrobenzene (41 μL) upon light irradiation, but hydrogen by dehydrogenation of benzyl alcohol cannot be detected. Successful occurrence of the organic transformation is mainly attributed to Ti(III)-oxygen vacancy associates. Surface oxygen vacancy-related Ti(III) sites are responsible for binding with nitro groups, and low-coordinated Ti5c sites selectively adsorb hydroxyl groups of benzyl alcohol. The Ti(III) and oxygen vacancy associates capture photogenerated electrons for achievement of multielectron reduction of nitrobenzene and the subsequent Schiff base condensation reaction with the as-formed benzaldehyde.
Collapse
Affiliation(s)
- Jing Tong
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China
| | - Jinfeng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaoshuang Shen
- School of Physical Science & Technology, Yangzhou University, Yangzhou 225002, P. R. China
| | - Hui Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qiang Fang
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China
| | - Liyong Chen
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui 233030, P. R. China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
17
|
Luo Y, Wu W, Zha D, Zhou W, Wang C, Huang J, Chen S, Yu L, Li Y, Huang Q, Zhang J, Zhang C. Synthesis and biological evaluation of novel ligustrazine-chalcone derivatives as potential anti-triple negative breast cancer agents. Bioorg Med Chem Lett 2021; 47:128230. [PMID: 34186178 DOI: 10.1016/j.bmcl.2021.128230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
Abstract
A series of novel ligustrazine-chalcone hybrids were synthesized and evaluated for their in vitro and in vivo antitumor activities. The results showed that most of these compounds exhibited significant in vitro cytotoxicity against MDA-MB-231, MCF-7, A549 and HepG2 cell lines with IC50 values as low as sub-micromole. Among them, compounds 6c and 6f possessed better comprehensive characteristics for the antiproliferation effects on both MDA-MB-231 (IC50: 6c, 1.60 ± 0.21 μM; 6f, 1.67 ± 1.25 μM) and MCF-7 (IC50: 6c, 1.41 ± 0.23 μM; 6f, 1.54 ± 0.30 μM). They also exhibited the potent colony-formation inhibitory abilities on above two cell lines in both concentration and time dependent manners, as well as the significantly suppression capabilities against the migration of such cell lines in a concentration dependent manner by wound-healing assay. Of note, compound 6c could significantly induce the apoptosis of MDA-MB-231 cells in a concentration dependent manner and inhibited the transformation of the growth cycle of MDA-MB-231 cells and blocked the cell growth cycle in G0/G1 phase. Moreover, the in vivo antiproliferation assay of compound 6c on TNBC model indicated such compound had a remarkable potency against tumor growth with a widely safety window. Further immunohistochemistry analysis illustrated that compound 6c was provided with a potent capacity to significantly reduce the Ki-67 positive rate in a dose dependent manner. All the results suggested that these hybrids presented both in vitro and in vivo proliferation inhibition potency against breast cancer and further development with good therapeutic potential should be of great interest.
Collapse
Affiliation(s)
- Yingqi Luo
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China; The State Key Laboratory of Respiratory Disease & NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenhao Wu
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China; The State Key Laboratory of Respiratory Disease & NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, China
| | - Dailong Zha
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenmin Zhou
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Chengxu Wang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianan Huang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Shaobin Chen
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Lihong Yu
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China; The State Key Laboratory of Respiratory Disease & NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuanzhi Li
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Qinghui Huang
- The First Affiliated Hospital, Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangdong 510180, China.
| | - Jianye Zhang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China; The State Key Laboratory of Respiratory Disease & NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, China.
| | - Chao Zhang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China; The State Key Laboratory of Respiratory Disease & NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
18
|
Vlasiou MC, Hatahta AA. Spectroscopic evaluation of chalcone derivatives and their zinc metal complexes: A combined experimental and computational approach studying the interactions of the complexes with the serum albumin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Oesterle I, Braun D, Berry D, Wisgrill L, Rompel A, Warth B. Polyphenol Exposure, Metabolism, and Analysis: A Global Exposomics Perspective. Annu Rev Food Sci Technol 2021; 12:461-484. [PMID: 33351643 DOI: 10.1146/annurev-food-062220-090807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyphenols are generally known for their health benefits and estimating actual exposure levels in health-related studies can be improved by human biomonitoring. Here, the application of newly available exposomic and metabolomic technology, notably high-resolution mass spectrometry, in the context of polyphenols and their biotransformation products, is reviewed. Comprehensive workflows for investigating these important bioactives in biological fluids or microbiome-related experiments are scarce. Consequently, this new era of nontargeted analysis and omic-scale exposure assessment offers a unique chance for better assessing exposure to, as well as metabolism of, polyphenols. In clinical and nutritional trials, polyphenols can be investigated simultaneously with the plethora of other chemicals to which we are exposed, i.e., the exposome, which may interact abundantly and modulate bioactivity. This research direction aims at ultimately eluting into atrue systems biology/toxicology evaluation of health effects associated with polyphenol exposure, especially during early life, to unravel their potential for preventing chronic diseases.
Collapse
Affiliation(s)
- Ian Oesterle
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; , , .,Department of Biophysical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; , ,
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; .,The Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090 Vienna, Austria
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Annette Rompel
- Department of Biophysical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; , ,
| |
Collapse
|
20
|
Kamecki F, Marcucci C, Ferreira-Gomes M, Sabatier L, Knez D, Gobec S, Monti JLE, Rademacher M, Marcos A, de Tezanos Pinto F, Gavernet L, Colettis N, Marder M. 2’-Hydroxy-4’,5’-dimethyl-4-dimethylaminochalcone, a novel fluorescent flavonoid with capacity to detect aluminium in cells and modulate Alzheimer’s disease targets. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Kaushal R, Kaur M. Bio-medical potential of chalcone derivatives and their metal complexes as antidiabetic agents: a review. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1875450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Raj Kaushal
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh, India
| | - Mandeep Kaur
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh, India
| |
Collapse
|
22
|
Pursuwani BH, Bhatt BS, Vaidya FU, Pathak C, Patel MN. Fluorescence, DNA Interaction and Cytotoxicity Studies of 4,5-Dihydro-1H-Pyrazol-1-Yl Moiety Based Os(IV) Compounds: Synthesis, Characterization and Biological Evaluation. J Fluoresc 2021; 31:349-362. [PMID: 33389418 DOI: 10.1007/s10895-020-02657-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Osmium(IV) pyrazole compounds and ligands were synthesized and well characterised. Ligands were characterized by heteronuclear NMR spectroscopy (1H & 13C), elemental analysis, IR spectroscopy and liquid crystal mass spectroscopy. Os(IV) complexes were characterized by ESI-MS, ICP-OES, IR spectroscopy, conductance measurements, magnetic measurements and electronic spectroscopy. Binding of compounds with HS-DNA were evaluated using viscosity measurements, absorption titration, fluorescence quenching, and molecular docking, which show effective intercalation mode exhibited by compounds. Binding constant of Os(IV) complexes are found to be 8.1 to 9.2 × 104 M-1. Bacteriostatic and cytotoxic activities were carried out to evaluate MIC, LC50, and IC50. The compounds have been undergone bacteriostatic screening using three sets of Gram+ve and two sets of Gram-ve bacteria. MIC of complexes are found to be 72.5-100 μM, whereas that of ligands fall at about 122.5-150 μM.. LC50 count of ligands fall in the range of 16.22-17.28 μg/mL whereas that of complexes of Os(IV) fall in the range of 4.87-5.87 μg/mL. IC50 of osmium compounds were evaluated using HCT-116 cell line. All the Os(IV) compounds show moderate IC50.
Collapse
Affiliation(s)
- Bharat H Pursuwani
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388 120, India
| | - Bhupesh S Bhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388 120, India
| | - Foram U Vaidya
- Cell Biology Laboratory, Indian Institute of Advanced Research, Koba, Gandhinagar, Gujarat, 382421, India
| | - Chandramani Pathak
- Cell Biology Laboratory, Indian Institute of Advanced Research, Koba, Gandhinagar, Gujarat, 382421, India
| | - Mohan N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388 120, India.
| |
Collapse
|
23
|
Johnson J, Yardily A. Synthesis, spectral investigation, thermal, molecular modeling and bio-molecular docking studies of a thiazole derived chalcone and its metal complexes. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1795145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jino Johnson
- Department of Chemistry and Research Centre, Scott Christian College, (Autonomous) Nagercoil, Tamil Nadu, India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India)
| | - A. Yardily
- Department of Chemistry and Research Centre, Scott Christian College, (Autonomous) Nagercoil, Tamil Nadu, India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India)
| |
Collapse
|
24
|
Anzaldo B, Sharma P, Gutiérrez Pérez R, Villamizar C CP, Barquera-Lozada JE, Toscano A, Gaviño R, Portillo O. Ruthenocenyl phosphinated chalcones and their Pt(II) and Pd(II) complexes: Usual bidentate [PO] and unusual tridentate [PCO] coordination. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Abstract
An up-to-date short review of the chalcone methodologies is presented, which is the most
interesting and beneficial for choosing the desired protocol to synthesize suitable derivatives of chalcones.
Chalcones are fluorescent, stable compounds which contribute to the synthesis of various
pharmacologically important heterocyclic structure-based derivatives. Chalcone has displayed a remarkable
curative efficiency to cure several diseases. Several schemes and methodologies have been
reported for employing different catalysts and reagents. The development of improved methodologies
of α, β-unsaturated carbonyl compounds is still on going. In this review, synthetic methodologies
and their recent modification in designing new methods with efficient, economical, eco-friendly
and high yield are discussed.
Collapse
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
26
|
van Hilst QVC, Vasdev RAS, Preston D, Findlay JA, Scottwell SØ, Giles GI, Brooks HJL, Crowley JD. Synthesis, Characterisation and Antimicrobial Studies of some 2,6‐
bis
(1,2,3‐Triazol‐4‐yl)Pyridine Ruthenium(II) “Click” Complexes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Quinn V. C. van Hilst
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Roan A. S. Vasdev
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pharmacology and ToxicologyUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Dan Preston
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pharmacology and ToxicologyUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Synøve Ø. Scottwell
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
| | - Gregory I. Giles
- Department of Pharmacology and ToxicologyUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - Heather J. L. Brooks
- Department of Pathology Dunedin School of MedicineUniversity of Otago PO Box 56 Dunedin 9054
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054
- MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| |
Collapse
|
27
|
El-Deen I, Shoair A, El-Bindary M. Synthesis, characterization and biological properties of oxovanadium(IV) complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|