1
|
Zazulya A, Berdyugin S, Tkachev S, Lagunova V, Sheven D, Abramov P, Glebov E, Vasilchenko D. Preparation of trans, trans-[Pt(py) 2(N 3) 2(OH) 2] via Photoinduced Reactivity of [Pt(NO 3) 6] 2- Anion. Inorg Chem 2025; 64:2336-2347. [PMID: 39874060 DOI: 10.1021/acs.inorgchem.4c04536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The photoinduced reaction of [Pt(NO3)6]2- with pyridine or its derivatives (L) was found to result in the formation of [PtL4](NO3)2 salts in high yield. This transformation was successfully probed for methyl- and carboxyethyl-substituted pyridines, and the corresponding [PtL4](NO3)2 salts were isolated and fully characterized using single-crystal X-ray diffraction (SCXRD). Anation of the [Pt(py)4]2+ cationic complex with N3- was studied by 1H NMR spectroscopy in aqueous and water/dimethyl sulfoxide solutions of [Pt(py)4](NO3)2. A mixture of cis- and trans-[Pt(py)2(N3)2] complexes was determined as the final product of this interaction with the domination of the trans-isomer (cis to trans ratio is about 1:8) due to its preferable formation from the transient [Pt(py)3(N3)]+ cationic complex. The difference observed for the experimentally determined activation parameters of trans- and cis-paths of anation was supported by DFT calculations. Finally, the new three-stage Ag-free synthetic procedure for the preparation of the trans,trans-[Pt(py)2(N3)2(OH)2] prodrug (potential agent for the photodynamic anticancer therapy) was found using (i) light-induced formation of [Pt(py)4](NO3)2 from (Bu4N)2[Pt(NO3)6] followed by (ii) anation of [Pt(py)4]2+ with azide and (iii) accomplished by oxidation of the resulting mixture of cis- and trans-[Pt(py)2(N3)2] with H2O2. Efficient separation of cis,trans-[Pt(py)2(OH)2(N3)2] and trans,trans-[Pt(py)2(N3)2(OH)2] produced at the last stage was achieved by simple recrystallization from water.
Collapse
Affiliation(s)
- Alexei Zazulya
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090Novosibirsk, Russia
| | - Semen Berdyugin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Sergey Tkachev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Varvara Lagunova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Dmitriy Sheven
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Pavel Abramov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Evgeni Glebov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danila Vasilchenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Wang M, Li F, Wang Z, Lv L, Liu W. Research progress of natural product-conjugated platinum and gold complexes as potential antitumor agents. Eur J Med Chem 2024; 280:116956. [PMID: 39413444 DOI: 10.1016/j.ejmech.2024.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Cancer is widely recognized as a serious disease that poses a significant threat to human life and health. The distinctive chemical properties and pronounced antiproliferative activity of platinum drugs are considered to be responsible for their remarkable efficacy in clinical applications. However, undesirable side effects and resistance have severely hampered the treatment of various types of cancer with platinum-based drugs. Natural products (NPs) exhibit extensive pharmacological activities and represent an important source for developing cancer therapeutics. Therefore, the combination of metals and NPs is an attractive strategy for the development of new anticancer agents. Several studies have indicated that combining metals with NPs has a synergistic enhancement effect in antitumor activity. For transition metals, there has been burgeoning research output investigating NP-conjugated platinum and gold complexes. The present article reviews the progress made over the past 5-10 years on the development of NP-conjugated platinum and gold complexes, including a brief introduction to their chemistry and mechanism of action, and a summary of their benefits.
Collapse
Affiliation(s)
- Meiyu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fuwei Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhaoran Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lin Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wukun Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Hu D, Li Y, Li R, Wang M, Zhou K, He C, Wei Q, Qian Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm Sin B 2024; 14:5106-5131. [PMID: 39807318 PMCID: PMC11725102 DOI: 10.1016/j.apsb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment. We elucidate in detail the operational mechanisms of ROS-responsive linkers, including thioether, thioketal, selenide, diselencide, telluride and aryl boronic acids/esters, as well as the latest developments in ROS-responsive nanomedicines that integrate with PDT strategies. These insights are intended to inspire the design of innovative ROS-responsive nanocarriers for enhanced cancer PDT.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
5
|
Chen F, Ruan F, Xie X, Lu J, Sun W, Shao D, Chen M. Gold Nanocluster: A Photoelectric Converter for X-Ray-Activated Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402966. [PMID: 39044607 DOI: 10.1002/adma.202402966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Indexed: 07/25/2024]
Abstract
Despite the promise of activatable chemotherapy, the development of a spatiotemporally controllable strategy for prodrug activation in deep tissues remains challenging. Herein, a proof-of-concept is proposed for a gold nanocluster-based strategy that utilizes X-ray irradiation to trigger the liberation of platinum (Pt)-based prodrug conjugates, thus enabling radiotherapy-directed chemotherapy. Mechanistically, the irradiated activation of prodrugs is achieved through direct photoelectron transfer from the excited-state gold nanoclusters to the Pt(IV) center, resulting in the release of cytotoxic Pt(II) agents. Compared to the traditional combination of chemotherapy and radiotherapy, this radiotherapy-directed chemotherapy strategy offers superior antitumor efficacy and safety benefits through spatiotemporal synergy at the tumor site. Additionally, this strategy elicits robust immunogenic cell death and yields profound outcomes for combined immunotherapy of breast cancer. This versatile strategy is ushering in a new era of radiation-mediated chemistry for controlled drug delivery and the precise regulation of biological processes.
Collapse
Affiliation(s)
- Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Feixia Ruan
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Junna Lu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| |
Collapse
|
6
|
Shi H, Ward-Deitrich C, Ponte F, Sicilia E, Goenaga-Infante H, Sadler PJ. Photosubstitution and photoreduction of a diazido platinum(IV) anticancer complex. Dalton Trans 2024; 53:13044-13054. [PMID: 39028324 DOI: 10.1039/d4dt01587h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The hyphenation of HPLC with its high separation ability and ICP-MS with its excellent sensitivity, allows the analysis of Pt drugs in biological samples at the low nanomolar concentration levels. On the other hand, LC-MS provides molecular structural confirmation for each species. Using a combination of these methods, we have investigated the speciation of the photoactive anticancer complex diazido Pt(IV) complex trans, trans, trans-[Pt(N3)2(OH)2(py)2] (FM-190) in aqueous solution and biofluids at single-digit nanomolar concentrations before and after irradiation. FM-190 displays high stability in human blood plasma in the dark at 37 °C. Interestingly, the polyhydroxido species [{PtIV(py)2(OH)4} + Na]+ and [{PtIV(py)2(N3)(OH)3} + Na]+ resulting from the replacement of azido ligands, as determined by LC-MS, were the major products after photoirradiation of FM-190 with blue light (463 nm). This finding suggests that such photosubstituted Pt(IV) tri- and tetra-hydroxido species could play important roles in the biological activity of this anticancer complex. Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) calculations show that these Pt(IV) species arising from FM-190 in aqueous media can be formed directly from a singlet excited state. The results highlight how speciation analysis (metallomics) can shed light on photoactivation pathways for FM-190 and formation of potential excited-state pharmacophores. The ability to detect and identify photoproducts at physiologically-relevant concentrations in cells and tissues will be important for preclinical development studies of this class of photoactivatable platinum drugs.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Christian Ward-Deitrich
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex TW11 0LY, UK.
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, via Pietro Bucci, 87036 Arcavacata di Rende, Cs, Italy.
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, via Pietro Bucci, 87036 Arcavacata di Rende, Cs, Italy.
| | - Heidi Goenaga-Infante
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex TW11 0LY, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
7
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Anticancer Activity of Metallodrugs and Metallizing Host Defense Peptides-Current Developments in Structure-Activity Relationship. Int J Mol Sci 2024; 25:7314. [PMID: 39000421 PMCID: PMC11242492 DOI: 10.3390/ijms25137314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
8
|
Zangade SB, Dhulshette BS, Patil PB. Flavonoid-metal ion Complexes as Potent Anticancer Metallodrugs: A Comprehensive Review. Mini Rev Med Chem 2024; 24:1046-1060. [PMID: 37867263 DOI: 10.2174/0113895575273658231012040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Flavonoids and their analogous are mainly found in pink lady apples, green and black tea (catechins), celery and red peppers, onions, broccoli and spinach, berries, cherries, soybean, citrus fruits, and fungi. The different derivatives of flavonoids belonging to polyphenolic compounds such as 3,4',5,7-Tetrahydroxyflavylium (pelargonidin), 2-(3,4-Dihydroxyphenyl)chromenylium-3,5,7-triol (cyanidin), 3,3',4',5,5',7-Hexahydroxyflavylium (delphinidin), 3,3',4',5,7-Pentahydroxy-5'-methoxyflavylium (petunidin), and 3,4',5,7-Tetrahydroxy-3',5'-dimethoxyflavylium (malvidin) can act as good chelating agents for metal-chelate complex formation. These flavonoid-metal complexes have been reported to have various biomedical and pharmacological activities. OBJECTIVE Flavonoid-metal ion complexes display a broad spectrum of biological properties such as antioxidant, anti-inflammatory, anti-allergic, antiviral, anticarcinogenic, and cytotoxic activity. The literature survey showed that flavonoid metal complexes have potential therapeutic properties against various cancerous cells. The objective is to gain insight into the current perspective and development of novel anticancer metallodrugs. METHODS The flavonoid-metal ion complexes can be prepared by reacting flavonoid ligand with appropriate metal salt in aqueous or alcoholic reaction medium under stirring or refluxing conditions. In this review article, the various reported methods for the synthesis of flavonoid-metal complexes have been included. The utility of synthetic methods for flavonoid-metal complexes will support the discovery of novel therapeutic drugs. RESULTS In this review study, short libraries of flavonoid-metal ion complexes were studied as potential anticancer agents against various human cancer cell lines. The review report reveals that metal ions such as Fe, Co, Ni, Cu, Zn, Rh, Ru, Ga, Ba, Sn etc., when binding to flavonoid ligands, enhance the anticancer activity compared to free ligands. This review study covered some important literature surveys for the last two decades. CONCLUSION It has been concluded that flavonoid metal complexes have been associated with a wide range of biological properties that could be noteworthy in the medicinal field. Therefore, to develop a new anticancer drug, it is essential to determine the primordial interaction of drug with DNA under physiological or anatomical conditions. The study of numerous flavonoid metal complexes mentioned in this paper could be the future treatment against various cancerous diseases.
Collapse
Affiliation(s)
- Sainath B Zangade
- Department of Chemistry, Madhavrao Patil, ACS College, Palam Dist. Parbhani, 431720, (M.S.), India
| | - Bashweshawar S Dhulshette
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Pravinkumar B Patil
- Department of Chemistry, Mudhoji College, Phaltan, Dist. Satara, 415523, (M.S.), India
| |
Collapse
|
9
|
Jayawardhana AMDS, Bhandari S, Kaspi-Kaneti AW, Kshetri M, Qiu Z, Cheline M, Shen H, Dunietz BD, Zheng YR. Visible light-activatable platinum(IV) prodrugs harnessing CD36 for ovarian cancer therapy. Dalton Trans 2023; 52:10942-10950. [PMID: 37490033 PMCID: PMC11298056 DOI: 10.1039/d3dt01292a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
We hereby engineered photoactivatable Pt(IV) metallodrugs that harness CD36 to target ovarian cancer cells. Pt(IV) compounds mimic the structure of fatty acids and take advantage of CD36 as a "Trojan horse" to gain entry into the cells. We confirmed that CD36-dependent entry occurs using graphite furnace atomic absorption spectroscopy with ovarian cancer cells expressing different levels of CD36 and a CD36 inhibitor, SSO. Once the Pt(IV) metallodrugs enter the cancer cells, they can be activated to form Pt(II) with characteristics of cisplatin under visible light (490 nm) irradiation, promoting photoinduced electron transfer from the attached fluorophore to the metal center. This light-induced activation can increase the cytotoxicity of the Pt(IV) metallodrugs by up to 20 times toward ovarian cancer cells, inducing DNA damage and enabling efficient elimination of drug-resistant cancer cells.
Collapse
Affiliation(s)
| | - Srijana Bhandari
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Ariela W Kaspi-Kaneti
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Man Kshetri
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Zihan Qiu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - May Cheline
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
10
|
Sancho‐Albero M, Facchetti G, Panini N, Meroni M, Bello E, Rimoldi I, Zucchetti M, Frapolli R, De Cola L. Enhancing Pt(IV) Complexes' Anticancer Activity upon Encapsulation in Stimuli-Responsive Nanocages. Adv Healthc Mater 2023; 12:e2202932. [PMID: 36908188 PMCID: PMC11468457 DOI: 10.1002/adhm.202202932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/27/2023] [Indexed: 03/14/2023]
Abstract
Platinum-based chemotherapy is the first-line treatment for different cancer types, and in particular, for malignant pleural mesothelioma patients (a tumor histotype with urgent medical needs). Herein, a strategy is presented to stabilize, transport, and intracellularly release a platinumIV (PtIV ) prodrug using a breakable nanocarrier. Its reduction, and therefore activation as an anticancer drug, is promoted by the presence of glutathione in neoplastic cells that also causes the destruction of the carrier. The nanocage presents a single internal cavity in which the hydrophobic complex (Pt(dach)Cl2 (OH)2 ), (dach = R,R-diaminocyclohexane) is encapsulated. The in vitro uptake and the internalization kinetics in cancer model cells are evaluated and, using flow cytometry analysis, the successful release and activation of the Pt-based drug inside cancer cells are demonstrated. The in vitro findings are confirmed by the in vivo experiments on a mice model obtained by xenografting MPM487, a patient-derived malignant pleural mesothelioma. MPM487 confirms the well-known resistance of malignant pleural mesothelioma to cisplatin treatment while an interesting 50% reduction of tumor growth is observed when mice are treated with the PtIV , entrapped in the nanocages, at an equivalent dose of the platinum complex.
Collapse
Affiliation(s)
- María Sancho‐Albero
- Department of Biochemistry and Molecular PharmacologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Giorgio Facchetti
- Department of Pharmaceutical ScienceDISFARMUniversità degli Studi di MilanoMilan20133Italy
| | - Nicolò Panini
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Marina Meroni
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Ezia Bello
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical ScienceDISFARMUniversità degli Studi di MilanoMilan20133Italy
| | - Massimo Zucchetti
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Roberta Frapolli
- Laboratory of Cancer PharmacologyDepartment of OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
| | - Luisa De Cola
- Department of Biochemistry and Molecular PharmacologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2Milan20156Italy
- Department of Pharmaceutical ScienceDISFARMUniversità degli Studi di MilanoMilan20133Italy
| |
Collapse
|
11
|
Charge-conversional click polyprodrug nanomedicine for targeted and synergistic cancer therapy. J Control Release 2023; 356:567-579. [PMID: 36924894 DOI: 10.1016/j.jconrel.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Polyprodrug nanomedicines hold great potential for combating tumors. However, the functionalization of polyprodrug nanomedicines to improve therapeutic efficacy is restricted by conventional polymerization methods. Herein, we fabricated a charge-conversional click polyprodrug nanomedicine system by metal-free azide-alkyne cycloaddition click polymerization (AACCP) for targeted and synergistic cancer therapy. Specifically, Pt(IV) prodrug-backboned diazide monomer, DMC prodrug-pendent diazide monomer, dialkyne-terminated PEG monomer and azide-modified folate were click polymerized to obtain the target polyprodrug (P1). P1 could self-assemble into nano-micelles (1-NM), where PEG was the hydrophilic shell with folate on the surface, Pt(IV) and DMC prodrugs as the hydrophobic core. Taking advantage of PEGylation and folate-mediated tumor cell targeting, 1-NM achieved prolonged blood circulation time and high tumor accumulation efficiency. Tumor acidic microenvironment-responsive cleavage and cascade activation of pendant DMC prodrug induced surface charge conversion of 1-NM from negative to positive, which promoted tumor penetration and cellular internalization of the remaining 1-NM. After internalization into tumor cells, the reduction-responsive activation of Pt(IV) prodrug to Pt(II) further showed synergetic effect with DMC for enhanced apoptosis. This first designed charge-conversional click polyprodrug nanomedicine exhibited targeted and synergistic efficacy to suppress tumor proliferation in living mice bearing human ovarian tumor model.
Collapse
|
12
|
Creutzberg J, Hedegård ED. A method to capture the large relativistic and solvent effects on the UV-vis spectra of photo-activated metal complexes. Phys Chem Chem Phys 2023; 25:6153-6163. [PMID: 36752122 DOI: 10.1039/d2cp04937f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have recently developed a method based on relativistic time-dependent density functional theory (TD-DFT) that allows the calculation of electronic spectra in solution (Creutzberg, Hedegård, J. Chem. Theory Comput.18, 2022, 3671). This method treats the solvent explicitly with a classical, polarizable embedding (PE) description. Furthermore, it employs the complex polarization propagator (CPP) formalism which allows calculations on complexes with a dense population of electronic states (such complexes are known to be problematic for conventional TD-DFT). Here, we employ this method to investigate both the dynamic and electronic effects of the solvent for the excited electronic states of trans-trans-trans-[Pt(N3)2(OH)2(NH3)2] in aqueous solution. This complex decomposes into species harmful to cancer cells under light irradiation. Thus, understanding its photo-physical properties may lead to a more efficient method to battle cancer. We quantify the effect of the underlying structure and dynamics by classical molecular mechanics simulations, refined with a subsequent DFT or semi-empirical optimization on a cluster. Moreover, we quantify the effect of employing different methods to set up the solvated system, e.g., how sensitive the results are to the method used for the refinement, and how large a solvent shell that is required. The electronic solvent effect is always included through a PE potential.
Collapse
Affiliation(s)
- Joel Creutzberg
- Division of Theoretical Chemistry, Lund University, Lund, Sweden.
| | - Erik Donovan Hedegård
- Division of Theoretical Chemistry, Lund University, Lund, Sweden. .,Department of Physics, Chemistry and Pharmacy, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
13
|
Ondar EE, Polynski MV, Ananikov VP. Predicting 195 Pt NMR Chemical Shifts in Water-Soluble Inorganic/Organometallic Complexes with a Fast and Simple Protocol Combining Semiempirical Modeling and Machine Learning. Chemphyschem 2023:e202200940. [PMID: 36806426 DOI: 10.1002/cphc.202200940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Water-soluble Pt complexes are the key components in medicinal chemistry and catalysis. The well-known cisplatin family of anticancer drugs and industrial hydrosylilation catalysts are two leading examples. On the molecular level, the activity mechanisms of such complexes mostly involve changes in the Pt coordination sphere. Using 195 Pt NMR spectroscopy for operando monitoring would be a valuable tool for uncovering the activity mechanisms; however, reliable approaches for the rapid correlation of Pt complex structure with 195 Pt chemical shifts are very challenging and not available for everyday research practice. While NMR shielding is a response property, molecular 3D structure determines NMR spectra, as widely known, which allows us to build up 3D structure to 195 Pt chemical shift correlations. Accordingly, we present a new workflow for the determination of lowest-energy configurational/conformational isomers based on the GFN2-xTB semiempirical method and prediction of corresponding chemical shifts with a Machine Learning (ML) model tuned for Pt complexes. The workflow was designed for the prediction of 195 Pt chemical shifts of water-soluble Pt(II) and Pt(IV) anionic, neutral, and cationic complexes with halide, NO2 - , (di)amino, and (di)carboxylate ligands with chemical shift values ranging from -6293 to 7090 ppm. The model offered an accuracy (normalized root-mean-square deviation/RMSD) of 1.08 %/145.02 ppm on the held-out test set.
Collapse
Affiliation(s)
- Evgeniia E Ondar
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Mikhail V Polynski
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia.,Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences, 26 Azatutyan Ave, 0014, Yerevan, Armenia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
14
|
Arabi A, Cogley MO, Fabrizio D, Stitz S, Howard WA, Wheeler KA. Anticancer Activity of Nonpolar Pt(CH 3) 2I 2{ bipy} is Found to be Superior among Four Similar Organoplatinum(IV) Complexes. J Mol Struct 2023; 1274:134551. [PMID: 36644319 PMCID: PMC9836012 DOI: 10.1016/j.molstruc.2022.134551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The anticancer properties of well-defined molecules serve to bolster the field of metals in medicine. Such compounds, particularly those of platinum and their closely related structural analogs, continue to be potentially highly interesting to researchers and clinicians alike. The four octahedral organoplatinum(IV) compounds [Pt(CH3)2X2{bipy-R 2 }] (X = Br, I; bipy-R 2 = 2,2'-bipyridine, 2,2'-bipyridine-4,4'-dicarboxylic acid) have been isolated and structurally characterized by single-crystal X-ray diffraction. Nuclear magnetic resonance and infrared spectroscopic data are also tabulated as useful reference values. The anticancer potential of each compound was assessed via in vitro MTT assays, using human breast cancer cells (cell line ZR-75-1). EC50 values were determined as 11.5 μM for Pt(CH3)2Br2{bipy}; 3020 μM, for Pt(CH3)2Br2{bipy-(CO 2 H) 2 }; 6.1 μM, for Pt(CH3)2I2{bipy}; and 86.0 μM, for Pt(CH3)2I2{bipy-(CO 2 H) 2 }; for comparison, the EC50 value for cisplatin against the ZR-75-1 cells was 16.4 μM. The most cytotoxic of the four compounds Pt(CH3)2I2{bipy} undergoes reaction with glutathione in a THF/water mixture at 68°C very slowly.
Collapse
Affiliation(s)
- Ameneh Arabi
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, 900 Yukon Drive, Fairbanks, Alaska 99775, United States
| | - Marcus O. Cogley
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, 900 Yukon Drive, Fairbanks, Alaska 99775, United States
| | - Daniel Fabrizio
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, 900 Yukon Drive, Fairbanks, Alaska 99775, United States
| | - Shadrach Stitz
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, 900 Yukon Drive, Fairbanks, Alaska 99775, United States
| | - William A. Howard
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, 900 Yukon Drive, Fairbanks, Alaska 99775, United States
| | - Kraig A. Wheeler
- Department of Chemistry, Whitworth University, Spokane, Washington 99251, United States
| |
Collapse
|
15
|
Zhang Q, Wang X, Kuang G, Zhao Y. Pt(IV) prodrug initiated microparticles from microfluidics for tumor chemo-, photothermal and photodynamic combination therapy. Bioact Mater 2022; 24:185-196. [PMID: 36606251 PMCID: PMC9804016 DOI: 10.1016/j.bioactmat.2022.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multimodal treatment modalities hold great potential for cancer therapy, thus current efforts are focusing on the development of more effective and practical synergistic therapeutic platforms. Herein, we present a novel trans, trans,trans-[Pt(N3)2(OH)2(py)2] (Pt(IV)) prodrug-initiated hydrogel microparticles (MICG-Pt) with indocyanine green (ICG) encapsulation by microfluidics for efficiently synergistic chemo-, photothermal (PTT) and photodynamic therapy (PDT). The employed Pt(IV) could not only serves as an initiator to generate azidyl radical (N3 •) for photo-polymerization of methacrylate gelatin (GelMA) matrix, but also be reduced to high cytotoxic platinum(II) (Pt(II)) species for tumor chemotherapy. The laden ICG with highly photothermal heating ability and intrinsic reactive oxygen species (ROS) productivity endows the MICG-Pt with effective PTT/PDT performances upon near-infrared (NIR) light irradiation. In addition, benefiting from the production of oxygen during the photo-activation process of Pt(IV), the PDT efficacy of ICG-laden MICG-Pt could be further enhanced. Based on these advantages, we have demonstrated that the MICG-Pt could significantly eliminate cancer cells in vitro, and remarkably suppressed the tumor growth in vivo via synergistic chemotherapy, PTT, and PDT. These results indicate that such Pt(IV)-initiated hydrogel microparticles are ideal candidates of multimodal treatment platforms, holding great prospects for cancer therapy.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xiaocheng Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Gaizhen Kuang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China,Corresponding author. Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
16
|
Chen QB, Zhou LY, Shi LX, Cheng Y, Wu K, Yuan Q, Dong ZJ, Gu HZ, Zhang XZ, Zou T. Platinum(IV) Complex-Loaded nanoparticles with photosensitive activity for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Spector D, Pavlov K, Beloglazkina E, Krasnovskaya O. Recent Advances in Light-Controlled Activation of Pt(IV) Prodrugs. Int J Mol Sci 2022; 23:14511. [PMID: 36498837 PMCID: PMC9739791 DOI: 10.3390/ijms232314511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Pt(IV) prodrugs remain one of the most promising alternatives to conventional Pt(II) therapy due to their versatility in axial ligand choice and delayed mode of action. Selective activation from an external source is especially attractive due to the opportunity to control the activity of an antitumor drug in space and time and avoid damage to normal tissues. In this review, we discuss recent advances in photoabsorber-mediated photocontrollable activation of Pt(IV) prodrugs. Two main approaches developed are the focus of the review. The first one is the photocatalytic strategy based on the flavin derivatives that are not covalently bound to the Pt(IV) substrate. The second one is the conjugation of photoactive molecules with the Pt(II) drug via axial position, yielding dual-action Pt(IV) molecules capable of the controllable release of Pt(II) cytotoxic agents. Thus, Pt(IV) prodrugs with a light-controlled mode of activation are non-toxic in the absence of light, but show high antiproliferative activity when irradiated. The susceptibility of Pt(IV) prodrugs to photoreduction, photoactivation mechanisms, and biological activity is considered in this review.
Collapse
Affiliation(s)
- Daniil Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| | - Kirill Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1,3, 119991 Moscow, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 101000 Moscow, Russia
| |
Collapse
|
18
|
Cui GY, Zou JW, Chen J, Hu GX, Jiang YJ, Huang M. QSPR study on Hydrophobicity of Pt(II) complexes with surface electrostatic potential-based descriptors. J Mol Graph Model 2022; 116:108256. [PMID: 35764021 DOI: 10.1016/j.jmgm.2022.108256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/14/2022]
Abstract
Pt(II) complexes play an important role in bioinorganic chemistry due to their antitumor activities. In the present study, we focused on building predictive models for the hydrophobicity of Pt(II) complexes. A five-parameter model, integrating frontier orbital energies (EHOMO, ELUMO) and descriptors derived from electrostatic potentials on molecular surface, was firstly constructed by using multiple linear regression (MLR) method. Mechanistic interpretations of the introduced descriptors were elucidated in terms of intermolecular interactions in the n-octanol/water partition system. Then, four up-to-date modeling methods, including support vector machine (SVM), least-squares support vector machine (LSSVM), random forest (RF) and Gaussian process (GP), were utilized to build the nonlinear models. Systematical validations including leave-one-out cross-validation, the validation for test set, as well as a very rigorous Monte Carlo cross-validation (MCCV) were performed to verify the reliability of the constructed models. The peak, median and integralRext2 values of the best GP model are 0.88, 0.86 and 0.84, respectively. The root mean squared errors for the test set (RMSEP) of the MLR, SVM, LSSVM and GP models fall in the range of 0.62-0.71. Although they are not superior to prior models built with the use of a number of descriptors, the results are satisfactory. Applicability domain of the model was evaluated.
Collapse
Affiliation(s)
- Guang-Yang Cui
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Wei Zou
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China.
| | - Jia Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
| | - Gui-Xiang Hu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
| | - Yong-Jun Jiang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| |
Collapse
|
19
|
Ding C, Chen C, Zeng X, Chen H, Zhao Y. Emerging Strategies in Stimuli-Responsive Prodrug Nanosystems for Cancer Therapy. ACS NANO 2022; 16:13513-13553. [PMID: 36048467 DOI: 10.1021/acsnano.2c05379] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Prodrugs are chemically modified drug molecules that are inactive before administration. After administration, they are converted in situ to parent drugs and induce the mechanism of action. The development of prodrugs has upgraded conventional drug treatments in terms of bioavailability, targeting, and reduced side effects. Especially in cancer therapy, the application of prodrugs has achieved substantial therapeutic effects. From serendipitous discovery in the early stage to functional design with pertinence nowadays, the importance of prodrugs in drug design is self-evident. At present, studying stimuli-responsive activation mechanisms, regulating the stimuli intensity in vivo, and designing nanoscale prodrug formulations are the major strategies to promote the development of prodrugs. In this review, we provide an outlook of recent cutting-edge studies on stimuli-responsive prodrug nanosystems from these three aspects. We also discuss prospects and challenges in the future development of such prodrugs.
Collapse
Affiliation(s)
- Chendi Ding
- Clinical Research Center, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, China
- School of Medicine, Jinan University, 855 Xingye East Road, Guangzhou 510632, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chunbo Chen
- Clinical Research Center, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
20
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
21
|
Gao F, Zhang J, Wu X, Zhao Y, Wang F, Wu K. Dual-platination and induced oxidation of uridine by a photoactivatable diazido Pt(IV) anticancer prodrug. Dalton Trans 2022; 51:11834-11839. [PMID: 35866478 DOI: 10.1039/d2dt01719a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoactivatable Pt(IV) anticancer prodrug trans,trans,trans-[Pt(N3)2(OH)2(pyridine)2] (1) has been shown to bind to and induce oxidation of all four DNA nucleobases. Herein, to further render the binding spectrum of complex 1 to nucleic acids, the interaction between complex 1 and uridine, an exclusive RNA component, was investigated by electrospray ionization mass spectrometry (ESI-MS) and NMR spectroscopy. The results showed that complex 1 can bind to uridine through the N3 (major) and O4 (minor) sites upon light irradiation to form the major mono-platinated uridine adduct and the minor di-platinated uridine adduct. Moreover, mono-platinated uridine associated with the oxidation of uridine to 5-hydroxyuridine and 6-hydroxyuridine was also observed. This is the first report that the photoactivatable Pt(IV) prodrug binds to and induces the oxidation of uridine, and also the last piece of the puzzle for the interactions of complex 1 with nucleobases. Combined with our previous results about the interactions between complex 1 and DNA bases, these data showed a wide interaction spectrum of this kind of photoactivatable diazido Pt(IV) prodrugs with nucleobases through such dual-action modes, strongly suggesting that RNA may be a potential target of Pt(IV) prodrugs.
Collapse
Affiliation(s)
- Fang Gao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Jishuai Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China. .,Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
22
|
Lanthanide (III) complexes (Ln = Er and Yb) based on polypyridyl ligand: Synthesis, crystal structure, DNA-binding activity and interaction with human serum protein in vitro. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Huang J, Ding W, Zhu X, Li B, Zeng F, Wu K, Wu X, Wang F. Ligand Evolution in the Photoactivatable Platinum(IV) Anticancer Prodrugs. Front Chem 2022; 10:876410. [PMID: 35755267 PMCID: PMC9218644 DOI: 10.3389/fchem.2022.876410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Photoactivatable Pt(IV) anticancer prodrugs with the structure of [PtIV(N1)(N2)(L1)(L2)(A1)(A2)], where N1 and N2 are non-leaving nitrogen donor ligands, L1 and L2 are leaving ligands, and A1 and A2 are axial ligands, have attracted increasing attention due to their promising photo-cytotoxicity even to cisplatin-resistant cancer cells. These photochemotherapeutic prodrugs have high dark-stability under physiological conditions, while they can be activated by visible light restrained at the disease areas, as a consequence showing higher spatial and temporal controllability and much more safety than conventional chemotherapy. The coordinated ligands to the Pt center have been proved to be pivotal in determining the function and activity of the photoactivatable Pt(IV) prodrugs. In this review, we will focus on the development of the coordinated ligands in such Pt(IV) prodrugs and discuss the effects of diverse ligands on their photochemistry and photoactivity as well as the future evolution directions of the ligands. We hope this review can help to facilitate the design and development of novel photoactivatable Pt(IV) anticancer prodrugs.
Collapse
Affiliation(s)
- Jingjing Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Weize Ding
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xingfan Zhu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Bingbing Li
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fuyi Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
A NMR-Based Metabolomic Approach to Investigate the Antitumor Effects of the Novel [Pt( η 1-C 2H 4OMe)(DMSO)(phen)] + (phen = 1,10-Phenanthroline) Compound on Neuroblastoma Cancer Cells. Bioinorg Chem Appl 2022; 2022:8932137. [PMID: 35721691 PMCID: PMC9205715 DOI: 10.1155/2022/8932137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
NMR-based metabolomics is a very effective tool to assess the tumor response to drugs by providing insights for their mode of action. Recently, a novel Pt(II) complex, [Pt(ƞ1-C2H4OMe)(DMSO)(phen)]+ (phen = 1,10-phenanthroline), Pt-EtOMeSOphen, was synthesized and studied for its antitumor activity against eight human cancer cell lines. Pt-EtOMeSOphen showed higher cytotoxic effects than cisplatin in most of the cancer cell lines and in particular against the neuroblastoma cell line (SH-SY5Y). In this study, the mechanism of action of Pt-EtOMeSOphen on SH-SY5Y cells was investigated using 1H NMR-based metabolomics and compared with cisplatin. The observed time response of SH-SY5Y cells under treatment revealed a faster action of Pt-EtOMeSOphen compared with cisplatin, with a response already observed after six hours of exposure, suggesting a cytosolic target. NMR-based metabolomics demonstrated a peculiar alteration of the glutathione metabolism pathway and the diacylglycerol expression.
Collapse
|
25
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
26
|
de Brito RV, Mancini MW, Palumbo MDN, de Moraes LHO, Rodrigues GJ, Cervantes O, Sercarz JA, Paiva MB. The Rationale for "Laser-Induced Thermal Therapy (LITT) and Intratumoral Cisplatin" Approach for Cancer Treatment. Int J Mol Sci 2022; 23:5934. [PMID: 35682611 PMCID: PMC9180481 DOI: 10.3390/ijms23115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is one of the most widely used anticancer drugs in the treatment of various types of solid human cancers, as well as germ cell tumors, sarcomas, and lymphomas. Strong evidence from research has demonstrated higher efficacy of a combination of cisplatin and derivatives, together with hyperthermia and light, in overcoming drug resistance and improving tumoricidal efficacy. It is well known that the antioncogenic potential of CDDP is markedly enhanced by hyperthermia compared to drug treatment alone. However, more recently, accelerators of high energy particles, such as synchrotrons, have been used to produce powerful and monochromatizable radiation to induce an Auger electron cascade in cis-platinum molecules. This is the concept that makes photoactivation of cis-platinum theoretically possible. Both heat and light increase cisplatin anticancer activity via multiple mechanisms, generating DNA lesions by interacting with purine bases in DNA followed by activation of several signal transduction pathways which finally lead to apoptosis. For the past twenty-seven years, our group has developed infrared photo-thermal activation of cisplatin for cancer treatment from bench to bedside. The future development of photoactivatable prodrugs of platinum-based agents injected intratumorally will increase selectivity, lower toxicity and increase efficacy of this important class of antitumor drugs, particularly when treating tumors accessible to laser-based fiber-optic devices, as in head and neck cancer. In this article, the mechanistic rationale of combined intratumor injections of cisplatin and laser-induced thermal therapy (CDDP-LITT) and the clinical application of such minimally invasive treatment for cancer are reviewed.
Collapse
Affiliation(s)
- Renan Vieira de Brito
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Marília Wellichan Mancini
- Biophotonics Department, Institute of Research and Education in the Health Area (NUPEN), Sao Carlos 13562-030, SP, Brazil;
| | - Marcel das Neves Palumbo
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Luis Henrique Oliveira de Moraes
- Department of Physiological Sciences, Federal University of Sao Carlos (UFSCar), Sao Carlos 13565-905, SP, Brazil; (L.H.O.d.M.); (G.J.R.)
| | - Gerson Jhonatan Rodrigues
- Department of Physiological Sciences, Federal University of Sao Carlos (UFSCar), Sao Carlos 13565-905, SP, Brazil; (L.H.O.d.M.); (G.J.R.)
| | - Onivaldo Cervantes
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Joel Avram Sercarz
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Marcos Bandiera Paiva
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
27
|
Yan X, Gao H. A Theoretical Study on the Medicinal Properties and Eletronic Structures of Platinum(IV) Anticancer Agents With Cl Substituents. Front Oncol 2022; 12:860159. [PMID: 35664783 PMCID: PMC9161155 DOI: 10.3389/fonc.2022.860159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper, we selected Pt(en)Cl4, Pt(dach)Cl4, and Pt(bipy)Cl4 with gradually increasing ligands to explore the ligand effect on the properties of platinum(IV) anticancer drugs. The electronic structures and multiple drug properties of these three complexes were studied at the LSDA/SDD level using the density functional theory (DFT) method. By comparing the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), electron affinity, atomic charge population, and natural bond orbital (NBO), we found that the order of reducibility is Pt(bipy)Cl4 > Pt(en)Cl4 > Pt(dach)Cl4. Our research can provide the theoretical basis for the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, China
| |
Collapse
|
28
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202201103. [PMID: 35165986 DOI: 10.1002/anie.202201103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/07/2022]
Abstract
Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced β-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.
Collapse
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
29
|
Qi D, Leixing, Shen L, Sun W, Cai C, Xue C, Song X, Yu H, Jiang H, Li C, Jin Q, Zhang Z. A GSH-depleted platinum(IV) prodrug triggers ferroptotic cell death in breast cancer. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Upadhyay A, Kundu P, Ramu V, Kondaiah P, Chakravarty AR. BODIPY-Tagged Platinum(II) Curcumin Complexes for Endoplasmic Reticulum-Targeted Red Light PDT. Inorg Chem 2022; 61:1335-1348. [PMID: 34990135 DOI: 10.1021/acs.inorgchem.1c02745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Pt(RB)(Cur)]NO3 (RBC), [Pt(IRB)(Cur)]NO3 (IRBC), and [Pt(L)(Cur)]NO3 (PBC), where HCur is curcumin, L is 1-benzyl-2-(2-pyridyl)benzimidazole, and RB and IRB are red-light-active non-iodo and diiodo-BODIPY tagged to L, respectively, were synthesized and characterized, and their anticancer activities were studied (BODIPY, boron-dipyrromethene). RBC and IRBC displayed BODIPY-centered absorption bands within 615-635 nm along with the respective curcumin bands at 445 and 492 nm in 10% dimethyl sulfoxide (DMSO)-Dulbecco's phosphate-buffered saline (DPBS). Emission bands were observed at 723 and 845 nm for RBC and IRBC, respectively, in 10% DMSO-DPBS. RBC (ΦΔ, 0.27) and IRBC (ΦΔ, 0.40) generated singlet oxygen in red light (λ = 642 nm) as evidenced from 1,3-diphenylisobenzofuran (DPBF) titrations. The formation of 1O2 from BODIPY and HO• from the curcumin was evidenced from the mechanistic pUC19 DNA photocleavage studies. The BODIPY complexes showed photocytotoxicity in A549, HeLa, and MDA-MB-231 cells while being less toxic in the dark [IC50: 1.3-6.9 μM, red light; 7.2-12.8 μM, 400-700 nm visible light]. The emissive RBC displayed localization in the endoplasmic reticulum (ER). Apoptotic cell death was evidenced from the Annexin-V/fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay and green fluorescence in red light in the Fluo-4 AM assay due to ER stress, and mitochondrial dysfunction was evidenced from the 5,5,6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) assay in A549 cells.
Collapse
|
31
|
Understanding the role of ancillary ligands in the interaction of Ru(II) complexes with covalent arylamine-DNA adducts. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Mohammadi F, Mansouri-Torshizi H, Saeidifar M, Dehghanian E, Skorepova E, Dusek M, Abdi K. Synthesis, characterization, cytotoxicity and DNA/BSA binding of two amino acid palladium(II) complexes derived from alanine and valine. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 41:97-122. [PMID: 34879790 DOI: 10.1080/15257770.2021.2011914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022]
Abstract
Two novel palladium(II)-amino acid complexes, [Pd(Ala)2]·H2O (PA) and [Pd(Val)2].H2O (PV) (Ala = alanine; Val = valine) were synthesized and characterized through FTIR, UV/Vis, 1H-NMR spectroscopies, CHN analysis, X-ray crystallography and molar conductivity measurement. Furthermore, cytotoxicity of Pd(II) complexes against human leukemia cancer cell line, MOLT4 showed promising cancer cell death (CC50 = 0.71 ± 0.046 µM for PA; CC50 = 0.85 ± 0.063 µM for PV) that were less than cisplatin (1.59 ± 0.25 µM). Moreover, the interaction of both the complexes with DNA and BSA was studied using UV-Vis absorption and emission spectroscopic techniques that demonstrated the bindings occurred via van der Waals forces and hydrogen bond. Furthermore, the fluorescence titration showed that static quenching mechanism plays predominate role in binding process. All results showed that both complexes have more binding tendency to DNA in compared to BSA that can be a significant achievement for further medical purposes as a potential antitumor candidate. Finally, molecular docking simulation was performed for PA and PV complexes with DNA and BSA and demonstrated both complexes bind to the groove of DNA mainly by hydrogen bond and interact with site I of BSA via hydrogen bond as well.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Hassan Mansouri-Torshizi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Maryam Saeidifar
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Effat Dehghanian
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Michal Dusek
- Institute of Physics ASCR, Prague, Czech Republic
| | - Khatereh Abdi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
33
|
Peng K, Liang BB, Liu W, Mao ZW. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Lara R, Millán G, Moreno MT, Lalinde E, Alfaro‐Arnedo E, López IP, Larráyoz IM, Pichel JG. Investigation on Optical and Biological Properties of 2-(4-Dimethylaminophenyl)benzothiazole Based Cycloplatinated Complexes. Chemistry 2021; 27:15757-15772. [PMID: 34379830 PMCID: PMC9293083 DOI: 10.1002/chem.202102737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/08/2022]
Abstract
The optical and biological properties of 2-(4-dimethylaminophenyl)benzothiazole cycloplatinated complexes featuring bioactive ligands ([{Pt(Me2 N-pbt)(C6 F5 )}L] [L=Me2 N-pbtH 1, p-dpbH (4-(diphenylphosphino)benzoic acid) 2, o-dpbH (2-(diphenylphosphino)benzoic acid) 3), [Pt(Me2 N-pbt)(o-dpb)] 4, [{Pt(Me2 N-pbt)(C6 F5 )}2 (μ-PRn P)] [PR4 P=O(CH2 CH2 OC(O)C6 H4 PPh2 )2 5, PR12 P=O{(CH2 CH2 O)3 C(O)C6 H4 PPh2 }2 6] are presented. Complexes 1-6 display 1 ILCT and metal-perturbed 3 ILCT dual emissions. The ratio between both bands is excitation dependent, accomplishing warm-white emissions for 2, 5 and 6. The phosphorescent emission is lost in aerated solutions owing to photoinduced electron transfer to 3 O2 and the formation of 1 O2 , as confirmed in complexes 2 and 4. They also exhibit photoinduced phosphorescence enhancement in non-degassed DMSO due to local oxidation of DMSO by sensitized 1 O2 , which causes a local degassing. Me2 N-pbtH and the complexes specifically accumulate in the Golgi apparatus, although only 2, 3 and 6 were active against A549 and HeLa cancer cell lines, 6 being highly selective in respect to nontumoral cells. The potential photodynamic property of these complexes was demonstrated with complex 4.
Collapse
Affiliation(s)
- Rebeca Lara
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Gonzalo Millán
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - M. Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ)Universidad de La Rioja26006LogroñoSpain
| | - Elvira Alfaro‐Arnedo
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - Icíar P. López
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
| | - José G. Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR)Fundación Rioja Salud26006LogroñoSpain
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES)ISCIII Av. Monforte de Lemos, 3-5. Pab. 11.28029 MadridSpain
| |
Collapse
|
35
|
Mo X, Chen K, Chen Z, Chu B, Liu D, Liang Y, Xiong J, Yang Y, Cai J, Liang F. Antitumor Activities for Two Pt(II) Complexes of Tropolone and 8-Hydroxyquinoline Derivative. Inorg Chem 2021; 60:16128-16139. [PMID: 34647723 DOI: 10.1021/acs.inorgchem.1c01763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reactions of cis-Pt(DMSO)2Cl2 and tropolone (HL) with 8-hydroxyquinoline (HQ) or 2-methyl-8-hydroxyquinoline (HMQ) gave [Pt(Q)(L)] (1) and [Pt(MQ)(L)] (2), which present mononuclear structures with their Pt(II) ions four-coordinated in square planar geometries. Their in vitro biological properties were evaluated by MTT assay, which showed a remarkable cytotoxic activity on the cancer cell lines. 1 shows higher cytotoxic activities on tumor cells such as T24, HeLa, A549, and NCI-H460 than complex 2 and cisplatin, with IC50 values <16 μM. Among them, an IC50 value of 3.6 ± 0.63 μM was found for complex 1 against T24 cells. It presented a tuning cytotoxic activity by substitution groups on 8-hydroxyquinoline skeleton. In our case, the substitution groups of -H are much superior to -CH3 against tumor cells. It revealed that both complexes can induce cell apoptosis by decreasing the potential of a mitochondrial membrane, enhancing reactive oxygen species and increasing Ca2+ levels of T24 cells. The T24 cell cycle can be arrested at G2 and G1 phases by complexes 1 and 2, respectively, with an upregulation for P21 and P27 expression levels and a down-regulation for cyclin A, CDK1, Cdc25A, and cyclin B expression levels. Furthermore, complex 1 exhibits satisfactory in vivo antitumor activity as revealed by the tumor inhibitory rate and the tumor weight change as well as by the cute toxicity assay and renal pathological examinations, which is close to cisplatin and much better than complex 2. All of these suggest that 1 might be a potential candidate for developing into a safe and effective anticancer agent.
Collapse
Affiliation(s)
- Xiyu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Kaiyong Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Bo Chu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Jianwen Xiong
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Yubing Yang
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - JinYuan Cai
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P.R. China
| |
Collapse
|
36
|
Lu H, He S, Zhang Q, Li X, Xie Z, Wang Z, Qi Y, Huang Y. Dual-sensitive dual-prodrug nanoparticles with light-controlled endo/lysosomal escape for synergistic photoactivated chemotherapy. Biomater Sci 2021; 9:7115-7123. [PMID: 34569561 DOI: 10.1039/d1bm01154e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical application of conventional chemotherapeutic agents, represented by cisplatin, is limited by severe side effects. So, it is essential to explore more safer and controlled drug delivery systems for synergistic chemotherapy. In this work, we designed dual-sensitive dual-prodrug nanoparticles (DDNPs) for photoactivated platinum-based synergistic chemotherapy. With photosensitivity, DDNPs could be photoactivated from inert Pt(IV) to toxic Pt(II) under safe UVA light in a spatiotemporally controlled manner. Concurrently, mild could be generated from DDNPs to assist the endo/lysosomal escape of DDNPs for better photoactivated chemotherapy (PACT). Furthermore, with acid-sensitivity, demethylcantharidin (DMC), a protein phosphatase 2A (PP2A) inhibitor, was released to block the DNA repair pathway and thereby could sensitize platinum-based chemotherapy in intracellular acidic microenvironments. Along with a precise ratio (Pt : DMC = 1 : 2), DDNPs had a powerful synergistic anti-cancer effect in vitro and in vivo. In the future, DDNPs have great potential as a safe and multifunctional drug delivery system for precise nanomedicine in clinical treatments.
Collapse
Affiliation(s)
- Hongtong Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shasha He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaoyuan Li
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zigui Wang
- Zhengzhou Immunobiotech Co., Ltd, Zhengzhou 450016, P.R. China.
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| |
Collapse
|
37
|
Research progress of azido-containing Pt(IV) antitumor compounds. Eur J Med Chem 2021; 227:113927. [PMID: 34695775 DOI: 10.1016/j.ejmech.2021.113927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Cancer is a long-known incurable disease, and the medical use of cisplatin has been a significant discovery. However, the side-effects of cisplatin necessitate the development of new and improved drug. Therefore, in this study, we focused on the photoactivatable Pt(IV) compounds Pt[(X1)(X2)(Y1)(Y2)(N3)2], which have a completely novel mechanism of action. Pt(IV) can efficiently overcome the side-effects of cisplatin and other drugs. Here, we have demonstrated, summarized and discussed the effects and mechanism of these compounds. Compared to the relevant articles in the literature, we have provided a more detailed introduction and a made comprehensive classification of these compounds. We believe that our results can effectively provide a reference for the development of these drugs.
Collapse
|
38
|
Yao H, Gunawan YF, Liu G, Tse MK, Zhu G. Optimization of axial ligands to promote the photoactivation of BODIPY-conjugated platinum(IV) anticancer prodrugs. Dalton Trans 2021; 50:13737-13747. [PMID: 34519297 DOI: 10.1039/d1dt02362d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboplatin-based platinum(IV) prodrugs containing axial carboxylates are relatively resistant to reduction to release active platinum(II) species and kill cancer cells. To facilitate the activation process, a boron dipyrromethene (BODIPY) ligand has been utilized as a photoabsorber at the axial position to photoactivate carboplatin-based platinum(IV) complexes. However, the influence of the axial ligands on the photoactivation rate of the platinum center and the subsequent biological activity are still unknown. In this study, we report the design and synthesis of a series of carboplatin-based photoactivable platinum(IV) prodrugs containing BODIPY axial ligands with different lengths. The resulting BODIPY-conjugated platinum(IV) prodrugs OH2C-OH8C bearing hydroxido ligands at the opposite axial position are slightly less stable in the dark than the corresponding prodrugs AC2C-AC8C containing acetato ligands. The prodrugs OH3C-OH8C can be photoactivated under irradiation in eight minutes, and the photoactivation rate is further improved in prodrugs AC3C-AC8C where only twenty seconds are needed. Moreover, the prodrug AC3C, in which the linker between the BODIPY photoabsorber and the platinum center has an appropriate length, is photoactivated the quickest among the acetylated prodrugs AC2C-AC8C. The high cellular accumulation may contribute more to the moderate photocytotoxicity of these prodrugs. Our research highlights the way to promote the photoactivation of BODIPY-conjugated platinum(IV) anticancer prodrugs by optimization of axial ligands and may contribute to the future rational design of photoactivable platinum-based complexes.
Collapse
Affiliation(s)
- Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Yuliana F Gunawan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| |
Collapse
|
39
|
Lu H, Zhang Q, He S, Liu S, Xie Z, Li X, Huang Y. Reduction-Sensitive Fluorinated-Pt(IV) Universal Transfection Nanoplatform Facilitating CT45-Targeted CRISPR/dCas9 Activation for Synergistic and Individualized Treatment of Ovarian Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102494. [PMID: 34510754 DOI: 10.1002/smll.202102494] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Compared to traditional clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, CRISPR/dead Cas9 (dCas9) system can precisely regulate endogenous gene expression without damaging the host gene, representing a greater potential for cancer therapy. Cancer/testis antigen 45 (CT45) is proved to enhance platinum-based chemosensitivity for individualized ovarian cancer therapy. However, the development of a single nanocarrier codelivering CRISPR/dCas9 system and chemotherapeutics for synergistic cancer therapy still faces challenges. Herein, a reduction-sensitive fluorinated-Pt(IV) universal transfection nanoplatform (PtUTP-F) is developed for the CT45-targeted CRISPR/dCas9 activation to achieve synergistic and individualized treatment of ovarian cancer. Overcoming multiple physiological barriers, PtUTP-F condensed gene can efficiently transfect into different cells including 293T cells, A2780, SKOV3, A549, and A2780/cisplatin (DDP) cancer cells, which is superior to Lipofectamine 6000. With the responsive release of gene and Pt(II) in the intracellular reducing microenvironment, PtUTP-F/dCas9-CT45 can generate CRISPR/dCas9 activation of CT45 expression for protein phosphatase 4C (PP4C) activity inhibition to hinder the DNA repair pathway and thus enhances the sensitivity to Pt(II) drugs for individualized A2780 tumor therapy. The PtUTP-F not only represents a powerful nanoplatform for CRISPR/dCas9 system delivery but also initiates a novel strategy for synergistic and individualized treatment of CRISPR/dCas9-based gene therapy with chemotherapy.
Collapse
Affiliation(s)
- Hongtong Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shasha He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Sha Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaoyuan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
40
|
Yousuf I, Bashir M, Arjmand F, Tabassum S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214104] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. Systematic evaluation of the antitumor activity of three ruthenium polypyridyl complexes. J Inorg Biochem 2021; 225:111616. [PMID: 34555601 DOI: 10.1016/j.jinorgbio.2021.111616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
Ruthenium-containing complexes have emerged as good alternative to the currently used platinum-containing drugs for malignant tumor therapy. In this work, cytotoxic effects of recently synthesized ruthenium polypyridyl complexes [Ru(bpy)2(CFPIP)](ClO4)2 (bpy = 2,2'-bipyridine, CFPIP = (E)-2-(4-fluorostyryl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru(II)-1), [Ru(phen)2(CFPIP)](ClO4)2 (phen = 1,10-phenanthroline, Ru(II)-2) and [Ru(dmb)2(CFPIP)](ClO4)2 (dmb = 4,4'-dimethyl-2,2'-bipyridine, Ru(II)-3) toward different tumor cells were investigated in vitro and compared with cisplatin, the most widely used chemotherapeutic drug against hepatocellular carcinoma (HepG-2). The results demonstrate that target complexes show excellent cytotoxicity against HepG-2 cells with low IC50 value of 21.4 ± 1.5, 18.0 ± 2.1 and 22.3 ± 1.7 μM, respectively. It was important noting that target Ru(II) complexes exhibited better antitumor activity than cisplatin (IC50 = 28.5 ± 2.4 μM) against HepG-2 cells, and has no obvious toxicity to normal cell LO2. DNA binding results suggest that Ru(II)-1, Ru(II)-2 and Ru(II)-3 interact with CT DNA (calf thymus DNA) through intercalative mode. Complexes exerted its antitumor activity through increasing anti-migration and inducing cell cycle arrest at the S phase. In addition, the apoptosis was tested by AO (acridine orange)/EB (ethidium bromide) staining and flow cytometry. Mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and colocalization tests were also evaluated by ImageXpress Micro XLS system. Overall, the results show that the ruthenium polypyridyl complexes induce apoptosis in HepG-2 cells through ROS-mediated mitochondria dysfunction pathway.
Collapse
Affiliation(s)
- Guang-Bin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yang-Jie Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qiao-Yan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
42
|
Adsorption performance of boron nitride nanomaterials as effective drug delivery carriers for anticancer drugs based on density functional theory. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Xu Z, Wang Z, Deng Z, Zhu G. Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Imran M, Rehman ZU, Hogarth G, Tocher DA, Chaudhry GES, Butler IS, Bélanger-Gariepy F, Kondratyuk T. Two new monofunctional platinum(II) dithiocarbamate complexes: phenanthriplatin-type axial protection, equatorial-axial conformational isomerism, and anticancer and DNA binding studies. Dalton Trans 2021; 49:15385-15396. [PMID: 33140800 DOI: 10.1039/d0dt03018j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The syntheses of two platinum(ii) dithiocarbamate complexes (1 and 2) that show quinoplatin- and phenanthriplatin-type axial protection of the Pt-plane are described. The Pt-plane of complex 2 is axially more protected than that of complex 1. Furthermore, both complexes adopt two different stereochemical conformations in the solid state (based on single-crystal X-ray structures) owing to the structurally flexible piperazine backbone; i.e., C-e,e-Anti (1) and C-e,a-Syn (2), where "C" stands for the chair configuration, "e" and "a" stand for the equatorial and axial positions and "Anti" (opposite side) and "Syn" (same side) represent the relative orientations in space of the terminal substituents on the piperazine ring. In complex 2, the C-e,a-Syn conformation may provide additional steric hindrance to the Pt-plane. Despite the lower lipophilicity of 2 as compared to that of 1, the in vitro anticancer action against selected cancer cell lines is better for the former revealing the superior role of the axial protection over lipophilicity in modulating anticancer activity. The activity against the cancer promoting protein NF-κB signifies that the mode of cancer cell death may be the result of hindering the activity of NF-κB in the initiation of apoptosis. The apoptotic mode of cell death has been established earlier in a study using Annexin V-FITC. Finally, DNA binding studies revealed that the complex-DNA adduct formation is spontaneous and the mode of interaction is non-intercalative (electrostatic/covalent).
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Zia Ur Rehman
- Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Graeme Hogarth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Derek A Tocher
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1 0AJ, UK
| | - Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, University Malaysia Terengganu, Kuala Terengganu, 21030, Malaysia
| | - Ian S Butler
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | | | - Tamara Kondratyuk
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, USA
| |
Collapse
|
45
|
Bera A, Gautam S, Raza MK, Kondaiah P, Chakravarty AR. Oxoplatin-B, a cisplatin-based platinum(IV) complex with photoactive BODIPY for mitochondria specific "chemo-PDT" activity. J Inorg Biochem 2021; 223:111526. [PMID: 34246120 DOI: 10.1016/j.jinorgbio.2021.111526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
Oxoplatin-B, a platinum(IV) complex [Pt(NH3)2Cl2(L1)(OH)] (1) of 4-methylbenzoic acid (HL1) functionalized with 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) was prepared, characterized and its antitumor activity studied. [Pt(NH3)2Cl2(L2)(OH)] (2) of 4-methylbenzoic acid (HL2) was studied as a control. Complex 1 showed an absorption band at 500 nm (ɛ = 4.34 × 104 M-1 cm-1) and an emission band at 515 nm (λex = 488 nm, ΦF = 0.64) in 1% dimethyl sulfoxide/Dulbecco's Modified Eagle's Medium (pH = 7.2). Visible light-induced (400-700 nm) generation of singlet oxygen was evidenced from 1,3-diphenylisobenzofuran titration study. Complex 1 showed photo-induced cytotoxicity in visible light (400-700 nm, 10 J cm-2) against human breast cancer (MCF-7), cervical cancer (HeLa) and lung cancer (A549) cells (IC50: 1.1-3.8 μM) while being less toxic in normal cells. Confocal imaging showed mitochondrial localization with additional evidence from platinum content from isolated mitochondria and 5,5,6,6'-tetrachloro-1,1',3,3' tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1) assay. Cellular apoptosis was observed from Annexin-V-FITC (fluorescein isothiocyanate)/propidium iodide assay.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Srishti Gautam
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
46
|
Synthesis, Spectral Characterization, and In Vitro Cytotoxicity of Some Fe(III) Complexes Bearing Unsymmetrical Salen-Type Ligands Derived from 2-Hydroxynaphthaldehyde and Substituted Salicylaldehydes. J CHEM-NY 2021. [DOI: 10.1155/2021/8028064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Six Fe(III) complexes bearing unsymmetrical salen-type ligands derived from 2-hydroxynaphthaldehyde and substituted salicylaldehydes were synthesized by coordinating the unsymmetrical salen-type ligands with FeCl3.6H2O. The synthetic complexes were characterized by electrospray ionization mass spectra (ESI-MS), effective magnetic moments (μeff), and infrared (IR) and ultraviolet-visible (UV-Vis) spectra. The spectroscopic data are in good agreement with the suggested molecular formulae of the complexes. Their cyclic voltammetric studies in acetonitrile solutions showed that the Fe(III)/Fe(II) reduction processes are electrochemically irreversible. The in vitro cytotoxicity of the obtained complexes was screened on human cancer cell lines KB (a subline of Hela tumor cell line) and HepG2 (a human liver cancer cell line) and a normal human cell line HEK-293 (Human Embryonic Kidney cell line). The results showed that the synthetic Fe(III) complexes are highly cytotoxic and quite selective. The synthetic complexes bearing unsymmetrical salen-type ligands with different substituted groups in the salicyl ring indicate different cytotoxicity.
Collapse
|
47
|
He M, Chen F, Shao D, Weis P, Wei Z, Sun W. Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials 2021; 275:120915. [PMID: 34102525 DOI: 10.1016/j.biomaterials.2021.120915] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Over the past decades, transition metal complexes have been successfully used in anticancer phototherapies. They have shown promising properties in many different areas including photo-induced ligand exchange or release, rich excited state behavior, and versatile biochemical properties. When encorporated into polymeric frameworks and become part of nanostructures, photoresponsive metallopolymer nanoparticles (MPNs) show enhanced water solubility, extended blood circulation and increased tumor-specific accumulation, which greatly improves the tumor therapeutic effects compared to low-molecule-weight metal complexes. In this review, we aim to present the recent development of photoresponsive MPNs as therapeutic nanomedicines. This review will summarize four major areas separately, namely platinum-containing polymers, zinc-containing polymers, iridium-containing polymers and ruthenium-containing polymers. Representative MPNs of each type are discussed in terms of their design strategies, fabrication methods, and working mechanisms. Current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Fangman Chen
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Dan Shao
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Philipp Weis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
48
|
Freitag L, González L. The Role of Triplet States in the Photodissociation of a Platinum Azide Complex by a Density Matrix Renormalization Group Method. J Phys Chem Lett 2021; 12:4876-4881. [PMID: 34006109 PMCID: PMC8165699 DOI: 10.1021/acs.jpclett.1c00829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Platinum azide complexes are appealing anticancer photochemotherapy drug candidates because they release cytotoxic azide radicals upon light irradiation. Here we present a density matrix renormalization group self-consistent field (DMRG-SCF) study of the azide photodissociation mechanism of trans,trans,trans-[Pt(N3)2(OH)2(NH3)2], including spin-orbit coupling. We find a complex interplay of singlet and triplet electronic excited states that falls into three different dissociation channels at well-separated energies. These channels can be accessed either via direct excitation into barrierless dissociative states or via intermediate doorway states from which the system undergoes non-radiative internal conversion and intersystem crossing. The high density of states, particularly of spin-mixed states, is key to aid non-radiative population transfer and enhance photodissociation along the lowest electronic excited states.
Collapse
|
49
|
Ramu V, Kundu P, Kondaiah P, Chakravarty AR. Maloplatin-B, a Cisplatin-Based BODIPY-Tagged Mito-Specific "Chemo-PDT" Agent Active in Red Light. Inorg Chem 2021; 60:6410-6420. [PMID: 33843212 DOI: 10.1021/acs.inorgchem.1c00124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Maloplatin-B, a cisplatin-based complex, namely [Pt(A-BOD)(NH3)2](NO3) (Pt-A-BOD) with a pendant boron-dipyrromethene (BODIPY) moiety, where HA-BOD is a methyl malonyl chloride derived monostyryl BODIPY ligand, was designed and developed as near-IR light (600-720 nm) organelle-targeting photodynamic therapy agent. The complex [Pt(acac)(NH3)2](NO3) (Pt-Ac) was used as a control. Pt-A-BOD displayed an absorption band at 616 nm (ε = 2.9 × 104 M-1 cm-1) in 10% dimethyl sulfoxide/Dulbecco's Modified Eagle's Medium (DMSO/DMEM, pH 7.2). This complex displayed a broad emission band within 650-850 nm with a λem value of 720 nm in 10% DMSO-DMEM (pH 7.2) upon excitation (λex) at 615 nm with a large Stokes shift. The fluorescence quantum yield (ΦF) value for Pt-A-BOD is 0.032 and for the ligand HA-BOD is 0.24. The BODIPY complex and ligand showed the formation of singlet oxygen as the ROS (reactive oxygen species) on irradiation with near-IR red light of 660 nm, as evidenced from a 1,3-diphenylisobenzofuran (DPBF) assay. The complex displayed remarkable apoptotic NIR light-induced PDT activity with half-maximum inhibitory concentration values (IC50) of 1.6-2.4 μM in A549 lung and HeLa cervical cancer cells, while it was less active in the dark. The cellular ROS generation by the complex in red light was ascertained by a DCFDA (2',7'-dichlorofluorescein diacetate) assay. Cellular imaging showed its localization primarily in the mitochondria of A549 cancer cells. The JC1 and Annexin-V FITC/PI assays carried out for A549 cancer cells treated with the BODIPY complex showed the alteration of mitochondrial membrane potential and apoptotic cell death on near-IR red light (600-720 nm) irradiation, respectively.
Collapse
|
50
|
Wang Y, Wang X, Xu G, Gou S. Novel CK2-Specific Pt(II) Compound Reverses Cisplatin-Induced Resistance by Inhibiting Cancer Cell Stemness and Suppressing DNA Damage Repair in Non-small Cell Lung Cancer Treatments. J Med Chem 2021; 64:4163-4178. [PMID: 33784109 DOI: 10.1021/acs.jmedchem.1c00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSCs) have a pivotal impact in drug resistance, tumor metastasis, and progression of various cancer entities, including in non-small cell lung cancer (NSCLC). A CK2 inhibitor HY1 was found to show potent CSC inhibitory effects in A549 cells. By taking advantage of inherent CK2 specificity and CSC inhibition of HY1, a Pt(II) agent (HY1-Pt) was developed by conjugation of HY1 with an active Pt(II) unit to reverse cisplatin-induced resistance in A549/cDDP cell treatment. In vitro biological studies indicated that HY1-Pt can target CK2, suppress DNA damage repair, reinforce cellular accumulation of platinum, and reverse resistance apart from effectively inhibiting CSCs through Wnt/β-catenin signal pathway in A549/cDDP cells. Significantly, HY1-Pt presented an acceptable pharmacokinetic behavior and exhibited higher tumor growth inhibitory efficacy than cisplatin either in A549 or A549/cDDP xenograft models with low toxicity. Overall, HY1-Pt is a promising drug candidate for NSCLC treatment.
Collapse
Affiliation(s)
- Yuanjiang Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinyi Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|