1
|
Kumari S, Nehra M, Jain S, Dilbaghi N, Chaudhary GR, Kim KH, Kumar S. Metallosurfactant aggregates: Structures, properties, and potentials for multifarious applications. Adv Colloid Interface Sci 2024; 323:103065. [PMID: 38091690 DOI: 10.1016/j.cis.2023.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Metallosurfactants offer important scientific and technological advances due to their novel interfacial properties. As a special class of structures formed by the integration of metal ions into amphiphilic surfactant molecules, these metal-based amphiphilic molecules possess both organometallic and surface chemistries. This review critically examines the structural transitions of metallosurfactants from micelle to vesicle upon metal coordination. The properties of a metallosurfactant can be changed by tuning the coordination between the metal ions and surfactants. The self-assembled behavior of surfactants can be controlled by selecting transition-metal ions that enhance their catalytic efficiency in environmental applications by applying a hydrogen evolution reaction or oxygen evolution reaction. We present the different scattering techniques available to examine the properties of metallosurfactants (e.g., size, shape, structure, and aggregation behavior). The utility of metallosurfactants in catalysis, the synthesis of nanoparticles, and biomedical applications (involving diagnostics and therapeutics) is also explored.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, 160014, India; Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, 160014, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India; Physics Department, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
| |
Collapse
|
2
|
Cao S, Wang A, Li K, Lin Z, Yang H, Zhang X, Qiu J, Tai X. A novel tetranuclear Cu(ii) complex for DNA-binding and in vitro anticancer activity. RSC Adv 2023; 13:26324-26329. [PMID: 37671352 PMCID: PMC10476018 DOI: 10.1039/d3ra03624c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
A novel tetranuclear Cu(ii) complex (TNC) was successfully synthesized and characterized by X-ray single crystal diffraction. The interaction of the complex with calf thymus DNA (CT-DNA) has been studied by UV-vis absorption titration, fluorescence technology and molecular docking. The results indicated that TNC could bind to the DNA through an intercalative mode. The agarose gel electrophoresis experiment showed that TNC could cleave supercoiled plasmid DNA into linear DNA. The anticancer activity of TNC was tested on four cancer cell lines: MCF7, A549, 4T1 and HepG2. The results indicated that TNC shown significant activity against all of above cell lines.
Collapse
Affiliation(s)
- Shuhua Cao
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Anlin Wang
- Affiliated Beijing Chaoyang Hospital, Capital Medical University No. 8 Gongren Tiyuchang Nanlu, Chaoyang District Beijing 100020 P. R. China
| | - Kaoxue Li
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Zhiteng Lin
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Hongwei Yang
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Xiaolei Zhang
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Jianmei Qiu
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Xishi Tai
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| |
Collapse
|
3
|
Jain P, Vishvakarma VK, Singh P, Yadav S, Kumar R, Chandra S, Kumar D, Misra N. Bioactive Thiosemicarbazone Coordination Metal Complexes: Synthesis, Characterization, Theoretical analysis, Biological Activity, Molecular Docking and ADME analysis. Chem Biodivers 2023; 20:e202300760. [PMID: 37427893 DOI: 10.1002/cbdv.202300760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/11/2023]
Abstract
Mn(II) and Cu(II) complexes having the formula [M(L)2 ]X2 of ligand, i. e., 2-acetyl-5-methylfuranthiosemicarbazone were synthesized. Various analytical and spectroscopic techniques described the structure of synthesized complexes. Molar conductance confirmed the electrolytic nature of the complexes. The theoretical study of the complexes explained the structural property and reactivity. The chemical reactivity, interaction and stability of the ligand and metal complexes were studied with the help of global reactivity descriptors. MEP analysis was used to investigate the charge transfer in the ligand. The biological potency was evaluated against two bacteria and two fungi. Complexes demonstrated superior inhibitory action to ligand. The inhibitory effect was also checked at the atomic scale using molecular docking, which confirmed the experimental results. Cu(II) complex was shown to have the most inhibitory effect in experimental and theoretical studies. To check the bioavailability and drug-likeness, ADME analysis was also done.
Collapse
Affiliation(s)
- Pallavi Jain
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, 201204, India
| | - Vijay K Vishvakarma
- Department of Chemistry, Atma Ram Sanatan Dharma College, New Delhi, India -, 110021
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, New Delhi, India -, 110021
| | - Sandeep Yadav
- Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, 201204, India
| | - Rajesh Kumar
- Department of Chemistry, R.D.S College, B.R.A.Bihar University, Muzaffarpur, 842002, India
| | - Sulekh Chandra
- Department of Chemistry, Zakir Husain Delhi College, New Delhi, 110002, India
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Namita Misra
- Department of Chemistry, Silver Oak University, Ahmedabad, Gujarat, India, 382481
| |
Collapse
|
4
|
Suner SS, Sahiner M, Umut E, Ayyala RS, Sahiner N. Physically Crosslinked Chondroitin Sulfate (CS)-Metal Ion (M: Fe(III), Gd(III), Zn(II), and Cu(II)) Particles for Versatile Applications and Their Biosafety. Pharmaceuticals (Basel) 2023; 16:ph16040483. [PMID: 37111240 PMCID: PMC10144968 DOI: 10.3390/ph16040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Chondroitin sulfate (CS), a well-known glycosaminoglycan, was physically crosslinked with Fe(III), Gd(III), Zn(II), and Cu(II) ions to obtain CS-Fe(III), CS-Gd(III), CS-Zn(II), and CS-Cu(II) polymeric particles for multipurpose biological applications. The CS-metal ion-containing particles in the micrometer to a few hundred nanometer size range are injectable materials for intravenous administration. The CS-metal ion-containing particles are safe biomaterials for biological applications because of their perfect blood compatibility and no significant cytotoxicity on L929 fibroblast cells up to a 10 mg/mL concentration. Furthermore, CS-Zn(II) and CS-Cu(II) particles show excellent antibacterial susceptibility, with 2.5-5.0 mg/mL minimum inhibition concentration (MIC) values against Escherichia coli and Staphylococcus aureus. Moreover, the in vitro contrast enhancement abilities of aqueous CS-metal ion particle suspensions in magnetic resonance imaging (MRI) were determined by obtaining T1- and T2-weighted MR images using a 0.5 Tesla MRI scanner and by calculating the water proton relaxivities. Therefore, these CS-Fe(III), CS-Gd(III), CS-Zn(II), and CS-Cu(II) particles have significant potential as antibacterial additive materials and MRI contrast enhancement agents with less toxicity.
Collapse
Affiliation(s)
- Selin S Suner
- Department of Chemistry, Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Mehtap Sahiner
- Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Evrim Umut
- Department of Medical Imaging Techniques, School of Healthcare, Dokuz Eylul University, 35330 Izmir, Turkey
- Bioİzmir-Izmir Health Technologies Development and Accelerator Research and Application Center, Dokuz Eylul University, 35330 Izmir, Turkey
| | - Ramesh S Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv, MDC 21, Tampa, FL 33612, USA
| | - Nurettin Sahiner
- Department of Chemistry, Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv, MDC 21, Tampa, FL 33612, USA
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
5
|
Laws K, Buckingham MA, Farleigh M, Ma M, Aldous L. High Seebeck coefficient thermogalvanic cells via the solvent-sensitive charge additivity of cobalt 1,8-diaminosarcophagine. Chem Commun (Camb) 2023; 59:2323-2326. [PMID: 36752070 DOI: 10.1039/d2cc05413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thermogalvanic devices can chemically convert low grade (<200 °C) waste thermal energy into electrical energy. A temperature gradient across the device drives an entropically favourable electrochemical redox reaction, resulting in continuous current production. The voltage correlates with the entropy change during the redox reaction, which favours high valence metal complexes with high charge densities. Here we investigate cobalt (II/III) sarcophagine ([Co(SAR)]2+/3+) for application in thermogalvanic cells, as a function of solvent; the two uncoordinated amine groups 1,8-diaminosarcophagine are typically protonated to form tetracationic/pentacationic [Co(SARH2)]4+/5+. In water, [Co(SARH2)]4+/5+ gave a thermogalvanic Seebeck coefficient (Se) of +0.43 mV K-1, which is entropically consistent with just the Co2+/3+ core valence, whereas DMSO and ionic liquid solvents gave Se values of +1.84 and +2.04 mV K-1, respectively, in line with the 'Co4+/5+' overall complex. This work proves how the ionic charge on pendant moieties can undergo charge-additivity with the metal core to significantly boost entropically-driven processes, but only in suitably low dielectric and bulky solvents.
Collapse
Affiliation(s)
- Kristine Laws
- Department of Chemistry, King's College London, London, SE1 1DB, UK.
| | - Mark A Buckingham
- Department of Chemistry, King's College London, London, SE1 1DB, UK.
| | - Matthew Farleigh
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Michelle Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Leigh Aldous
- Department of Chemistry, King's College London, London, SE1 1DB, UK.
| |
Collapse
|
6
|
Hydrolytic reactivity of novel copper(II) complexes with reduced N-salicylate threonine Schiff bases: distinguishable effects of various micelles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Burilov V, Radaev D, Sultanova E, Mironova D, Duglav D, Evtugyn V, Solovieva S, Antipin I. Novel PEPPSI-Type NHC Pd(II) Metallosurfactants on the Base of 1H-Imidazole-4,5-dicarboxylic Acid: Synthesis and Catalysis in Water-Organic Media. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4100. [PMID: 36432382 PMCID: PMC9694788 DOI: 10.3390/nano12224100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Carrying out organic reactions in water has attracted much attention. Catalytic reactions in water with metallosurfactants, which have both a metallocenter and the surface activity necessary for solubilizing hydrophobic reagents, are of great demand. Herein we proposed new approach to the synthesis of NHC PEPPSI metallosurfactants based on the sequential functionalization of imidazole 4,5-dicarboxylic acid with hydrophilic oligoethylene glycol and lipophilic alkyl fragments. Complexes of different lipophilicity were obtained, and their catalytic activity was studied in model reduction and Suzuki-Miyaura reactions. A comparison was made with the commercial PEPPSI-type catalytic systems designed by Organ. It was found that the reduction reaction in an aqueous solution of the metallosurfactant with the tetradecyl lipophilic fragment was three times more active than the commercially available PEPPSI complexes, which was associated with the formation of stable monodisperse aggregates detected by DLS and TEM.
Collapse
Affiliation(s)
- Vladimir Burilov
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Dmitriy Radaev
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Elza Sultanova
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Diana Mironova
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Daria Duglav
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Vladimir Evtugyn
- Interdisciplinary Center for Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Svetlana Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420008 Kazan, Russia
| | - Igor Antipin
- Kazan Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| |
Collapse
|
8
|
Yang G, Li S, Li N, Zhang P, Su C, Gong L, Chen B, Qu C, Qi D, Wang T, Jiang J. Enhanced Photocatalytic CO
2
Reduction through Hydrophobic Microenvironment and Binuclear Cobalt Synergistic Effect in Metallogels. Angew Chem Int Ed Engl 2022; 61:e202205585. [DOI: 10.1002/anie.202205585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Gengxiang Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Senzhi Li
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Pianpian Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Chaorui Su
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Baotong Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Chen Qu
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
9
|
Yue J, Chen Y, Wang X, Xu B, Xu Z, Liu X, Chen Z, Zhang K, Jiang W. Artificial phosphatase upon premicellar nanoarchitectonics of lanthanum complexes with long-chained imidazole derivatives. J Colloid Interface Sci 2022; 627:459-468. [PMID: 35868041 DOI: 10.1016/j.jcis.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Four novel long chain-containing tridentate imidazole derivatives (Ln, n = 1, 2, 3, 4) were synthesized for in situ formation of mononuclear lanthanum(III) complexes as artificial phosphodiesterases. These in-situ formed La(III) complexes (named LaLn) were used to catalyze the transesterification of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP), a classic RNA model. Critical aggregation concentrations (CAC) were determined for the as-prepared tridentate imidazole derivatives as ligands and corresponding mixtures of equivalent ligand and La3+ ion with a mole rate of 1:1. It denotes that the introduction of La3+ ion increases the CAC values of imidazole derivatives by about 2 to 3 folds. Foaming test shows that the foam height is positively correlated with the length of hydrophobic chain. Transesterification of HPNP mediated by LaLn nanoarchitectonics indicates that the introducing of hydrophobic chain benefits rate enhancement, showing excess three orders of magnitude acceleration under physiological conditions (pH 7.0, 25 °C). Moreover, catalytic reactivities of these La(III) complexes increased along with the increase in chain length: LaL1 < LaL2 < LaL3 < LaL4, suggesting a positive correlation to hydrophobic chain length.
Collapse
Affiliation(s)
- Jian Yue
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Yu Chen
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Xiuyang Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Bin Xu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China.
| | - Zhigang Xu
- School of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, Yongchuan 402160, PR China
| | - Xiaoqiang Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Zhongzhu Chen
- School of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, Yongchuan 402160, PR China
| | - Kaiming Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Weidong Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China.
| |
Collapse
|
10
|
Nakamura Y, Wakabayashi M, Sadakane K, Ohta T, Oe Y. Synthesis of Cationic Sandwich-type Ruthenium Complexes with η 6-Arene Ligands Bearing Long Alkyl Chains and Their Behavior in Water. CHEM LETT 2022. [DOI: 10.1246/cl.220247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yushi Nakamura
- Department of Biomedical Sciences and Informatics, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394
| | - Misato Wakabayashi
- Department of Biomedical Sciences and Informatics, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394
| | - Koichiro Sadakane
- Department of Biomedical Sciences and Informatics, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394
| | - Tetsuo Ohta
- Department of Biomedical Sciences and Informatics, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394
| | - Yohei Oe
- Department of Biomedical Sciences and Informatics, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394
| |
Collapse
|
11
|
Wang T, Yang G, Li S, Li N, Zhang P, Su C, Gong L, Chen B, Qu C, Qi D, Jiang J. Enhanced Photocatalytic CO2 Reduction through Hydrophobic Microenvironment and Binuclear Cobalt Synergistic Effect in Metallogels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tianyu Wang
- University of Science and Technology Beijing Department of Chemistry 30 Xueyuan Road, Haidian District 100083 Beijing CHINA
| | - Gengxiang Yang
- University of Science and Technology Beijing Department of Chemistry 30 Xueyuan Road, Haidian District 100083 Beijing CHINA
| | - Senzhi Li
- University of Science and Technology Beijing Department of Chemistry 30 Xueyuan Road, Haidian District 100083 Beijing CHINA
| | - Ning Li
- University of Science and Technology Beijing Department of Chemistry 30 Xueyuan Road, Haidian District 100083 Beijing CHINA
| | - Pianpian Zhang
- University of Science and Technology Beijing Department of Chemistry 100083 Beijing CHINA
| | - Chaorui Su
- University of Science and Technology Beijing Department of Chemistry 30 Xueyuan Road, Haidian District 100083 Beijing CHINA
| | - Lei Gong
- University of Science and Technology Beijing Department of Chemistry 30 Xueyuan Road, Haidian District 100083 Beijing CHINA
| | - Baotong Chen
- University of Science and Technology Beijing Department of Chemistry 30 Xueyuan Road, Haidian District 100083 Beijing CHINA
| | - Chen Qu
- University of Science and Technology Beijing Department of Chemistry 30 Xueyuan Road, Haidian District 100083 Beijing CHINA
| | - Dongdong Qi
- University of Science and Technology Beijing Department of Chemistry 30 Xueyuan Road, Haidian District 100083 Beijing CHINA
| | - Jianzhuang Jiang
- University of Science and Technology Beijing Department of Chemistry 30 Xueyuan Road, Haidian District 100083 Beijing CHINA
| |
Collapse
|
12
|
Anjomshoa M, Amirheidari B. Nuclease-like metalloscissors: Biomimetic candidates for cancer and bacterial and viral infections therapy. Coord Chem Rev 2022; 458:214417. [PMID: 35153301 PMCID: PMC8816526 DOI: 10.1016/j.ccr.2022.214417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
Despite the extensive and rapid discovery of modern drugs for treatment of cancer, microbial infections, and viral illnesses; these diseases are still among major global health concerns. To take inspiration from natural nucleases and also the therapeutic potential of metallopeptide antibiotics such as the bleomycin family, artificial metallonucleases with the ability of promoting DNA/RNA cleavage and eventually affecting cellular biological processes can be introduced as a new class of therapeutic candidates. Metal complexes can be considered as one of the main categories of artificial metalloscissors, which can prompt nucleic acid strand scission. Accordingly, biologists, inorganic chemists, and medicinal inorganic chemists worldwide have been designing, synthesizing and evaluating the biological properties of metal complexes as artificial metalloscissors. In this review, we try to highlight the recent studies conducted on the nuclease-like metalloscissors and their potential therapeutic applications. Under the light of the concurrent Covid-19 pandemic, the human need for new therapeutics was highlighted much more than ever before. The nuclease-like metalloscissors with the potential of RNA cleavage of invading viral pathogens hence deserve prime attention.
Collapse
|
13
|
Garg P, Kaur B, Kaur G, Chaudhary GR. Design and applications of metallo-vesicular structures using inorganic-organic hybrids. Adv Colloid Interface Sci 2022; 302:102621. [PMID: 35276534 DOI: 10.1016/j.cis.2022.102621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/01/2022]
Abstract
In advanced biomedical diagnosis, various supramolecular assemblies based on inorganic-organic hybrids have found great interest as functional materials. These assemblies describe a new field of metallovesicles where the introduction of metal ions enables the chemical manipulation of assemblies in terms of their structural stability, redox activity, and pH stability. Additionally, they mimic the elaborative architecture of natural liposomal assemblies and exhibit hierarchical morphologies, and promise novel functions. With the constant developments in this field, various supramolecular assemblies such as MCsomes, Polymersomes, and Metallosomes, etc. came into existence. These hybrid assemblies have been utilized for several applications such as drug delivery, MRI contrasting, DNA delivery, and catalytic activity. The key advantage of these assemblies is their ability to deliver therapeutics to specific locations due to their biomimetic properties and release their contents at the desired time. Hence, they provide a valuable platform for the treatment of a variety of diseases. Through the present article, we intend to provide insights into the latest developments made in this field. This modularity underscores the tremendous promise of supramolecular assemblies as an emerging interdisciplinary research branch at the interface of chemistry and biological sciences.
Collapse
|
14
|
Effect of Cationic Lipid Nanoparticle Loaded siRNA with Stearylamine against Chikungunya Virus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041170. [PMID: 35208958 PMCID: PMC8877324 DOI: 10.3390/molecules27041170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/18/2023]
Abstract
Chikungunya is an infectious disease caused by mosquito-transmitted chikungunya virus (CHIKV). It was reported that NS1 and E2 siRNAs administration demonstrated CHIKV inhibition in in vitro as well as in vivo systems. Cationic lipids are promising for designing safe non-viral vectors and are beneficial in treating chikungunya. In this study, nanodelivery systems (hybrid polymeric/solid lipid nanoparticles) using cationic lipids (stearylamine, C9 lipid, and dioctadecylamine) and polymers (branched PEI-g-PEG -PEG) were prepared, characterized, and complexed with siRNA. The four developed delivery systems (F1, F2, F3, and F4) were assessed for stability and potential toxicities against CHIKV. In comparison to the other nanodelivery systems, F4 containing stearylamine (Octadecylamine; ODA), with an induced optimum cationic charge of 45.7 mV in the range of 152.1 nm, allowed maximum siRNA complexation, better stability, and higher transfection, with strong inhibition against the E2 and NS1 genes of CHIKV. The study concludes that cationic lipid-like ODA with ease of synthesis and characterization showed maximum complexation by structural condensation of siRNA owing to high transfection alone. Synergistic inhibition of CHIKV along with siRNA was demonstrated in both in vitro and in vivo models. Therefore, ODA-based cationic lipid nanoparticles can be explored as safe, potent, and efficient nonviral vectors overcoming siRNA in vivo complexities against chikungunya.
Collapse
|
15
|
Huang DS, Liu XR, Zhao SS, Yang ZW. Crystal structures of three transition metal complexes with salicylaldehyde-4-hydroxy phenylacetyl acylhydrazone and their interactions with CT-DNA and BSA. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Singh A, Kaushik A, Dhau JS, Kumar R. Exploring coordination preferences and biological applications of pyridyl-based organochalcogen (Se, Te) ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Poyraz S, Belveren S, Aydınoğlu S, Ulger M, de Cózar A, de Gracia Retamosa M, Sansano JM, Döndaş HA. Biological properties and conformational studies of amphiphilic Pd(II) and Ni(II) complexes bearing functionalized aroylaminocarbo- N-thioylpyrrolinate units. Beilstein J Org Chem 2021; 17:2812-2821. [PMID: 34925620 PMCID: PMC8649204 DOI: 10.3762/bjoc.17.192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 12/05/2022] Open
Abstract
A series of novel palladium(II) and nickel(II) complexes of multifunctionalized aroylaminocarbo-N-thioylpyrrolinates were synthesized and characterized by analytical and spectroscopic techniques. The biological properties of the freshly prepared compounds were screened against S. aureus, B. subtilis, A. hydrophila, E. coli, and A. baumannii bacteria and antituberculosis activity against M. tuberculosis H37Rv strains. Also, the antifungal activity was studied against C. albicans, C. tropicalis, and C. glabrata standard strains. A deep conformational survey was monitored using DFT calculations with the aim to explain the importance of the final conformation in the biological experimental results.
Collapse
Affiliation(s)
- Samet Poyraz
- Department of Chemistry, Faculty of Pharmacy, Mersin University, Yenisehir, 33169 Mersin, Turkey
| | - Samet Belveren
- Department of Chemistry, Faculty of Pharmacy, Mersin University, Yenisehir, 33169 Mersin, Turkey
| | - Sabriye Aydınoğlu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı 01330, Adana, Turkey
| | - Mahmut Ulger
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Yenisehir, 33169 Mersin, Turkey
| | - Abel de Cózar
- Departamento de Química Orgánica I, Facultad de Química. Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Donostia International Physics Center (DIPC), P. K. 1072, E-20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation of Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Maria de Gracia Retamosa
- University of Alicante, Department of Organic Chemistry, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica (ISO), PO Box 99, 03080 Alicante, Spain
| | - Jose M Sansano
- University of Alicante, Department of Organic Chemistry, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica (ISO), PO Box 99, 03080 Alicante, Spain
| | - H Ali Döndaş
- Department of Chemistry, Faculty of Pharmacy, Mersin University, Yenisehir, 33169 Mersin, Turkey
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı 01330, Adana, Turkey
| |
Collapse
|
18
|
Kettenmann SD, White M, Colard-Thomas J, Kraft M, Feßler AT, Danz K, Wieland G, Wagner S, Schwarz S, Wiehe A, Kulak N. Investigating Alkylated Prodigiosenes and Their Cu(II)-Dependent Biological Activity: Interactions with DNA, Antimicrobial and Photoinduced Anticancer Activity. ChemMedChem 2021; 17:e202100702. [PMID: 34779147 PMCID: PMC9306646 DOI: 10.1002/cmdc.202100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Indexed: 11/23/2022]
Abstract
Prodigiosenes are a family of red pigments with versatile biological activity. Their tripyrrolic core structure has been modified many times in order to manipulate the spectrum of activity. We have been looking systematically at prodigiosenes substituted at the C ring with alkyl chains of different lengths, in order to assess the relevance of this substituent in a context that has not been investigated before for these derivatives: Cu(II) complexation, DNA binding, self‐activated DNA cleavage, photoinduced cytotoxicity and antimicrobial activity. Our results indicate that the hydrophobic substituent has a clear influence on the different aspects of their biological activity. The cytotoxicity study of the Cu(II) complexes of these prodigiosenes shows that they exhibit a strong cytotoxic effect towards the tested tumor cell lines. The Cu(II) complex of a prodigiosene lacking any alkyl chain excelled in its photoinduced anticancer activity, thus demonstrating the potential of prodigiosenes and their metal complexes for an application in photodynamic therapy (PDT). Two derivatives along with their Cu(II) complexes showed also antimicrobial activity against Staphylococcus aureus strains.
Collapse
Affiliation(s)
| | - Matthew White
- Imperial College London, Department of Chemistry, UNITED KINGDOM
| | - Julien Colard-Thomas
- Ecole Nationale Superieur de Chimie de Paris: Ecole nationale superieure de chimie de Paris, Chimie, FRANCE
| | - Matilda Kraft
- Freie Universität Berlin: Freie Universitat Berlin, Institut für Chemie und Biochemie, GERMANY
| | - Andrea T Feßler
- Freie Universität Berlin: Freie Universitat Berlin, Institute for Microbiology, GERMANY
| | - Karin Danz
- Fraunhofer-Institut fur Biomedizinische Technik IBMT, Zellmodelle und Toxikologie, GERMANY
| | | | - Sylvia Wagner
- Fraunhofer-Institut fur Biomedizinische Technik IBMT, Zellmodelle und Toxikologie, GERMANY
| | - Stefan Schwarz
- Freie Universität Berlin: Freie Universitat Berlin, Institut für Mikrobiologie, GERMANY
| | | | - Nora Kulak
- Otto von Guericke Universitat Magdeburg, Institut für Chemie, Universitätsplatz 2, 39106, Magdeburg, GERMANY
| |
Collapse
|
19
|
Antimicrobial activity and cytotoxicity of transition metal carboxylates derived from agaric acid. EUROPEAN PHARMACEUTICAL JOURNAL 2021. [DOI: 10.2478/afpuc-2020-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Carboxylato-type transition metal complexes with agaric acid, a bioactive natural compound derived from citric acid, were prepared, and tested in vitro for their antimicrobial activity and cytotoxicity. The products as well as agaric acid itself are amphiphilic compounds containing a hydrophilic head (citric acid moiety) and a hydrophobic tail (non-polar alkyl chain). The putative composition of the carboxylates was assigned on grounds of elemental analysis, infrared (IR) and high-resolution mass spectra (HR-MS), as well as in analogy with known complexes containing the citrate moiety. The metal carboxylates showed interesting activity in several microbial strains, especially against S. aureus (vanadium complex; MIC = 0.05 mg/ml). They were also tested for their cytotoxic activity in hepatocytes, the highest activity having been found in the copper(II) and manganese(II) complexes. Further research based on these preliminary results is needed in order to evaluate the influence of parameters like stability of the metal complexes in solution on the bioactivity of the complexes.
Collapse
|
20
|
Garg P, Kaur B, Kaur G, Saini S, Chaudhary GR. A study of the spectral behaviour of Eosin dye in three states of metallosurfactants: Monomeric, micelles and metallosomes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
A new mixed-ligand lanthanum(III) complex with salicylic acid and 1,10-phenanthroline: Synthesis, characterization, antibacterial activity, and underlying mechanism. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Cervo R, Lopes TRR, de Vasconcelos AR, Cargnelutti JF, Schumacher RF, Tirloni B, dos Santos SS, Abram U, Lang ES, Cargnelutti R. Coordination compounds containing 2-pyridylselenium ligands: synthesis, structural characterization, and antibacterial evaluation. NEW J CHEM 2021. [DOI: 10.1039/d1nj02374h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
New coordination compounds bearing 2-pyridylselenium and d-block metals were synthesized and structurally characterized. The complexes showed antibacterial activity against Staphylococcus aureus and Escherichia coli.
Collapse
|
23
|
Melotti M, S. S. Paqui M, Amorim AL, P. de Paula C, Rocha MC, Malavazi I, Cunha A, S. Santana F, Ribeiro RR, Gariani RA, Mendes SR, Xavier FR. Polypyridyl iron( iii) complexes containing long alkyl chains: synthesis, characterization, DFT calculations and biological activity. NEW J CHEM 2021. [DOI: 10.1039/d0nj00895h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A bis(picolyl)amine ligand was functionalized with a long alkyl chain, and two iron(iii) complexes were prepared and their biological activity was presented.
Collapse
Affiliation(s)
- Marcelo Melotti
- Departamento de Química, Universidade do Estado de Santa Catarina
- Joinville
- Brazil
| | - Matheus S. S. Paqui
- Departamento de Química, Universidade do Estado de Santa Catarina
- Joinville
- Brazil
| | | | - Carla P. de Paula
- Departamento de Genética e Evolução, Universidade Federal de São Carlos
- São Carlos
- Brazil
| | - Marina C. Rocha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos
- São Carlos
- Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos
- São Carlos
- Brazil
| | - Anderson Cunha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos
- São Carlos
- Brazil
| | | | | | - Rogério A. Gariani
- Departamento de Química, Universidade do Estado de Santa Catarina
- Joinville
- Brazil
| | - Samuel R. Mendes
- Departamento de Química, Universidade do Estado de Santa Catarina
- Joinville
- Brazil
| | - Fernando R. Xavier
- Departamento de Química, Universidade do Estado de Santa Catarina
- Joinville
- Brazil
| |
Collapse
|
24
|
Cobalt(II) Complexes Based on Benzylmalonate Anions Exhibiting Field-Induced Single-Ion Magnet Slow Relaxation Behavior. CRYSTALS 2020. [DOI: 10.3390/cryst10121130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The reaction of (NBu4)2Bzmal (where Bzmal2− is benzylmalonate dianion) with Co(OAc)2∙4H2O gives the [Co(Bzmal)(EtOH)(H2O)]n 2D-polymer (1). The addition of 2,2′-bipyridine (bpy) to the starting system results in the [Co(Bzmal)(bpy)2]·H2O·EtOH molecular complex (2). Their molecular and crystal structures were analyzed by single-crystal X-ray crystallography. An analysis of the static magnetic data supported by the SA-CASSCF/NEVPT2 calculations revealed the presence of easy-plane magnetic anisotropy in both complexes. The AC susceptibility data confirm that both complexes show a slow field-induced (HDC = 1000 Oe) magnetic relaxation behavior.
Collapse
|
25
|
Kashapov R, Razuvayeva Y, Ziganshina A, Sergeeva T, Lukashenko S, Sapunova A, Voloshina A, Kashapova N, Nizameev I, Salnikov V, Ziganshina S, Gareev B, Zakharova L. Supraamphiphilic Systems Based on Metallosurfactant and Calix[4]resorcinol: Self-Assembly and Drug Delivery Potential. Inorg Chem 2020; 59:18276-18286. [PMID: 33237751 DOI: 10.1021/acs.inorgchem.0c02833] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metallic amphiphiles are used as building blocks in the construction of nanoscale superstructures, where the hydrophobic effects induce the self-assembly of the nanoparticles of interest. However, the influence of synergizing multiple chemical interactions on an effective design of these structures mostly remains an open question. In this regard, supraamphiphilic systems based on flexible surfactant molecules and rigid macrocycles are being actively developed, but there are few works on the interaction between metallosurfactants and macrocycles. In the present work, the self-assembly and biological properties of a metallosurfactant with calixarene were studied for the first time. The metallosurfactant, a complex between lanthanum nitrate and two 4-aza-1-hexadecylazoniabicyclo[2.2.2]octane bromide units, and calix[4]resorcinol containing sulfonate groups on the upper rim were used to form a novel supraamphiphilic composition. The system formed was studied using a variety of physicochemical methods, including spectrophotometry, NMR, XRF, and dynamic and electrophoretic light scattering. It was found that the most optimal tetraanionic calix[4]resorcinol to dicationic metallosurfactant molar ratio, leading to mixed aggregation upon ion pair complexation, is 2:3. The mixed aggregates formed in the pentamolar concentration range were able to encapsulate hydrophilic substrates, including the anticancer drug cisplatin, the pure form of which is more cytotoxic toward healthy cells than toward diseased cells. Interestingly, the drug loaded into the macrocycle-metallosurfactant particles was less cytotoxic to a healthy Chang liver cell line and more cytotoxic to tumor M-HeLa cells. This selectivity depends on the amount of cisplatin added. The more drug is added to the macrocycle-metallosurfactant composition, the greater the biological activity against cancer cells. Taking into account that the appearance of resistance of cancer cells to drugs, especially to cisplatin, is one of the most important problems in treatment, the results of this work envisage the potential application of a mixed macrocycle-metallosurfactant system for the design of therapeutic cisplatin compositions.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia.,Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Albina Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Tatiana Sergeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Svetlana Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Nadezda Kashapova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia
| | - Irek Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia.,Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111 Kazan, Russia.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Sufia Ziganshina
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 10/7 Sibirskii trakt Str., 420029 Kazan, Russia
| | - Bulat Gareev
- Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russia.,Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| |
Collapse
|
26
|
Bosch P, Staneva D, Vasileva-Tonkova E, Grozdanov P, Nikolova I, Kukeva R, Stoyanova R, Grabchev I. Hyperbranched Polymers Modified with Dansyl Units and Their Cu(II) Complexes. Bioactivity Studies. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13204574. [PMID: 33066584 PMCID: PMC7602284 DOI: 10.3390/ma13204574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 05/15/2023]
Abstract
Two new copper complexes of hyperbranched polymers modified with dansyl units were synthesized and characterized by infrared spectroscopy (IR) and electron paramagnetic resonance (EPR) techniques. It was found that copper ions coordinate predominantly with nitrogen or oxygen atoms of the polymer molecule. The place of the formation of complexes and the number of copper ions involved depend on the chemical structure of the polymer. The antimicrobial activity of the new polymers and their Cu(II) complexes was tested against Gram-negative and Gram-positive bacterial and fungal strains. Copper complexes were found to have activity better than that of the corresponding ligands. The deposition of the modified branched polymers onto cotton fabrics prevents the formation of bacterial biofilms, which indicates that the studied polymers can find application in antibacterial textiles.
Collapse
Affiliation(s)
- Paula Bosch
- Institute of Science and Technology of Polymers, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Desislava Staneva
- Department of textile and leather, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Evgenia Vasileva-Tonkova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.V.-T.); (P.G.); (I.N.)
| | - Petar Grozdanov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.V.-T.); (P.G.); (I.N.)
| | - Ivanka Nikolova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.V.-T.); (P.G.); (I.N.)
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.K.); (R.S.)
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.K.); (R.S.)
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
27
|
Dement’eva OV. Mesoporous Silica Container Particles: New Approaches and New Opportunities. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20050038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Zhang Q, Shu J, Zhang Y, Xu Z, Yue J, Liu X, Xu B, Chen Z, Jiang W. Structures and esterolytic reactivity of novel binuclear copper(ii) complexes with reduced l-serine Schiff bases as mimic carboxylesterases. Dalton Trans 2020; 49:10261-10269. [PMID: 32672259 DOI: 10.1039/d0dt01823f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel binuclear copper(ii) complexes with reduced l-serine Schiff bases were synthesized and their structures were analyzed with single-crystal X-ray diffraction and DFT calculations. The crystal data revealed that all of these binuclear complexes are chiral. Both 5-halogenated (bromo- and chloro-) binuclear complexes exhibit right-handed helix structural character. Interestingly, the 5-methyl-containing analogue has a two-dimensional pore structure. In this paper, the esterolysis reactivity of the as-prepared complexes shows that in the hydrolysis of p-nitrophenyl acetate (PNPA) these three complexes provide 26, 18, 40-fold rate acceleration as compared to the spontaneous hydrolysis of PNPA at pH 7.0, respectively. Under selected conditions, in excess buffered aqueous solution a rate enhancement by three orders of magnitude was observed for the catalytic hydrolysis of another carboxylic ester, p-nitrophenyl picolinate (PNPP). These complexes efficiently promoted PNPP hydrolysis in a micellar solution of cetyltrimethylammonium bromide (CTAB), giving rise to a rate enhancement in excess of four orders of magnitude, which is approximately 2.0-3.2 times higher than that in the buffer.
Collapse
Affiliation(s)
- Qin Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan Zigong 643000, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Golbedaghi R, Tabanez AM, Esmaeili S, Fausto R. Biological Applications of Macrocyclic Schiff Base Ligands and Their Metal Complexes: A Survey of the Literature (2005–2019). Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Reza Golbedaghi
- Chemistry Department Payame Noor University Tehran 19395‐4697 Iran
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| | - Andreia M. Tabanez
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| | - Somayeh Esmaeili
- Internal Medicine Department Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Rui Fausto
- University of Coimbra CQC, Department of Chemistry Coimbra P‐3004‐535 Portugal
| |
Collapse
|
30
|
Di Natale C, De Benedictis I, De Benedictis A, Marasco D. Metal-Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9060337. [PMID: 32570779 PMCID: PMC7344629 DOI: 10.3390/antibiotics9060337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
In metal-peptide interactions, cations form stable complexes through bonds with coordinating groups as side chains of amino acids. These compounds, among other things, exert a wide variety of antimicrobial activities through structural changes of peptides upon metal binding and redox chemistry. They exhibit different mechanisms of action (MOA), including the modification of DNA/RNA, protein and cell wall synthesis, permeabilization and modulation of gradients of cellular membranes. Nowadays, the large increase in antibiotic resistance represents a crucial problem to limit progression at the pandemic level of the diseases that seemed nearly eradicated, such as tuberculosis (Tb). Mycobacterium tuberculosis (Mtb) is intrinsically resistant to many antibiotics due to chromosomal mutations which can lead to the onset of novel strains. Consequently, the maximum pharmaceutical effort should be focused on the development of new therapeutic agents and antimicrobial peptides can represent a valuable option as a copious source of potential bioactive compounds. The introduction of a metal center can improve chemical diversity and hence specificity and bioavailability while, in turn, the coordination to peptides of metal complexes can protect them and enhance their poor water solubility and air stability: the optimization of these parameters is strictly required for drug prioritization and to obtain potent inhibitors of Mtb infections with novel MOAs. Here, we present a panoramic review of the most recent findings in the field of metal complex-peptide conjugates and their delivery systems with the potential pharmaceutical application as novel antibiotics in Mtb infections.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Arianna De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Correspondence:
| |
Collapse
|
31
|
Bipyrazole Based Novel Bimetallic µ-oxo Bridged Au(III) Complexes as Potent DNA Interacalative, Genotoxic, Anticancer, Antibacterial and Cytotoxic Agents. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Borràs J, Mesa V, Suades J, Barnadas-Rodríguez R. Direct Synthesis of Rhenium and Technetium-99m Metallosurfactants by a Transmetallation Reaction of Lipophilic Groups: Potential Applications in the Radiolabeling of Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1993-2002. [PMID: 31995988 DOI: 10.1021/acs.langmuir.9b03231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new zinc dithiocarbamate functionalized with palmitoyl groups is described as a useful tool for the preparation of metallosurfactants through a transmetallation reaction with the transition metals rhenium and technetium. An amphiphilic rhenium complex is synthesized by a transmetallation reaction with the zinc complex in presence of the polar phosphine sodium triphenylphosphine trisulfonate, which leads to a rhenium complex with a lipophilic dithiocarbamate and a polar phosphine ligand. The study of this rhenium complex has shown that it self-aggregates, leading to the formation of aggregates that have been analyzed by dynamic light scattering and cryotransmission electron microscopy (cryo-TEM). In addition, this amphiphilic rhenium complex is incorporated into soy phosphatidylcholine liposomes, whether liposomes are prepared by mixing phospholipid and the rhenium complex or by the incorporation of the rhenium complex into preformed liposomes. The one-pot reaction of the radiocompound [99mTc(H2O)3(CO)3]+ with the above-mentioned zinc dithiocarbamate, the phosphine sodium triphenylphosphine trisulfonate and the phospholipid soy phosphatidylcholine, leads to liposomes labeled with a Tc-99m homologous complex of the rhenium complex, in accordance with the high-performance liquid chromatography (HPLC) data.
Collapse
Affiliation(s)
- Jordi Borràs
- Departament de Quı́mica, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Verónica Mesa
- Departament de Quı́mica, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Joan Suades
- Departament de Quı́mica, Edifici C, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Ramon Barnadas-Rodríguez
- Unitat de Biofı́sica/Centre d'Estudis en Biofı́sica, Departament de Bioquı́mica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
33
|
One-pot synthesis, crystal structure and theoretical calculations of a dinuclear Mn(III) complex with in-situ generated O,N,O- and O,N-donor dichelating hydrazone ligand. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Jain P, Kumar D, Chandra S, Misra N. Experimental and theoretical studies of Mn(II) and Co(II) metal complexes of a tridentate Schiff's base ligand and their biological activities. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pallavi Jain
- Department of ChemistrySRM‐IST Delhi NCR Campus Ghaziabad 201204 India
| | - Dinesh Kumar
- School of Chemical SciencesCentral University of Gujarat Gandhinagar 382030 India
| | - Sulekh Chandra
- Department of ChemistryZakir Husain Delhi College JLN Marg New Delhi 110002 India
| | - Namita Misra
- Residential Complex IIT Jodhpur Jodhpur 342037 India
| |
Collapse
|
35
|
Janek T, Rodrigues LR, Gudiña EJ, Czyżnikowska Ż. Metal-Biosurfactant Complexes Characterization: Binding, Self-Assembly and Interaction with Bovine Serum Albumin. Int J Mol Sci 2019; 20:ijms20122864. [PMID: 31212764 PMCID: PMC6627489 DOI: 10.3390/ijms20122864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
Studies on the specific and nonspecific interactions of biosurfactants with proteins are broadly relevant given the potential applications of biosurfactant/protein systems in pharmaceutics and cosmetics. The aim of this study was to evaluate the interactions of divalent counterions with the biomolecular anionic biosurfactant surfactin-C15 through molecular modeling, surface tension and dynamic light scattering (DLS), with a specific focus on its effects on biotherapeutic formulations. The conformational analysis based on a semi-empirical approach revealed that Cu2+ ions can be coordinated by three amide nitrogens belonging to the surfactin-C15 cycle and one oxygen atom of the aspartic acid from the side chain of the lipopeptide. Backbone oxygen atoms mainly involve Zn2+, Ca2+ and Mg2+. Subsequently, the interactions between metal-coordinated lipopeptide complexes and bovine serum albumin (BSA) were extensively investigated by fluorescence spectroscopy and molecular docking analysis. Fluorescence results showed that metal-lipopeptide complexes interact with BSA through a static quenching mechanism. Molecular docking results indicate that the metal-lipopeptide complexes are stabilized by hydrogen bonding and van der Waals forces. The biosurfactant-protein interaction properties herein described are of significance for metal-based drug discovery hypothesizing that the association of divalent metal ions with surfactin allows its interaction with bacteria, fungi and cancer cell membranes with effects that are similar to those of the cationic peptide antibiotics.
Collapse
Affiliation(s)
- Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland.
| | - Lígia R Rodrigues
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Eduardo J Gudiña
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wrocław, Poland.
| |
Collapse
|