1
|
Liu H, Huang B, Shao Y, Pei Y. Hetero and Homo Metal Exchange of Au 25(SR) 18 - and Ag 25(SR) 18 - Clusters with Metal-Thiolate Complexes: Ab Initio Molecular Dynamics Simulation Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403520. [PMID: 39109564 DOI: 10.1002/smll.202403520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Indexed: 11/21/2024]
Abstract
The hetero and homo metal exchange of Au25(SR)18 - and Ag25(SR)18 - nanoclusters with metal-thiolate (M-SR) complexes (AuI(SR), AgI(SR), CuI(SR), and CuII(SR)2) are studied using ab initio molecular dynamics (AIMD) simulations. The AIMD simulation results unveil that the M-SR complexes directly displace Au(SR) or Ag(SR) units on the gold or silver core surface through an "anchoring effect". The whole process of metal-exchange reactions can be divided into three steps, including the adsorption of M-SR complexes on clusters, the formation of new staple motif, and the displacement of Au(SR) or Ag(SR) units by M-SR complexes. The key role of sulfur atoms in metal exchange reactions in M-SR complexes is revealed, which facilitates formation of new staple motifs and doping of M-SR complexes into gold and silver cores. This work provides a theoretical basis for further exploring the metal exchange reaction between noble metal nanoclusters and metal-thiolate complexes, as well as the isotope exchange reactions.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Baoyu Huang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
| | - Youyuan Shao
- School of Chemical Engineering and Energy Technology, Guangdong Provincial Key Laboratory of Distributed Energy System, Dongguan University of Technology, Dongguan, 523808, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, 650093, China
| |
Collapse
|
2
|
Chen S, Zhu H, Li T, Liu P, Wu C, Jia S, Li Y, Suo B. Applications of metal nanoclusters supported on the two-dimensional material graphene in electrocatalytic carbon dioxide reduction. Phys Chem Chem Phys 2024; 26:26647-26676. [PMID: 39415712 DOI: 10.1039/d4cp03161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metal nanoclusters (MNCs) have been demonstrated to exhibit superior catalytic performance compared to single nanoparticles. This is attributed to their quantized electronic structure, unique geometrical stacking and abundant active sites. While the exposed metal atoms can markedly enhance the efficiency of catalysis, unfortunately, MNCs are susceptible to agglomeration, which impairs their catalytic activity and stability. Graphene is a two-dimensional material consisting of a single atomic layer formed by the hybridization of the s and p orbitals of carbon atoms. It exhibits stable physical and chemical properties and has an easily controllable structure, making it an ideal carrier for MNCs. When metal nanoclusters (MNCs) are loaded on a graphene substrate, the MNCs can form a stable binding site on the graphene substrate. Furthermore, the construction of a defective structure on the graphene substrate enables the formation of robust interactions between the metal atoms of the MNCs and the substrate, facilitating the rapid establishment of electron conduction pathways and markedly enhancing the electrocatalytic performance. This paper presents a review of the applications of metal nanoclusters supported on graphene skeletons in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Firstly, we briefly introduce the reaction mechanism of the CO2RR, then we systematically discuss the synthesis strategies, properties and applications of metal nanoclusters in electrocatalytic carbon dioxide reduction from both experimental and theoretical perspectives, and lastly, we discuss the opportunities and challenges of metal nanocluster catalysts supported on carbon materials.
Collapse
Affiliation(s)
- Shanlin Chen
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Tingting Li
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Ping Liu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chou Wu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shaobo Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Yawei Li
- School of Energy, Power and Mechanical Engineering, Institute of Energy and Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
3
|
Akutsu M, Koyasu K, Miyajima K, Mitsui M, Inoue T, Nakajima A. Geometric and Electronic Properties of P Atom-Doped Al Nanoclusters: Alkaline-like Superatom of P@Al 12. J Phys Chem A 2024; 128:6648-6657. [PMID: 39083692 DOI: 10.1021/acs.jpca.4c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The geometric and electronic characteristics of phosphorus-atom doped aluminum nanoclusters, AlnPm (n = 7-17, m = 1 and 2), were investigated through a combination of experiments and theoretical calculations. The size dependences of the ionization energy (Ei) for AlnPm NCs exhibit a local minimum of 5.37 eV at Al12P1, attributed to an endohedral P@Al12 superatom (SA). This SA originates from an excess electron toward the 2P shell closing (40e), coexisting with an exohedral isomer featuring a vertex P atom. The stability of the endohedral P@Al12 is further enhanced in its cationic state compared to the exohedral isomer, when complexed with a fluorine (F) atom, forming an SA salt denoted as P@Al12+F- with an elevated Ei ranging from 6.42 to 7.90 eV. In contrast, for the anionic Al12P1-, the exohedral form is found to be more stable than the endohedral one using anion photoelectron spectroscopy and calculations. The geometric and electronic robustness of neutral P@Al12 SAs against electron donation and acceptance is discussed in comparison to rare-gas-like Si@Al12 SAs.
Collapse
Affiliation(s)
- Minoru Akutsu
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
- ROHM Company Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| | - Ken Miyajima
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| | - Masaaki Mitsui
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| | - Tomoya Inoue
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| | - Atsushi Nakajima
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
| |
Collapse
|
4
|
Luo Z, Shehzad A. Advances in Naked Metal Clusters for Catalysis. Chemphyschem 2024; 25:e202300715. [PMID: 38450926 DOI: 10.1002/cphc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Peter BD, Pei W, Andrew GN, Zhou S, Luo Z. A luminescent Ag 8(DPPY) 6(PhCC) 6 cluster with a triangular superatomic Ag 8 core. NANOSCALE 2024; 16:8090-8095. [PMID: 38563406 DOI: 10.1039/d4nr00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We have synthesized single crystals of a highly stable Ag8 nanocluster protected by six ligands of diphenyl-2-phosphinic pyridine (DPPY) plus six ligands of phenylacetylene (PhCC). This Ag8(DPPY)6(PhCC)6 cluster bears a triangular superatomic Ag8 core, with the vertex and edge Ag atoms (quasi-triangle Ag6) being protected by both P and N bidentate coordination of the six DPPY ligands; meanwhile, the six PhCC ligands via μ3-C coordination form coordination on the two central Ag atoms capped on both sides of the triangle facet. Apart from the well-organized coordination of the two ligands pertaining to the balanced interactions with the Ag8 core, this Ag8 nanocluster exhibits superatomic stability with two delocalized valence electrons (1S2||1P0), assuming that the six PhCC ligands fix 6 localized electrons from the Ag atoms. Interestingly, the Ag8(DPPY)6(PhCC)6 NCs display temperature-dependent dual emissions at 330 and 535 nm under deep ultraviolet excitation. TD-DFT calculations reproduced the experimental spectrum, shedding light on the nature of excitation states and metal-ligand interactions in such a superatomic metal cluster.
Collapse
Affiliation(s)
- Blessing D Peter
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Si Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Geng L, Du Q, Li M, Yin B, Luo Z, Zhao J. The s-p Nonhybrid Nature Causes Adaptive Superatomic States of Bismuth Clusters. Chemistry 2023; 29:e202300167. [PMID: 37358027 DOI: 10.1002/chem.202300167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
We report a joint experimental and theoretical study on the stability and reactivity of Bin + (n=5-33) clusters. The alternating odd-even effect on the reaction rates of Bin + clusters with NO is observed, and Bi7 + finds the most inertness. First-principles calculation results reveal that the lowest energy structures of Bi6-9 + exhibit quasi-spherical geometry pertaining to the jellium shell model; however, the Bin + (n≥10) clusters adopt assembly structures. The prominent stability of Bi7 + is associated with its highly symmetric structure and superatomic states with a magic number of 34e closed shell. For the first time, we demonstrate that the unique s-p nonhybrid feature in bismuth rationalizes the stability of Bi6-9 + clusters within the jellium model, by filling the 6s electrons into the superatomic orbitals (forming "s-band"). Interestingly, the stability of 18e "s-band" coincides with the compact structure for Bin + at n≤9 but assembly structures for n≥10, showing an accommodation of the s electrons to the geometric structure. The atomic p-orbitals also allow to form superatomic orbitals at higher energy levels, contributing to the preferable structures of tridentate binding units. We illustrate the s-p nonhybrid nature accommodates the structure and superatomic states of bismuth clusters.
Collapse
Affiliation(s)
- Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiuying Du
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education, Dalian University of Technology, Dalian, 11602, P. R. China
| | - Mengxu Li
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education, Dalian University of Technology, Dalian, 11602, P. R. China
| | - Baoqi Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS) State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education, Dalian University of Technology, Dalian, 11602, P. R. China
| |
Collapse
|
7
|
Jia Y, Xu CQ, Cui C, Geng L, Zhang H, Zhang YY, Lin S, Yao J, Luo Z, Li J. Rh 19-: A high-spin super-octahedron cluster. SCIENCE ADVANCES 2023; 9:eadi0214. [PMID: 37585530 PMCID: PMC10431703 DOI: 10.1126/sciadv.adi0214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Probing atomic clusters with magic numbers is of supreme importance but challenging in cluster science. Pronounced stability of a metal cluster often arises from coincident geometric and electronic shell closures. However, transition metal clusters do not simply abide by this constraint. Here, we report the finding of a magic-number cluster Rh19- with prominent inertness in the sufficient gas-collision reactions. Photoelectron spectroscopy experiments and global-minimum structure search have determined the geometry of Rh19- to be a regular Oh‑[Rh@Rh12@Rh6]- with unusual high-spin electronic configuration. The distinct stability of such a strongly magnetic cluster Rh19- consisting of a nonmagnetic element is fully unveiled on the basis of its unique bonding nature and superatomic states. The 1-nanometer-sized Oh-Rh19- cluster corresponds to a fragment of the face-centered cubic lattice of bulk rhodium but with altered magnetism and electronic property. This cluster features exceptional electron-spin state isomers confirmed in photoelectron spectra and suggests potential applications in atomically precise manufacturing involving spintronics and quantum computing.
Collapse
Affiliation(s)
- Yuhan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang-Yang Zhang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shiquan Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Wu H, Anumula R, Andrew GN, Luo Z. A stable superatomic Cu 6(SMPP) 6 nanocluster with dual emission. NANOSCALE 2023; 15:4137-4142. [PMID: 36745061 DOI: 10.1039/d2nr07223h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We have synthesized single crystals of a highly stable Cu6 nanocluster protected by six ligands of 2-mercapto-5-n-propylpyrimidine (SMPP). This Cu6(SMPP)6 cluster has a quasi-octahedral superatomic Cu6 core, with the Cu atoms being protected by both -S- and N-bidentate coordination of the SMPP ligands. Interestingly, each Cu atom is linked with an N atom, while the two neighboring Cu atoms on the same triangular facet are linked by the -S- bridge of the ligand. Single-crystal parsing results show that the altered orientation of the SMPP ligands give rise to three packing modes (named as 1, 2, and 3) of the Cu6(SMPP)6 NCs. Apart from the well-organized coordination, this Cu6(SMPP)6 nanocluster exhibits superatomic stability with a metallic core of 4 valence electrons (1S22S2||3S2), enabling to largely balance the interactions between the polynuclear core and delocalized electrons. Interestingly, the Cu6(SMPP)6 NCs display dual emissions in both ultraviolet-visible (UV-Vis) and near-infrared (NIR) regions. First-principles calculations well reproduce the experimental spectrum, shedding light on the nature of excitation states and metal-ligand interactions in the Cu6(SMPP)6 cluster.
Collapse
Affiliation(s)
- Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Rajini Anumula
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Yan ST, Long ZC, Xu XL, Xu HG, Zheng WJ. Anion photoelectron spectroscopy and quantum chemical calculations of bimetallic niobium-aluminum clusters NbAl n-/0 ( n = 3-12): identification of a half-encapsulated symmetric structure for NbAl 12. Phys Chem Chem Phys 2023; 25:6498-6509. [PMID: 36786014 DOI: 10.1039/d2cp04978c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bimetallic niobium-doped aluminum clusters, NbAln-/0 (n = 3-12), are investigated through a synergetic combination of size-selected anion photoelectron spectroscopy and theoretical calculations. It is found that the dominant structures of NbAln- anions with n = 3-8 can be described by gradually adding Al atoms to the NbAl3- core. Starting from n = 9, the lowest-energy geometric structures of NbAl9-12- transform into bilayer structures. In particular, NbAl12- has a C3v symmetric structure, which can be viewed as a NbAl6 regular hexagon over a bowl-shaped Al6 structure. More detailed analyses indicate that NbAl9 and NbAl12- possess unusual stability, which may be attributed to their closed-shell electron configurations with superatomic features.
Collapse
Affiliation(s)
- Shuai-Ting Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Chao Long
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Cheng R, Cui C, Luo Z. Catalysis of dinitrogen activation and reduction by a single Fe 13 cluster and its doped systems. Phys Chem Chem Phys 2023; 25:1196-1204. [PMID: 36519573 DOI: 10.1039/d2cp04619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catalyzing N2 reduction to ammonia under ambient conditions is known to be significant both in the fertilizer industry and life sciences. To unveil the synergy of multiple sites, here, we have studied the catalysis of ammonia synthesis using a typical Fe13 cluster and its doped systems, Fe12X (X = V, Cr, Mn, Co, Ni, Cu, Zn, Nb, Mo, Ru, and Rh). The energetics analysis showed that center substitution (X@Fe12) was favored while doping single V, Cr, Co, and Mo atoms, whereas Mn, Ni, Cu, Zn, Nb, Ru, and Rh tended to form shell-doped structures (Fe12X). Among all the 13 clusters, Fe12Nb exhibited the lowest activation energy for N2 dissociation; moreover, in the hydrogenation process, Fe12Nb could convert N2 to ammonia efficiently. We have fully illustrated the reaction dynamics and structural chemistry essence of these diverse 13-atom systems and propose Fe12Nb as an ideal candidate for catalytic ammonia synthesis.
Collapse
Affiliation(s)
- Ran Cheng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chaonan Cui
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev 2023; 52:383-444. [PMID: 36533405 DOI: 10.1039/d2cs00582d] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
12
|
Arunachalam B, Manavalan R, Gopalakrishnan N. Effects of multi-atom doping into Pt13 cluster using Ab initio method. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Ethanol Conversion to Butanol over Small Coinage Metal Clusters: An Experimental and Computational Study. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
In-situ generation and global property profiling of metal nanoclusters by ultraviolet laser dissociation-mass spectrometry. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1267-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Shibuta M, Inoue T, Kamoshida T, Eguchi T, Nakajima A. Al13− and B@Al12− superatoms on a molecularly decorated substrate. Nat Commun 2022; 13:1336. [PMID: 35288553 PMCID: PMC8921336 DOI: 10.1038/s41467-022-29034-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Aluminum nanoclusters (Aln NCs), particularly Al13− (n = 13), exhibit superatomic behavior with interplay between electron shell closure and geometrical packing in an anionic state. To fabricate superatom (SA) assemblies, substrates decorated with organic molecules can facilitate the optimization of cluster–surface interactions, because the molecularly local interactions for SAs govern the electronic properties via molecular complexation. In this study, Aln NCs are soft-landed on organic substrates pre-deposited with n-type fullerene (C60) and p-type hexa-tert-butyl-hexa-peri-hexabenzocoronene (HB-HBC, C66H66), and the electronic states of Aln are characterized by X-ray photoelectron spectroscopy and chemical oxidative measurements. On the C60 substrate, Aln is fixed to be cationic but highly oxidative; however, on the HB-HBC substrate, they are stably fixed as anionic Aln− without any oxidations. The results reveal that the careful selection of organic molecules controls the design of assembled materials containing both Al13− and boron-doped B@Al12− SAs through optimizing the cluster–surface interactions. Anionic aluminium clusters are promising candidates for the fabrication of superatom-assembled nanomaterials. Here, the authors report enhanced stability for Al13− and boron-doped B@Al12− on a molecularly decorated p-type organic substrate.
Collapse
|
16
|
Jia Y, Li J, Huang M, Geng L, Zhang H, Cheng SB, Yi Y, Luo Z. Ladder Oxygenation of Group VIII Metal Clusters and the Formation of Metalloxocubes M 13O 8. J Phys Chem Lett 2022; 13:733-739. [PMID: 35025527 DOI: 10.1021/acs.jpclett.1c04098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The diversity of valence and bonding of transition metals makes their oxidation processes perplexing at reduced sizes. Here we report a comprehensive study on the oxidation reactions of rhodium clusters Rhn± (n = 3-30) and find that Rh3,4O4+, Rh5-7O6+, and Rh8-13O8+ always dominate the mass distributions showing size-dependent ladder oxygenation which is closely associated with the O-binding modes. While the Rh8-13O8+ clusters display a μ3-O binding mode (hollow site adsorption), Rh3-4O4+ and Rh5-7O6+ favor the μ2-O binding mode (edge-site adsorption) or a mixture of the two modes. The μ3-O binding mode is inclined to yield a cubic Rh13O8, while the μ2-O binding mode gives rise to oxygen-bridge protection for the metal clusters. Such ladder oxidation was also observed for Ptn+, Fen+, Con+, and Nin+ clusters. We propose a three-dimensional diagram for the oxidation states and O-binding modes of metals, and highlight the metalloxocubes M13O8+ for cluster-genetic materials.
Collapse
Affiliation(s)
- Yuhan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Miaofei Huang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yuanping Yi
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
17
|
Straßner A, Klein MP, Fries DV, Wiehn C, Huber ME, Mohrbach J, Dillinger S, Spelsberg D, Armentrout PB, Niedner-Schatteburg G. Kinetics of stepwise nitrogen adsorption by size-selected iron cluster cations: Evidence for size-dependent nitrogen phobia. J Chem Phys 2021; 155:244306. [PMID: 34972360 DOI: 10.1063/5.0064965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a study of stepwise cryogenic N2 adsorption on size-selected Fen + (n = 8-20) clusters within a hexapole collision cell held at T = 21-28 K. The stoichiometries of the observed adsorption limits and the kinetic fits of stepwise N2 uptake reveal cluster size-dependent variations that characterize four structural regions. Exploratory density functional theory studies support tentative structural assignment in terms of icosahedral, hexagonal antiprismatic, and closely packed structural motifs. There are three particularly noteworthy cases, Fe13 + with a peculiar metastable adsorption limit, Fe17 + with unprecedented nitrogen phobia (inefficient N2 adsorption), and Fe18 + with an isomeric mixture that undergoes relaxation upon considerable N2 uptake.
Collapse
Affiliation(s)
- Annika Straßner
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Matthias P Klein
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniela V Fries
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Christopher Wiehn
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Maximilian E Huber
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jennifer Mohrbach
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sebastian Dillinger
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Dirk Spelsberg
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - P B Armentrout
- Department of Chemistry, Univerdstsity of Utah, Salt Lake City, Utah 84112, USA
| | - Gereon Niedner-Schatteburg
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
18
|
Zhang J, Chen S, Yu J, Deng Z, Qin Z, Qiu X, Jiang Y, Jiao C, Tang Z. Deciphering the Superatomic Behavior of Group V Metal Monoxides. J Phys Chem Lett 2021; 12:7636-7640. [PMID: 34351149 DOI: 10.1021/acs.jpclett.1c01971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The valence orbitals of Group V metal monoxides exhibit atomic-like properties which mimic that of coinage metal element atoms. The electronic structures of MO-1/0 (M = V, Nb, and Ta) have been determined by negative ion photoelectron velocity map imaging. Electron affinities and vibrational frequencies for the ground state and excited states of MO (M = V, Nb, and Ta) molecules have been identified as well as photoelectron angular distributions. On the basis of the equivalent-electron principle, MO- (M = V, Nb, and Ta) molecules bear valence electron configurations similar to those of coinage metal elemental atoms, despite having more complicated electronic states for molecules, and concomitant mimicry of magnetic superatom. Generally, other than low-spin states of coinage metal atoms, Group V metal monoxides demonstrate a high-spin state except for TaO, possessing the potential applications to inexpensive superatoms in industrial catalysis.
Collapse
Affiliation(s)
- Jiangle Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shanjun Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingxiong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zefeng Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengbo Qin
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Xingtai Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yihuang Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengxiang Jiao
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Zichao Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
19
|
Farrokhpour H, Gerami M. Interaction of M@Au12 nanocluster (M = Au, Ag, Pd, and Pt) with different forms of cysteine (uncharged, cationic, anionic, and zwitterion) via the Au-S bond. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Farkaš B, Terranova U, de Leeuw NH. The mechanism underlying the functionalisation of cobalt nanoparticles by carboxylic acids: a first-principles computational study. J Mater Chem B 2021; 9:4915-4928. [PMID: 34100480 DOI: 10.1039/d0tb02928a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promise of biocompatible magnetic nanoparticles with high magnetic saturation in the implementation as drug carriers and hyperthermia agents has generated significant interest in functionalised cobalt nanoparticles. Carboxylic acid coatings on metallic nanoparticles have been shown as an attractive option owing to their respectable stability and biocompatibility. However, only limited information is available on the molecular mechanism leading to the formation of such protective coatings. In this study, ab initio molecular dynamics simulations have been used to unravel the functionalisation mechanism starting from a neutral cobalt cluster and valeric acid molecules. Three stages were detected in the coating process: (i) rapid initial adsorption of acid molecules, (ii) simultaneous adsorption of new molecules and dissociation of those already interacting with the cluster, and, finally, (iii) grouping of dissociated hydrogen atoms and subsequent desorption of acid molecules. The fate of the hydrogen atoms was probed through a combination of static and dynamic ab initio modelling approaches, which predicted H2 generation with favourable energetics. A better understanding of the functionalisation and interaction mechanisms will aid the rational design of biocompatible cobalt nanoparticles for various applications.
Collapse
Affiliation(s)
- Barbara Farkaš
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | | | | |
Collapse
|
21
|
Geng L, Cui C, Jia Y, Yin B, Zhang H, Sun ZD, Luo Z. Reactivity of Cobalt Clusters Co n±/0 with Dinitrogen: Superatom Co 6+ and Superatomic Complex Co 5N 6. J Phys Chem A 2021; 125:2130-2138. [PMID: 33689326 DOI: 10.1021/acs.jpca.1c00483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a joint experimental and theoretical study on the reactions of cobalt clusters (Con±/0) with nitrogen using the customized reflection time-of-flight mass spectrometer combined with a 177.3 nm deep-ultraviolet laser. Comparing to the behaviors of neutral Con (n = 2-30) and anionic Con- clusters (n = 7-53) which are relatively inert in reacting with nitrogen in the fast-flow tube, Con+ clusters readily react with nitrogen resulting in adducts of one or multiple N2 except Co6+ which stands firm in the reaction with nitrogen. Detailed quantum chemistry calculations, including the energetics, electron occupancy, and orbital analysis, well-explained the reasonable reactivity of Con+ clusters with nitrogen and unveiled the open-shell superatomic stability of Co6+ within a highly symmetric (D3d) structure. The D3d Co6+ bears an electron configuration of a half-filled superatomic 1P orbital (i.e., 1S21P3||1D0), a large α-highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, symmetric multicenter bonds, and reasonable electron delocalization pertaining to metallic aromaticity. Topology analysis by atom-in-molecule illustrates the interactions between Con+ and N2 corresponding to covalent bonds, but the Co-N interactions in cationic Co2+N2 and Co6+N2 clusters are apparently weaker than those in the other systems. In addition, we identify a superatomic complex Co5N6+ which exhibits similar frontier orbitals as the naked Co5+ cluster, but the alpha HOMO-LUMO gap is nearly double-magnified, which is consistent with the high-abundance peak of Co5N6+ in the experimental observation. The enhanced stability of such a ligand-coordinated superatomic complex Co5N6+, along with the superatom Co6+ with aromaticity, sheds light on special and general superatoms.
Collapse
Affiliation(s)
- Lijun Geng
- School of Physics, Shandong University, Jinan 250100, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuhan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Baoqi Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhen-Dong Sun
- School of Physics, Shandong University, Jinan 250100, P. R. China.,School of Physics and Electrical Engineering, Kashi University, Kashgar 844006, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Wu H, Fang YG, Anumula R, Andrew GN, Cui G, Fang W, Luo Z, Yao J. A mono-copper doped undeca-gold cluster with up-converted and anti-stokes emissions of fluorescence and phosphorescence. NANOSCALE 2021; 13:5300-5306. [PMID: 33660721 DOI: 10.1039/d0nr07624d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We have synthesized single crystals of a highly stable Cu-doped undeca-gold cluster protected by both triphenylphosphine (PPh3) and 2-pyridinethiol (-SPy) ligands, formulated as [Au11Cu1(PPh3)7(SPy)3]+. This cluster (Au11Cu1 NCs for short) has a metallic core of C3v Au@Au10 with the Cu atom capped on one of the nine triangular facets and it is triply-coordinated to three N atoms of the SPy ligands of which the sulfur atom simultaneously binds to three adjacent Au atoms via singly-coordinated S-Au bonds, respectively. The other seven gold atoms form a crown structure by a link of three orthogons with common sides and are protected by seven PPh3 ligands. Besides the well-organized coordination, this Au11Cu1 nanocluster is demonstrated to exhibit superatom stability of the metallic core within 8 valence electrons (assuming that the 3 electrophilic-SPy ligands capture 3 electrons from the metal center). More interestingly, this Au11Cu1 nanocluster shows interesting emissions in both ultraviolet visible (UV-Vis) and near infrared (NIR) regions, and the emissions display novel anti-Stokes up-conversion lasing characteristics. TD-DFT calculated UV-vis and emission spectra well reproduce the experimental results, shedding light on the nature of excitation states and underlying mechanism of electronic transitions between diverse energy levels of such a monolayer-protected bimetallic cluster.
Collapse
Affiliation(s)
- Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| | - Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Rajini Anumula
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| |
Collapse
|
23
|
|
24
|
Zhang H, Cui C, Yan M, Geng L, Wu H, Jia Y, Luo Z, Li SD. An oxygen-passivated vanadium cluster [V@V10O15]− with metal–metal coordination produced by reacting Vn− with O2. Phys Chem Chem Phys 2021; 23:921-927. [DOI: 10.1039/d0cp05385f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An oxygen-passivated vanadium cluster [V@V10O15]− is reported by reacting Vn− with O2, giving rise to superatom features of metal–metal coordination and 3D aromaticity.
Collapse
Affiliation(s)
- Hanyu Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Chaonan Cui
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Miao Yan
- Institute of Molecular Science
- Taiyuan 030006
- China
| | - Lijun Geng
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Haiming Wu
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yuhan Jia
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhixun Luo
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Si-Dian Li
- Institute of Molecular Science
- Taiyuan 030006
- China
| |
Collapse
|
25
|
Li T, Li Q, Yang S, Xu L, Chai J, Li P, Zhu M. Surface engineering of linearly fused Au 13 units using diphosphine and Cd doping. Chem Commun (Camb) 2021; 57:4682-4685. [PMID: 33977990 DOI: 10.1039/d1cc00577d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, surface engineering was delicately performed to assemble two new Au-Cd alloy nanoclusters, including [Cd2Au17(S-c-C6H11)12(DPPP)2](BPh4) and Cd2Au29(TBBT)17(DPPF)2. Both the Au13 (in Cd2Au17) and Au25 (in Cd2Au29) cores were covered by two identical Au2Cd(SR)6 motifs and two diphosphine ligands. In addition, their optical properties were explored to give clues on the kernel- and surface-dependent electronic structures.
Collapse
Affiliation(s)
- Tianrong Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Qinzhen Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Sha Yang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Liyun Xu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Jinsong Chai
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Peng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
26
|
Andrew GN, Wu H, Anumula R, Luo Z. Cl@Ag 22 Au 6 (4-TBBT) 28 (PPh 4 ): A Chloride-Centered Ag-Au Bimetallic Cluster for Optics. Chem Asian J 2020; 15:4077-4081. [PMID: 33047476 DOI: 10.1002/asia.202001171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/27/2022]
Abstract
We report the single-crystal synthesis of a chlorine-centered bimetallic cluster, Cl@Ag22 Au6 (4-TBBT)28 (PPh4 ), which bears a quatrefoil-structured Cl@Ag22 (SR)16 core studded by six Au(SR)2 staples showing a quasi Td symmetry. This cluster bears 28 metal atoms and 28 ligands, with a chlorine atom hosted in the center of the metallic Ag22 Au6 core. Single-crystal analysis shows that this cluster possesses essentially a different bonding nature compared with other monolayer-protected metal clusters (MPCs) or traditional metal-sulfur complexes. We fully dissect the structure evolution in forming such a chlorine-centered cluster. Interestingly, this cluster, Cl@Ag22 Au6 (4-TBBT)28 (PPh4 ), displays a fluorescence emission at 570 nm and supports the solid emission with a minor red shift at 574 nm. On the other hand, we have tested the nonlinear optical property and observed unambiguous nonlinear optical property with a normal valley-shaped transmittance curve corresponding to reverse saturated absorption (RSA) of the cluster.
Collapse
Affiliation(s)
- Gaya N Andrew
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100090, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haiming Wu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100090, P. R. China
| | - Rajini Anumula
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100090, P. R. China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100090, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Geng L, Weng M, Xu CQ, Zhang H, Cui C, Wu H, Chen X, Hu M, Lin H, Sun ZD, Wang X, Hu HS, Li J, Zheng J, Luo Z, Pan F, Yao J. Co13O8—metalloxocubes: a new class of perovskite-like neutral clusters with cubic aromaticity. Natl Sci Rev 2020; 8:nwaa201. [PMID: 34691557 PMCID: PMC8528261 DOI: 10.1093/nsr/nwaa201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 01/24/2023] Open
Abstract
Exploring stable clusters to understand structural evolution from atoms to macroscopic matter and to construct new materials is interesting yet challenging in chemistry. Utilizing our newly developed deep-ultraviolet laser ionization mass spectrometry technique, here we observe the reactions of neutral cobalt clusters with oxygen and find a very stable cluster species of Co13O8 that dominates the mass distribution in the presence of a large flow rate of oxygen gas. The results of global-minimum structural search reveal a unique cubic structure and distinctive stability of the neutral Co13O8 cluster that forms a new class of metal oxides that we named as ‘metalloxocubes’. Thermodynamics and kinetics calculations illustrate the structural evolution from icosahedral Co13 to the metalloxocube Co13O8 with decreased energy, enhanced stability and aromaticity. This class of neutral oxygen-passivated metal clusters may be an ideal candidate for genetic materials because of the cubic nature of the building blocks and the stability due to cubic aromaticity.
Collapse
Affiliation(s)
- Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, Shandong University, Jinan 250100, China
| | - Mouyi Weng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Chen
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Mingyu Hu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hai Lin
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen-Dong Sun
- School of Physics, Shandong University, Jinan 250100, China
- School of Physics and Electrical Engineering, Kashi University, Kashgar 844006, China
| | - Xi Wang
- College of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jiaxin Zheng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Kang X, Li Y, Zhu M, Jin R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev 2020; 49:6443-6514. [PMID: 32760953 DOI: 10.1039/c9cs00633h] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal nanoclusters fill the gap between discrete atoms and plasmonic nanoparticles, providing unique opportunities for investigating the quantum effects and precise structure-property correlations at the atomic level. As a versatile strategy, alloying can largely improve the physicochemical performances compared to the corresponding homo-metal nanoclusters, and thus benefit the applications of such nanomaterials. In this review, we highlight the achievements of atomically precise alloy nanoclusters, and summarize the alloying principles and fundamentals, including the synthetic methods, site-preferences for different heteroatoms in the templates, and alloying-induced structure and property changes. First, based on various Au or Ag nanocluster templates, heteroatom doping modes are presented. The templates with electronic shell-closing configurations tend to maintain their structures during doping, while the others may undergo transformation and give rise to alloy nanoclusters with new structures. Second, alloy nanoclusters of specific magic sizes are reviewed. The arrangement of different atoms is related to the symmetry of the structures; that is, different atoms are symmetrically located in the nanoclusters of smaller sizes, and evolve into shell-by-shell structures at larger sizes. Then, we elaborate on the alloying effects in terms of optical, electrochemical, electroluminescent, magnetic and chiral properties, as well as the stability and reactivity via comparisons between the doped nanoclusters and their homo-metal counterparts. For example, central heteroatom-induced photoluminescence enhancement is emphasized. The applications of alloy nanoclusters in catalysis, chemical sensing, bio-labeling, and other fields are further discussed. Finally, we provide perspectives on existing issues and future efforts. Overall, this review provides a comprehensive synthetic toolbox and controllable doping modes so as to achieve more alloy nanoclusters with customized compositions, structures, and properties for applications. This review is based on publications available up to February 2020.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | | | | | | |
Collapse
|
29
|
Anumula R, Reber AC, An P, Cui C, Guo M, Wu H, Luo Z, Khanna SN. Ligand accommodation causes the anti-centrosymmetric structure of Au 13Cu 4 clusters with near-infrared emission. NANOSCALE 2020; 12:14801-14807. [PMID: 32627782 DOI: 10.1039/d0nr02448a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We synthesized an [Au13Cu4(PPh3)4(SPy)8]+ nanocluster co-capped by phosphine and thiolate ligands. Interestingly, this Au13Cu4 cluster corresponds to an anti-centrosymmetric structure with the four copper atoms coordinated to the mixed ligands on the same side of the Au13 icosahedron, which is in sharp contrast to the [Au13Cu4(PPh2Py)4(SPhtBu)8]+ and [Au13Cu2(PPh3)6(SPy)6]+ clusters which possess highly symmetric structures with well-separated Cu adatoms. Both [Au13Cu4(PPh3)4(SPy)8]+ and [Au13Cu2(PPh3)6(SPy)6]+ clusters correspond to 8 valence electron superatoms with large HOMO-LUMO gaps, respectively. The difference in structure is rooted in the nature of the mixed ligands, with the bidentate SPy binding strongly to Cu on both binding sites (-N-Cu and Au-SR-Cu) leading to the co-linking of adjacent Cu atoms, while the bidentate PPh2Py binds Cu on one site and Au on the other giving rise to a separation of the Cu atoms even in the presence of relatively higher monomer concentration. Both [Au13Cu4(PPh3)4(SPy)8]+ and [Au13Cu2(PPh3)6(SPy)6]+ display emissions in the near-IR regions. TD-DFT calculations reproduce the spectroscopic results with specified excited states, shedding light on the geometric and electronic behaviors of the ligand-protected Au13Mx clusters.
Collapse
Affiliation(s)
- Rajini Anumula
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Anumula R, Xiao P, Cui C, Wu H, Cui G, Fang WH, Luo Z, Yao J. A small bimetallic Ag 3Cu 2 nanocluster with dual emissions within and against Kasha's rule. NANOSCALE 2020; 12:7864-7869. [PMID: 32227024 DOI: 10.1039/d0nr00471e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single crystals of a small bimetallic Ag3Cu2 nanocluster protected by six ligands of 2,4-dimethylbenzene thiol are synthesized by a one-pot procedure of wet chemistry. This Ag3Cu2 nanocluster bears a trigonal bipyramid metallic core with two copper atoms located on both sides of a triangular Ag3. Interestingly, the six Cu-Ag side edges of the trigonal bipyramid are fully protected by the six ligands giving rise to reinforced stability and high chemical purity. More interestingly, this Ag3Cu2 cluster shows strong dual fluorescence emissions in both ultraviolet visible (UV-vis) and near infrared (NIR) regions. Theoretical calculations reproduce the absorption and fluorescence spectra where the NIR emission at 824 nm is assigned to the S1→ S0 transition, while the simultaneous emission in the visible band is due to the radiation of highly excited states and is against Kasha's rule.
Collapse
Affiliation(s)
- Rajini Anumula
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang M, Wu H, Huang B, Luo Z, Hansen K. Iodization Threshold in Size-Dependent Reactions of Lead Clusters Pb n+ with Iodomethane. J Phys Chem A 2020; 124:2505-2512. [PMID: 32091897 DOI: 10.1021/acs.jpca.0c01413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Utilizing a magnetron-sputtering (MagS) source in tandem with a multiple-ion laminar flow tube (MIFT) reactor and a customized triple quadrupole mass spectrometer (TQMS), we have prepared clean Pbn+ (n = 1-13) clusters and measured their reactivity with iodomethane under high carrier gas pressures. Strong size dependences are found for the reactivity of these cationic Pbn+ clusters with CH3I. For the Pbn+ with n ≤ 4, iodinated clusters PbnI+ were found to be the dominant products, in strong contrast to n > 4 where no such products were seen. Quantum chemical studies show that with an increasing number of Pb atoms, the Pb-Pb interatomic interactions become stronger compared with the Pb-I bonding in PbnI+ clusters. Furthermore, the reactions of Pb1-4+ with CH3I have fairly small transition state energy barriers, in contrast to those for Pbn>4+ clusters which have magnitudes that will prevent reactions under the ambient conditions.
Collapse
Affiliation(s)
- Mengzhou Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Benben Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Klavs Hansen
- Joint Centre for Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin, P. R. China.,Department of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| |
Collapse
|