1
|
Choroba K, Palion-Gazda J, Penkala M, Rawicka P, Machura B. Tunability of triplet excited states and photophysical behaviour of bis-cyclometalated iridium(III) complexes with imidazo[4,5- f][1,10]phenanthroline. Dalton Trans 2024. [PMID: 39432269 DOI: 10.1039/d4dt01996b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
This is a comprehensive study of the photophysical behaviour of heteroleptic iridium(III) complexes with imidazo[4,5-f][1,10]phenanthroline (imphen) as an ancillary ligand, represented by the general formula [Ir(N∩C)2(imphen)]PF6. As cyclometalating ligands, 2-phenylpyridine (Hppy), 2-phenylquinoline (Hpquin), 2-phenylbenzothiazole (Hpbztz), and 2-(2-pyridyl)benzothiophene (pybzthH) were used. The impact of structural modifications of cyclometalating ligands was widely explored by a combination of steady-state and time-resolved optical techniques accompanied by theoretical calculations. We evidenced that the cyclometalating ligands induce essential changes in the nature of the emissive excited state and the emission characteristics of [Ir(N∩C)2(imphen)]PF6. While the complex [Ir(ppy)2(imphen)]PF6 (1) is a typical 3MLLCT emitter, the lowest triplet states of [Ir(pquin)2(imphen)]PF6 (2), [Ir(pbztz)2(imphen)]PF6 (3) and [Ir(pybzth)2(imphen)]PF6 (4) have a predominant 3LCN∩C character. The phosphorescence colour of the investigated Ir(III) complexes changes from greenish-yellow to red, their quantum yields vary from 56 to 2%, and their triplet excited-state lifetimes fall in the 743-3840 ns range. The highest photoluminescence quantum yield was revealed for 2 in CH2Cl2, while complex 3 in MeCN shows the most pronounced increase in the lifetime. Both complexes 2 and 3 show an increased efficiency of singlet oxygen generation. The herein discussed structure-property relationships are of high significance for controlling photoinduced processes in heteroleptic iridium(III) complexes with the imphen-based ancillary ligand, and making further progress in effectively tuning the emission energies, quantum yields and excited-state lifetimes of these systems by structural modifications of cyclometalating ligands, especially the π-conjugation, the position of the N-donor and the presence of sulfur heteroatoms.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Joanna Palion-Gazda
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Patrycja Rawicka
- Institute of Physics, Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| |
Collapse
|
2
|
Chen T, Ma YJ, Xiao G, Fang X, Liu Y, Li K, Yan D. The trade-off anionic modulation in metal-organic glasses showing color-tunable persistent luminescence. MATERIALS HORIZONS 2024; 11:4951-4960. [PMID: 39045671 DOI: 10.1039/d4mh00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Ultralong room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) materials provide exciting opportunities for the rational design of persistent luminescence owing to their long-lived excitons. However, conventional rare-earth-based all-inorganic emitters involve high cost and harsh synthesis conditions, and purely organic systems may require complicated synthesis routes and tedious purification. Therefore, it is highly desirable to develop a cost-effective and easily manufacturable method for achieving color-tunable RTP-TADF with a long afterglow. Herein, we demonstrate a rational strategy to introduce different anions (Cl-, Br- and OAc- ions) into a Zn-based metal-organic scaffold, which can improve the crystal rigidity and achieve a well-balanced RTP-TADF. Both theoretical and experimental studies have demonstrated that the adjustment of different anions can effectively modulate the spin-orbit coupling (SOC) and the energy gap of singlet-triplet states (ΔEST) and then tailor the afterglow lifetime. Moreover, we prepared dye-doped metal-organic hybrid glasses with remarkable potential for the color-tunable afterglow. Therefore, this work not only provides a new horizon for modulating crystal and glass states with color/lifetime-tunable persistent luminescence, but also contributes to optical information storage and anti-counterfeiting technology.
Collapse
Affiliation(s)
- Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yumin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Kangjing Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
3
|
Posavec L, Cinčić D. Isothiocyanate Sulfur Atom as an Acceptor Site for Halogen-Bonded Cocrystallization of Werner Ni(II) Coordination Compounds and Perfluorinated Iodobenzenes. CRYSTAL GROWTH & DESIGN 2024; 24:7514-7523. [PMID: 39323605 PMCID: PMC11421206 DOI: 10.1021/acs.cgd.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
We explore the halogen bond acceptor potential of the isothiocyanate sulfur atom in the synthesis of cocrystals involving metal-organic building blocks by using Werner Ni(II) coordination compounds whose pendant isothiocyanate group enables halogen bonding. A series of 14 cocrystals involving octahedral Ni(L)4(NCS)2 coordination compounds (L = pyridine or 4-methylpyridine) has been prepared by both crystallization from solution and liquid-assisted grinding. The effectiveness of this strategy is demonstrated by the assembly of a large family of cocrystals involving five perfluorinated iodobenzenes. For both coordination compounds, we generally obtained one cocrystal with each donor; in one case, we obtained an additional two stoichiomorphs, and in another, we obtained three additional solvates. Single-crystal X-ray diffraction experiments revealed that building units in all cocrystals are connected via S···I halogen bonds involving the donor iodine atom and the isothiocyanate sulfur atom, which is an acceptor of two and, in some cases, even three halogen bonds. Consequently, both coordination compounds act as multitopic acceptors that can form multiple halogen bonds leading to the formation of one-, two-, and three-dimensional halogen-bonded architectures. The relative shortenings of S···I distances are from 7 to 15%, while the S···I-C angles are in the range from 160 to 180°.
Collapse
Affiliation(s)
- Lidija Posavec
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Dominik Cinčić
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Mondal S, Ghosh S, Hajra A. Visible-light-induced redox-neutral difunctionalization of alkenes and alkynes. Chem Commun (Camb) 2024; 60:9659-9691. [PMID: 39129429 DOI: 10.1039/d4cc03552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The twelve principles of green chemistry illuminate the pathway in the direction of sustainable and eco-friendly synthesis, marking a fundamental shift in synthetic organic chemistry paradigms. In this realm, harnessing the power of visible light for the difunctionalization of various skeletons without employing any external oxidant or reductant, specifically termed as redox-neutral difunctionalization, has attracted tremendous interest from synthetic organic chemists due to its low cost, easy availability and environmentally friendly nature in contrast to traditional metal-catalyzed difunctionalizations. This review presents an overview of recent updates on visible-light-induced redox-neutral difunctionalization reactions with literature coverage up to May 2024.
Collapse
Affiliation(s)
- Susmita Mondal
- Central Ayurvedic Research Institute, 4-CN Block, Bidhannagar, Kolkata, 700091, West Bengal, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
5
|
Sheng XX, Qiu CY, Wang LN, Du YJ, Tang LN, Chen JM, Liu GY, Yang S, Zheng PF, Chen M. Transition-Metal-Free Radical Relay Cascade Annulation of Amides: Access to Antitumor Active Benzo[b]azepine and Oxindole Derivatives. Chemistry 2024:e202402402. [PMID: 39186035 DOI: 10.1002/chem.202402402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
Efficient transition-metal-free synthesis of benzo[b]azepines and oxindoles is achieved via a radical relay cascade strategy employing halogen atom transfer (XAT) for aryl radical generation followed by intramolecular hydrogen atom transfer (HAT). Optimization yielded moderate to substantial yields under visible light irradiation. Preliminary biological assessments revealed promising anti-tumor activity for select compounds. This study underscores the potential of XAT-mediated radical relay cascades in medicinal chemistry and anticancer drug discovery.
Collapse
Affiliation(s)
- Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Li-Na Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yu-Jia Du
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Jia-Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Guo-Ying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Peng-Fei Zheng
- College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| |
Collapse
|
6
|
Ripak A, Vega Salgado AK, Valverde D, Cristofaro S, de Gary A, Olivier Y, Elias B, Troian-Gautier L. Factors Controlling Cage Escape Yields of Closed- and Open-Shell Metal Complexes in Bimolecular Photoinduced Electron Transfer. J Am Chem Soc 2024; 146:22818-22828. [PMID: 39078742 DOI: 10.1021/jacs.4c08158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The cage escape yield, i.e., the separation of the geminate radical pair formed immediately after bimolecular excited-state electron transfer, was studied in 11 solvents using six Fe(III), Ru(II), and Ir(III) photosensitizers and tri-p-tolylamine as the electron donor. Among all complexes, the largest cage escape yields (0.67-1) were recorded for the Ir(III) photosensitizer, showing the highest potential as a photocatalyst in photoredox catalysis. These yields dropped to values around 0.65 for both Ru(II) photosensitizers and to values around 0.38 for the Os(II) photosensitizer. Interestingly, for both open-shell Fe(III) complexes, the yields were small (<0.1) in solvents with dielectric constant greater than 20 but were shown to reach values up to 0.58 in solvents with low dielectric constants. The results presented herein on closed-shell photosensitizers suggest that the low rate of triplet-singlet intersystem crossing within the manifold of states of the geminate radical pair implies that charge recombination toward the ground state is a spin-forbidden process, favoring large cage escape yields that are not influenced by dielectric effects. Geminate charge recombination in open-shell metal complexes, such as the two Fe(III) photosensitizers studied herein, is no longer a spin-forbidden process and becomes highly sensitive to solvent effects. Altogether, this study provides general guidelines for factors influencing bimolecular excited-state reactivity using prototypical photosensitizers but also allows one to foresee a great development of Fe(III) photosensitizers with the 2LMCT excited state in photoredox catalysis, providing that solvents with low dielectric constants are used.
Collapse
Affiliation(s)
- Alexia Ripak
- Molecular Chemistry, Materials and Catalysis (MOST), UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Ana Karem Vega Salgado
- Molecular Chemistry, Materials and Catalysis (MOST), UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Danillo Valverde
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Silvia Cristofaro
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Alban de Gary
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Benjamin Elias
- Molecular Chemistry, Materials and Catalysis (MOST), UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Molecular Chemistry, Materials and Catalysis (MOST), UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
7
|
Lv YF, Liu G, Shi Z, Wang Z. Chromium Catalyzed Asymmetric Reformatsky Reaction. Angew Chem Int Ed Engl 2024; 63:e202406109. [PMID: 38837496 DOI: 10.1002/anie.202406109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
This study describes an unprecedented chromium-catalyzed asymmetric Reformatsky reaction, enabling the synthesis of chiral β-hydroxy carbonyl compounds from α-chlorinated or α-brominated esters and amides. By employing a chiral chromium/diarylamine bis(oxazoline) catalyst, we achieved relatively broad functional group tolerance. Distinct from known reports, the protocol operates under both classical and photoredox conditions, facilitated by the in situ formation of a nucleophilic chiral chromium intermediate through a radical-polar crossover mechanism. Preliminary mechanistic insights, supported by DFT calculations, identify the nucleophilic aldehyde addition as the key stereo-determining step. This approach not only overcomes the limitations of existing Reformatsky reactions but also provides a versatile strategy for accessing complex chiral molecules.
Collapse
Affiliation(s)
- Yong-Feng Lv
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Gang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Zhaoxin Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
8
|
Das A, Justin Thomas KR. Generation and Application of Aryl Radicals Under Photoinduced Conditions. Chemistry 2024; 30:e202400193. [PMID: 38546345 DOI: 10.1002/chem.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Indexed: 04/26/2024]
Abstract
Photoinduced aryl radical generation is a powerful strategy in organic synthesis that facilitates the formation of diverse carbon-carbon and carbon-heteroatom bonds. The synthetic applications of photoinduced aryl radical formation in the synthesis of complex organic compounds, including natural products, physiologically significant molecules, and functional materials, have received immense attention. An overview of current developments in photoinduced aryl radical production methods and their uses in organic synthesis is given in this article. A generalized idea of how to choose the reagents and approach for the generation of aryl radicals is described, along with photoinduced techniques and associated mechanistic insights. Overall, this article offers a critical assessment of the mechanistic results as well as the selection of reaction parameters for specific reagents in the context of radical cascades, cross-coupling reactions, aryl radical functionalization, and selective C-H functionalization of aryl substrates.
Collapse
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
9
|
Liu S, Yang H, Zhang Y, Wang F, Qin Q, Wang D, Huang C, Zhang YY. Robust cooperative of cadmium sulfide with highly ordered hollow microstructure coordination polymers for regulating the photocatalytic performance. J Colloid Interface Sci 2024; 663:919-929. [PMID: 38447406 DOI: 10.1016/j.jcis.2024.02.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Accurately controlling and achieving selective reactivity at difficult-to-access reaction sites in organic molecules is challenging owing to the similar local and electronic environments of multiple reaction sites. In this work, we regulated multiple reaction sites in a highly selective and active manner using cobalt coordination polymers (Co-CP) 1 and 1a with various particle sizes and morphologies ranging from large granular to ordered hollow hemispheres by introducing sodium dodecyl sulfate (SDS) as a surfactant. The size and morphology of the catalysts could be tuned by controlling the amount of SDS. An SDS concentration of 0.03 mmol generated 1a having a highly ordered hollow hemispherical microstructure with a well-defined platform as a pre-made building unit. Cadmium sulfide (CdS), as a typical photocatalyst, was subsequently uniformly anchored in-situ on the premade building unit 1a to produce CdS@1a composites, that inherited the originally ordered hollow hemispherical microstructure while integrating CdS as well-dispersed catalytic active sites. Furthermore, the well-established CdS@1a composites were used as photocatalysts in selective oxidation reactions under air atmosphere with blue irradiation. The CdS0.109@1a composite with unique structural characteristics, including uniformly distributed and easily accessible catalytic sites and excellent photoelectrochemical performance, served as a highly efficient heterogeneous photocatalyst for promoting the selective oxidation of sulfides to sulfoxides as the sole products. This work presents an approach for fabricating CPs as premade building units that function as well-defined platforms for integration with photocatalysts, enabling tuning of the structure-selectivity-activity relationships.
Collapse
Affiliation(s)
- Saiwei Liu
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Haiyan Yang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Yue Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Fei Wang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Qi Qin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Dandan Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Chao Huang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Ying-Ying Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China.
| |
Collapse
|
10
|
Doeven EH, Connell TU, Sinha N, Wenger OS, Francis PS. Electrochemiluminescence of a First-Row d 6 Transition Metal Complex. Angew Chem Int Ed Engl 2024; 63:e202319047. [PMID: 38519420 DOI: 10.1002/anie.202319047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
We report the electrochemiluminescence (ECL) of a 3d6 Cr(0) complex ([Cr(LMes)3]; λem=735 nm) with comparable photophysical properties to those of ECL-active complexes of 4d6 or 5d6 precious metal ions. The electrochemical potentials of [Cr(LMes)3] are more negative than those of [Ir(ppy)3] and render the [Cr(LMes)3]* excited state inaccessible through conventional co-reactant ECL with tri-n-propylamine or oxalate. ECL can be obtained, however, through the annihilation route in which potentials sufficient to oxidise and reduce the luminophore are alternately applied. When combined with [Ir(ppy)3] (λem=520 nm), the annihilation ECL of [Cr(LMes)3] was greatly enhanced whereas that of [Ir(ppy)3] was diminished. Under appropriate conditions, the relative intensities of the two spectrally distinct emissions can be controlled through the applied potentials. From this starting point for ECL with 3d6 metal complexes, we discuss some directions for future development.
Collapse
Affiliation(s)
- Egan H Doeven
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Timothy U Connell
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- School of Chemical Sciences, Indian Institute of Technology (IIT) Mandi Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Paul S Francis
- Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment, Deakin University Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
11
|
Zhang Y, Lee TS, Petersen JL, Milsmann C. Photophysical Studies of a Zr(IV) Complex with Two Pyrrolide-Based Tetradentate Schiff Base Ligands. Inorg Chem 2024; 63:9002-9013. [PMID: 38700497 PMCID: PMC11110004 DOI: 10.1021/acs.inorgchem.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The reaction of two equivalents of N,N'-bis(2-pyrrolylmethylidene)-1,2-phenylenediamine (H2bppda) with tetrabenzylzirconium provided the air- and moisture-stable eight-coordinate complex Zr(bppda)2. Temperature-dependent steady-state and time-resolved emission spectroscopy established weak photoluminescence (ΦPL = 0.4% at 293 K) by a combination of prompt fluorescence and thermally activated delayed fluorescence (TADF) upon visible light excitation at and around room temperature. TADF emission is strongly quenched by 3O2 and shows highly temperature-sensitive emission lifetimes of hundreds of microseconds. The lifetime of the lowest energy singlet excited state, S1, was established by transient absorption spectroscopy and shows rapid deactivation (τ = 142 ps) by prompt fluorescence and intersystem crossing to the triplet state, T1. Time-dependent density functional theory (TD-DFT) calculations predict moderate ligand-to-metal charge transfer (LMCT) contributions of 25-30% for the S1 and T1 states. A comparison of Zr(bppda)2 to related zirconium pyridine dipyrrolide complexes, Zr(PDP)2, revealed important electronic structure changes due to the eight-coordinate ligand environment in Zr(bppda)2, which were correlated to differences in the photophysical properties between the two compound classes.
Collapse
Affiliation(s)
- Yu Zhang
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02144, United States
| | - Tia S. Lee
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jeffrey L. Petersen
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
12
|
Guerrero I, Viñas C, Teixidor F, Romero I. Unveiling Non-Covalent Interactions in Novel Cooperative Photoredox Systems for Efficient Alkene Oxidation in Water. Molecules 2024; 29:2378. [PMID: 38792238 PMCID: PMC11123843 DOI: 10.3390/molecules29102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A new cooperative photoredox catalytic system, [RuII(trpy)(bpy)(H2O)][3,3'-Co(8,9,12-Cl3-1,2-C2B9H8)2]2, 5, has been synthesized and fully characterized for the first time. In this system, the photoredox catalyst [3,3'-Co(8,9,12-Cl3-1,2-C2B9H8)2]-[Cl6-1]-, a metallacarborane, and the oxidation catalyst [RuII(trpy)(bpy)(H2O)]2+, 2 are linked by non-covalent interactions. This compound, along with the one previously synthesized by us, [RuII(trpy)(bpy)(H2O)][(3,3'-Co(1,2-C2B9H11)2]2, 4, are the only examples of cooperative molecular photocatalysts in which the catalyst and photosensitizer are not linked by covalent bonds. Both cooperative systems have proven to be efficient photocatalysts for the oxidation of alkenes in water through Proton Coupled Electron Transfer processes (PCETs). Using 0.05 mol% of catalyst 4, total conversion values were achieved after 15 min with moderate selectivity for the corresponding epoxides, which decreases with reaction time, along with the TON values. However, with 0.005 mol% of catalyst, the conversion values are lower, but the selectivity and TON values are higher. This occurs simultaneously with an increase in the amount of the corresponding diol for most of the substrates studied. Photocatalyst 4 acts as a photocatalyst in both the epoxidation of alkenes and their hydroxylation in aqueous medium. The hybrid system 5 shows generally higher conversion values at low loads compared to those obtained with 4 for most of the substrates studied. However, the selectivity values for the corresponding epoxides are lower even after 15 min of reaction. This is likely due to the enhanced oxidizing capacity of CoIV in catalyst 5, resulting from the presence of more electron-withdrawing substituents on the metallacarborane platform.
Collapse
Affiliation(s)
- Isabel Guerrero
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Spain; (I.G.); (C.V.)
| | - Clara Viñas
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Spain; (I.G.); (C.V.)
| | - Francesc Teixidor
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Spain; (I.G.); (C.V.)
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| |
Collapse
|
13
|
Palion-Gazda J, Choroba K, Maroń AM, Malicka E, Machura B. Structural and Photophysical Trends in Rhenium(I) Carbonyl Complexes with 2,2':6',2″-Terpyridines. Molecules 2024; 29:1631. [PMID: 38611910 PMCID: PMC11013590 DOI: 10.3390/molecules29071631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
This is the first comprehensive review of rhenium(I) carbonyl complexes with 2,2':6',2″-terpyridine-based ligands (R-terpy)-encompassing their synthesis, molecular features, photophysical behavior, and potential applications. Particular attention has been devoted to demonstrating how the coordination mode of 2,2':6',2″-terpyridine (terpy-κ2N and terpy-κ3N), structural modifications of terpy framework (R), and the nature of ancillary ligands (X-mono-negative anion, L-neutral ligand) may tune the photophysical behavior of Re(I) complexes [Re(X/L)(CO)3(R-terpy-κ2N)]0/+ and [Re(X/L)(CO)2(R-terpy-κ3N)]0/+. Our discussion also includes homo- and heteronuclear multicomponent systems with {Re(CO)3(R-terpy-κ2N)} and {Re(CO)2(R-terpy-κ3N)} motifs. The presented structure-property relationships are of high importance for controlling the photoinduced processes in these systems and making further progress in the development of more efficient Re-based luminophores, photosensitizers, and photocatalysts for modern technologies.
Collapse
Affiliation(s)
- Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland; (K.C.); (A.M.M.); (E.M.)
| | | | | | | | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland; (K.C.); (A.M.M.); (E.M.)
| |
Collapse
|
14
|
Kirse TM, Maisuls I, Spierling L, Hepp A, Kösters J, Strassert CA. One Dianionic Luminophore with Three Coordination Modes Binding Four Different Metals: Toward Unexpectedly Phosphorescent Transition Metal Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306801. [PMID: 38161218 PMCID: PMC10953592 DOI: 10.1002/advs.202306801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Indexed: 01/03/2024]
Abstract
This work reports on a battery of coordination compounds featuring a versatile dianionic luminophore adopting three different coordination modes (mono, bi, and tridentate) while chelating Pd(II), Pt(II), Au(III), and Hg(II) centers. An in-depth structural characterization of the ligand precursor (H2 L) and six transition metal complexes ([HLPdCNtBu], [LPtCl], [LPtCNtBu], [LPtCNPhen], [HLHgCl], and [LAuCl]) is presented. The influence of the cations and coordination modes of the luminophore and co-ligands on the photophysical properties (including photoluminescence quantum yields (ΦL ), excited state lifetimes (τ), and average (non-)radiative rate constants) are evaluated at various temperatures in different phases. Five complexes show interesting photophysical properties at room temperature (RT) in solution. Embedment in frozen glassy matrices at 77 K significantly boosts their luminescence by suppressing radiationless deactivation paths. Thus, the Pt(II)-based compounds provide the highest efficiencies, with slight variations upon exchange of the ancillary ligand. In the case of [HLPdCNtBu], both ΦL and τ increase over 30-fold as compared to RT. Furthermore, the Hg(II) complex achieves, for the first time in its class, a ΦL exceeding 60% and millisecond-range lifetimes. This demonstrates that a judicious ligand design can pave the way toward versatile coordination compounds with tunable excited state properties.
Collapse
Affiliation(s)
- Thomas M. Kirse
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Iván Maisuls
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Leander Spierling
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Alexander Hepp
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
| | - Jutta Kösters
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| |
Collapse
|
15
|
Dai Y, Dellai A, Bassan E, Bellatreccia C, Gualandi A, Anselmi M, Cozzi PG, Ceroni P, Negri F. Solvent and alkyl substitution effects on charge-transfer mediated triplet state generation in BODIPY dyads: a combined computational and experimental study. Photochem Photobiol Sci 2024; 23:451-462. [PMID: 38324165 DOI: 10.1007/s43630-023-00530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Donor-acceptor dyads based on BODIPYs have been recently employed to enhance the formation of triplet excited states with the process of spin-orbit charge transfer intersystem crossing (SOCT-ISC) which does not require introduction of transition metals or other heavy atoms into the molecule. In this work we compare two donor-acceptor dyads based on meso-naphthalenyl BODIPY by combining experimental and computational investigations. The photophysical and electrochemical characterization reveals a significant effect of alkylation of the BODIPY core, disfavoring the SOCT-ISC mechanism for the ethylated BODIPY dyad. This is complemented with a computational investigation carried out to rationalize the influence of ethyl substituents and solvent effects on the electronic structure and efficiency of triplet state population via charge recombination (CR) from the photoinduced electron transfer (PeT) generated charge-transfer (CT) state. Time dependent-density functional theory (TD-DFT) calculations including solvent effects and spin-orbit coupling (SOC) calculations uncover the combined role played by solvent and alkyl substitution on the lateral positions of BODIPY.
Collapse
Affiliation(s)
- Yasi Dai
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Angela Dellai
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Elena Bassan
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Caterina Bellatreccia
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Andrea Gualandi
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Michele Anselmi
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Pier Giorgio Cozzi
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Paola Ceroni
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy.
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
| | - Fabrizia Negri
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy.
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
- INSTM, UdR Bologna, Via F. Selmi, 2, 40126, Bologna, Italy.
| |
Collapse
|
16
|
Wegeberg C, Häussinger D, Kupfer S, Wenger OS. Controlling the Photophysical Properties of a Series of Isostructural d 6 Complexes Based on Cr 0, Mn I, and Fe II. J Am Chem Soc 2024; 146:4605-4619. [PMID: 38334415 PMCID: PMC10885143 DOI: 10.1021/jacs.3c11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Development of first-row transition metal complexes with similar luminescence and photoredox properties as widely used RuII polypyridines is attractive because metals from the first transition series are comparatively abundant and inexpensive. The weaker ligand field experienced by the valence d-electrons of first-row transition metals challenges the installation of the same types of metal-to-ligand charge transfer (MLCT) excited states as in precious metal complexes, due to rapid population of energetically lower-lying metal-centered (MC) states. In a family of isostructural tris(diisocyanide) complexes of the 3d6 metals Cr0, MnI, and FeII, the increasing effective nuclear charge and ligand field strength allow us to control the energetic order between the 3MLCT and 3MC states, whereas pyrene decoration of the isocyanide ligand framework provides control over intraligand (ILPyr) states. The chromium(0) complex shows red 3MLCT phosphorescence because all other excited states are higher in energy. In the manganese(I) complex, a microsecond-lived dark 3ILPyr state, reminiscent of the types of electronic states encountered in many polyaromatic hydrocarbon compounds, is the lowest and becomes photoactive. In the iron(II) complex, the lowest MLCT state has shifted to so much higher energy that 1ILPyr fluorescence occurs, in parallel to other excited-state deactivation pathways. Our combined synthetic-spectroscopic-theoretical study provides unprecedented insights into how effective nuclear charge, ligand field strength, and ligand π-conjugation affect the energetic order between MLCT and ligand-based excited states, and under what circumstances these individual states become luminescent and exploitable in photochemistry. Such insights are the key to further developments of luminescent and photoredox-active first-row transition metal complexes.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
17
|
Zhang SY, Tang SB, Jiang YX, Zhu RY, Wang ZX, Long B, Su J. Mechanism of the Visible-Light-Promoted C(sp 3)-H Oxidation via Uranyl Photocatalysis. Inorg Chem 2024; 63:2418-2430. [PMID: 38264973 DOI: 10.1021/acs.inorgchem.3c03347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Uranyl cation, as an emerging photocatalyst, has been successfully applied to synthetic chemistry in recent years and displayed remarkable catalytic ability under visible light. However, the molecular-level reaction mechanisms of uranyl photocatalysis are unclear. Here, we explore the mechanism of the stepwise benzylic C-H oxygenation of typical alkyl-substituted aromatics (i.e., toluene, ethylbenzene, and cumene) via uranyl photocatalysis using theoretical and experimental methods. Theoretical calculation results show that the most favorable reaction path for uranyl photocatalytic oxidation is as follows: first, hydrogen atom transfer (HAT) from the benzyl position to form a carbon radical ([R•]), then oxygen addition ([R•] + O2 → [ROO•]), then radical-radical combination ([ROO•] + [R•] → [ROOR] → 2[RO•]), and eventually [RO•] reduction to produce alcohols, of which 2° alcohol would further be oxidized to ketones and 1° would be stepwise-oxygenated to acids. The results of the designed verification experiments and the capture of reactive intermediates were consistent with those of theoretical calculations and the previously reported research that the active benzylic C-H would be stepwise-oxygenated in the presence of uranyl. This work deepens our understanding of the HAT mechanism of uranyl photocatalysis and provides important theoretical support for the relevant application of uranyl photocatalysts in organic transformation.
Collapse
Affiliation(s)
- Shu-Yun Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Song-Bai Tang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yan-Xin Jiang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ru-Yu Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zi-Xin Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Jing Su
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
18
|
Kancherla R, Muralirajan K, Dutta S, Pal K, Li B, Maity B, Cavallo L, Rueping M. Photoexcitation of Distinct Divalent Palladium Complexes in Cross-Coupling Amination Under Air. Angew Chem Int Ed Engl 2024; 63:e202314508. [PMID: 37956272 DOI: 10.1002/anie.202314508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
The development of metal complexes that function as both photocatalyst and cross-coupling catalyst remains a challenging research topic. So far, progress has been shown in palladium(0) excited-state transition metal catalysis for the construction of carbon-carbon bonds where the oxidative addition of alkyl/aryl halides to zero-valent palladium (Pd0 ) is achievable at room temperature. In contrast, the analogous process with divalent palladium (PdII ) is uphill and endothermic. For the first time, we report that divalent palladium can act as a light-absorbing species that undergoes double excitation to realize carbon-nitrogen (C-N) cross-couplings under air. Differently substituted aryl halides can be applied in the mild, and selective cross-coupling amination using palladium acetate as both photocatalyst and cross-coupling catalyst at room temperature. Density functional theory studies supported by mechanistic investigations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuntal Pal
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bo Li
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
19
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
20
|
Kiseleva MA, Churakov AV, Taydakov IV, Metlin MT, Kozyukhin SA, Bezzubov SI. Aggregation-induced emission of cyclometalated rhodium(III) and iridium(III) phenylpyridine complexes with ancillary 1,3-diketones. Dalton Trans 2023; 52:17861-17872. [PMID: 37975537 DOI: 10.1039/d3dt02651e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A joint structural and spectroscopic study of simple bis-cyclometataled rhodium(III) and iridium(III) complexes with 2-phenylpyridine and aromatic β-diketones (dibenzoylmethane, benzoylacetone, benzoyltrifluoroacetone, and 2-thenoyltrifluoroacetone) reveals an interplay between the solid-state emission efficiency and crystal packing peculiarities of the complexes. Although the prepared rhodium(III) cyclometalates are isostructural with iridium(III) analogues, different types of π-π interactions are responsible for the aggregation-induced emission (AIE) of the complexes depending on the metal ion. For iridium(III) complexes, pyridyl-pyridyl contacts are essential for AIE because they lower the energy of the emissive metal-to-ligand charge transfer state below that of the non-emissive state located at the ancillary ligand. Enabled by phenyl-pyridyl interactions partially blocking the population of non-emissive d-d states, solid-state phosphorescence enhancement is successfully achieved in a rhodium(III) complex with ancillary benzoyltrifluoroacetone, which is the first example of a rhodium complex exhibiting AIE.
Collapse
Affiliation(s)
- Marina A Kiseleva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
- Department of Chemistry, Lomonosov Moscow State University, Lenin's Hills 1, Moscow, 119991, Russia
| | - Andrei V Churakov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| | - Ilya V Taydakov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia
| | - Mikhail T Metlin
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia
- Bauman Moscow State Technical University, 2-ya Baumanskaya Str. 5/1, Moscow, 105005, Russia
| | - Sergey A Kozyukhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| | - Stanislav I Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| |
Collapse
|
21
|
Choroba K, Penkala M, Palion-Gazda J, Malicka E, Machura B. Pyrenyl-Substituted Imidazo[4,5- f][1,10]phenanthroline Rhenium(I) Complexes with Record-High Triplet Excited-State Lifetimes at Room Temperature: Steric Control of Photoinduced Processes in Bichromophoric Systems. Inorg Chem 2023; 62:19256-19269. [PMID: 37950694 PMCID: PMC10685448 DOI: 10.1021/acs.inorgchem.3c02662] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Photochemical applications based on intermolecular photoinduced energy triplet state transfer require photosensitizers with strong visible absorptivity and extended triplet excited-state lifetimes. Using a bichromophore approach, two Re(I) tricarbonyl complexes with 2-(1-pyrenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (pyr-imphen) and 1-(4-(methyl)phenyl)-2-(1-pyrenyl)-imidazo[4,5-f][1,10]phenanthroline (pyr-tol-imphen) showing extraordinary long triplet excited states at room temperature (>1000 μs) were obtained, and their ground- and excited-state properties were thoroughly investigated by a wide range of spectroscopic methods, including femtosecond transient absorption (fs-TA). It is worth noting that the designed [ReCl(CO)3(pyr-imphen)] (1) and [ReCl(CO)3(pyr-tol-imphen)] (2) complexes form a unique pair differing in the mutual chromophore arrangement due to introduction of a 4-(methyl)phenyl substituent into the imidazole ring at the H1-position, imposing an increase in the dihedral angle between the pyrene and {ReCl(CO)3(imphen)} chromophores. The magnitude of the electronic coupling between the pyrene and {ReCl(CO)3(imphen)} chromophores was found to be an efficient tool to tune the photophysical properties of 1 and 2. The usefulness of designed Re(I) compounds as triplet photosensitizers was successfully verified by examination of their abilities for 1O2 generation and triplet-triplet annihilation upconversion. The phosphorescence lifetimes, ∼1800 μs for 1 and ∼1500 μs for 2, are the longest lifetimes reported for Re(I) diimine carbonyl complexes in solution at room temperature.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Mateusz Penkala
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Ewa Malicka
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| |
Collapse
|
22
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
23
|
Barker M, Whittemore TJ, London HC, Sledesky JM, Harris EA, Smith Pellizzeri TM, McMillen CD, Wagenknecht PS. Design Strategies for Luminescent Titanocenes: Improving the Photoluminescence and Photostability of Arylethynyltitanocenes. Inorg Chem 2023; 62:17870-17882. [PMID: 37831503 PMCID: PMC10618925 DOI: 10.1021/acs.inorgchem.3c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 10/14/2023]
Abstract
Complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts. Cp2Ti(C2Ph)2 (where C2Ph = phenylethynyl) was reported to be weakly emissive in room-temperature (RT) fluid solution from its phenylethynyl-to-Ti 3LMCT state but readily photodecomposes. Coordination of CuX between the alkyne ligands to give Cp2Ti(C2Ph)2CuX (X = Cl, Br) has been shown to significantly increase the photostability, but such complexes are not emissive in RT solution. Herein, we investigate whether inhibition of alkyne-Ti-alkyne bond compression might be responsible for the increased photostability of the CuX complexes by investigating the decomposition of a structurally constrained analogue, Cp2Ti(OBET) (OBET = o-bis(ethynyl)tolane). To investigate the mechanism of nonradiative decay from the 3LMCT states in Cp2Ti(C2Ph)2CuX, the photophysical properties were investigated both upon deuteration and upon rigidifying in a poly(methyl methacrylate) film. These investigations suggested that inhibition of structural rearrangement may play a dominant role in increasing emission lifetimes and quantum yields. The bulkier Cp*2Ti(C2Ph)2CuBr was prepared and is emissive at 693 nm in RT THF solution with a photoluminescent quantum yield of 1.3 × 10-3 (τ = 0.18 μs). Time-dependent density functional theory (TDDFT) calculations suggest that emission occurs from a 3LMCT state dominated by Cp*-to-Ti charge transfer.
Collapse
Affiliation(s)
- Matilda Barker
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Thomas J. Whittemore
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Henry C. London
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Jack M. Sledesky
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Elizabeth A. Harris
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Tiffany M. Smith Pellizzeri
- Department
of Chemistry and Biochemistry, Eastern Illinois
University, Charleston, Illinois 61920, United States
| | - Colin D. McMillen
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul S. Wagenknecht
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
24
|
Anghinoni JM, Ferreira SS, Piquini PC, Iglesias BA, Perin G, Penteado F, Lenardão EJ. Visible Light and Triselenium Dicyanide (TSD): New Horizons in the Synthesis of Organic Selenocyanates. Chemistry 2023; 29:e202301934. [PMID: 37544915 DOI: 10.1002/chem.202301934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/24/2023] [Accepted: 08/06/2023] [Indexed: 08/08/2023]
Abstract
Herein, we describe a new method for the synthesis of α-carbonyl selenocyanates by reacting triselenium dicyanide (TSD) and styrenes under blue light irradiation and O2 atmosphere. The reactions are triggered by the formation of Se-centered radical species, followed by the addition/oxidation of the styrene π-bond. α-Carbonyl selenocyanates and α-hydroxy selenocyanates were obtained in moderate to excellent yields from aryl- and alkyl-substituted alkenes, respectively. It was demonstrated that α-carbonyl selenocyanates could be used as a synthetic platform in a multicomponent reaction strategy to prepare 2-phenylimidazo[1,2-a]pyridine derivatives, which were evaluated for their photophysical properties. Overall, this new method provides a useful tool for synthesizing α-carbonyl selenocyanates, and demonstrates their potential for use in the synthesis of other compounds, thus giving new synthetic opportunities to construct organic selenocyanate compounds.
Collapse
Affiliation(s)
- João M Anghinoni
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| | - Sabrina S Ferreira
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| | - Paulo C Piquini
- Departamento de Física, Universidade Federal de Santa Maria, Av. Roraima, Building 13, 97105-900, Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Building 18, 97105-340, Santa Maria, RS, Brazil
| | - Gelson Perin
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| | - Filipe Penteado
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Building 18, 97105-340, Santa Maria, RS, Brazil
| | - Eder J Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas - UFPel, P. O. box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
25
|
Pfund B, Hutskalova V, Sparr C, Wenger OS. Isoacridone dyes with parallel reactivity from both singlet and triplet excited states for biphotonic catalysis and upconversion. Chem Sci 2023; 14:11180-11191. [PMID: 37860649 PMCID: PMC10583676 DOI: 10.1039/d3sc02768f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
Metal-based photosensitizers commonly undergo quantitative intersystem crossing into photoactive triplet excited states. In contrast, organic photosensitizers often feature weak spin-orbit coupling and low intersystem crossing efficiencies, leading to photoactive singlet excited states. By modifying the well-known acridinium dyes, we obtained a new family of organic photocatalysts, the isoacridones, in which both singlet- and triplet-excited states are simultaneously photoactive. These new isoacridone dyes are synthetically readily accessible and show intersystem crossing efficiencies of up to 52%, forming microsecond-lived triplet excited states (T1), storing approximately 1.9 eV of energy. Their photoactive singlet excited states (S1) populated in parallel have only nanosecond lifetimes, but store ∼0.4 eV more energy and act as strong oxidants. Consequently, the new isoacridone dyes are well suited for applications requiring parallel triplet-triplet energy transfer and photoinduced electron transfer elementary steps, which have become increasingly important in modern photocatalysis. In proof-of-principle experiments, the isoacridone dyes were employed for Birch-type arene reductions and C-C couplings via sensitization-initiated electron transfer, substituting the commonly used iridium or ruthenium based photocatalysts. Further, in combination with a pyrene-based annihilator, sensitized triplet-triplet annihilation upconversion was achieved in an all-organic system, where the upconversion quantum yield correlated with the intersystem crossing quantum yield of the photosensitizer. This work seems relevant in the greater contexts of developing new applications that utilize biphotonic photophysical and photochemical behavior within metal-free systems.
Collapse
Affiliation(s)
- Björn Pfund
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Valeriia Hutskalova
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
26
|
Yang G, Shillito GE, Zens C, Dietzek-Ivanšić B, Kupfer S. The three kingdoms-Photoinduced electron transfer cascades controlled by electronic couplings. J Chem Phys 2023; 159:024109. [PMID: 37428052 DOI: 10.1063/5.0156279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Excited states are the key species in photocatalysis, while the critical parameters that govern their applications are (i) excitation energy, (ii) accessibility, and (iii) lifetime. However, in molecular transition metal-based photosensitizers, there is a design tension between the creation of long-lived excited (triplet), e.g., metal-to-ligand charge transfer (3MLCT) states and the population of such states. Long-lived triplet states have low spin-orbit coupling (SOC) and hence their population is low. Thus, a long-lived triplet state can be populated but inefficiently. If the SOC is increased, the triplet state population efficiency is improved-coming at the cost of decreasing the lifetime. A promising strategy to isolate the triplet excited state away from the metal after intersystem crossing (ISC) involves the combination of transition metal complex and an organic donor/acceptor group. Here, we elucidate the excited state branching processes in a series of Ru(II)-terpyridyl push-pull triads by quantum chemical simulations. Scalar-relativistic time-dependent density theory simulations reveal that efficient ISC takes place along 1/3MLCT gateway states. Subsequently, competitive electron transfer (ET) pathways involving the organic chromophore, i.e., 10-methylphenothiazinyl and the terpyridyl ligands are available. The kinetics of the underlying ET processes were investigated within the semiclassical Marcus picture and along efficient internal reaction coordinates that connect the respective photoredox intermediates. The key parameter that governs the population transfer away from the metal toward the organic chromophore either by means of ligand-to-ligand (3LLCT; weakly coupled) or intra-ligand charge transfer (3ILCT; strongly coupled) states was determined to be the magnitude of the involved electronic coupling.
Collapse
Affiliation(s)
- Guangjun Yang
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Georgina E Shillito
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Clara Zens
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT) e.V. Department Functional Interfaces, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
27
|
Hope TO, Reyes-Robles T, Ryu KA, Mauries S, Removski N, Maisonneuve J, Oslund RC, Fadeyi OO, Frenette M. Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical-radical recombination pathway. Chem Sci 2023; 14:7327-7333. [PMID: 37416718 PMCID: PMC10321502 DOI: 10.1039/d3sc00638g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Flavin-based photocatalysts such as riboflavin tetraacetate (RFT) serve as a robust platform for light-mediated protein labelling via phenoxy radical-mediated tyrosine-biotin phenol coupling on live cells. To gain insight into this coupling reaction, we conducted detailed mechanistic analysis for RFT-photomediated activation of phenols for tyrosine labelling. Contrary to previously proposed mechanisms, we find that the initial covalent binding step between the tag and tyrosine is not radical addition, but rather radical-radical recombination. The proposed mechanism may also explain the mecha-nism of other reported tyrosine-tagging approaches. Competitive kinetics experiments show that phenoxyl radicals are generated with several reactive intermediates in the proposed mechanism-primarily with the excited riboflavin-photocatalyst or singlet oxygen-and these multiple pathways for phenoxyl radical generation from phenols increase the likelihood of radical-radical recombination.
Collapse
Affiliation(s)
- Taylor O Hope
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | | | - Keun Ah Ryu
- Exploratory Science Center, Merck & Co., Inc. Cambridge MA USA
| | - Steven Mauries
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Nicole Removski
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Jacinthe Maisonneuve
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Rob C Oslund
- Exploratory Science Center, Merck & Co., Inc. Cambridge MA USA
| | | | - Mathieu Frenette
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| |
Collapse
|
28
|
Leary D, Zhang Y, Rodriguez JG, Akhmedov NG, Petersen JL, Dolinar BS, Milsmann C. Organometallic Intermediates in the Synthesis of Photoluminescent Zirconium and Hafnium Complexes with Pyridine Dipyrrolide Ligands. Organometallics 2023; 42:1220-1231. [PMID: 37324448 PMCID: PMC10266360 DOI: 10.1021/acs.organomet.3c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 03/12/2023]
Abstract
The two commercially available zirconium complexes tetrakis(dimethylamido)zirconium, Zr(NMe2)4, and tetrabenzylzirconium, ZrBn4, were investigated for their utility as starting materials in the synthesis of bis(pyridine dipyrrolide)zirconium photosensitizers, Zr(PDP)2. Reaction with one equivalent of the ligand precursor 2,6-bis(5-methyl-3-phenyl-1H-pyrrol-2-yl)pyridine, H2MePDPPh, resulted in the isolation and structural characterization of the complexes (MePDPPh)Zr(NMe2)2thf and (MePDPPh)ZrBn2, which could be converted to the desired photosensitizer Zr(MePDPPh)2 upon addition of a second equivalent of H2MePDPPh. Using the more sterically encumbered ligand precursor 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine, H2MesPDPPh, only ZrBn4 yielded the desired bis-ligand complex Zr(MesPDPPh)2. Careful monitoring of the reaction at different temperatures revealed the importance of the organometallic intermediate (cyclo-MesPDPPh)ZrBn, which was characterized by X-ray diffraction analysis and 1H NMR spectroscopy and shown to contain a cyclometalated MesPDPPh unit. Taking inspiration from the results for zirconium, syntheses for two hafnium photosensitizers, Hf(MePDPPh)2 and Hf(MesPDPPh)2, were established and shown to proceed through similar intermediates starting from tetrabenzylhafnium, HfBn4. Initial studies of the photophysical properties of the photoluminescent hafnium complexes indicate similar optical properties compared to their zirconium analogues.
Collapse
Affiliation(s)
- Dylan
C. Leary
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | | | - Jose G. Rodriguez
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Brian S. Dolinar
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
29
|
Liu M, Liu J, Li J, Zhao Z, Zhou K, Li Y, He P, Wu J, Bao Z, Yang Q, Yang Y, Ren Q, Zhang Z. Blending Aryl Ketone in Covalent Organic Frameworks to Promote Photoinduced Electron Transfer. J Am Chem Soc 2023; 145:9198-9206. [PMID: 37125453 DOI: 10.1021/jacs.3c01273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aryl-ketone derivatives have been acknowledged as promising organic photocatalysts for photosynthesis. However, they are limited by their photostability and have been less explored for photoinduced electron transfer (PET) applications. Herein we demonstrate a novel strategy to cover the shortage of aryl-ketone photocatalysts and control the photoreactivity by implanting symmetric aryl ketones into the conjugated covalent organic frameworks (COFs). To prove the concept, three comparative materials with the same topology and varied electronic structures were built, adopting truxenone knot and functionalized terephthalaldehyde linkers. Spectroscopic investigation and excited carrier dynamics analysis disclosed improvements in the photostability and electronic transfer efficiency as well as the structure-performance relationships toward N-aryl tetrahydroisoquinoline oxidation. This system provides a robust rule of thumb for designing new-generation aryl-ketone photocatalysts.
Collapse
Affiliation(s)
- Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Junnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yueming Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Peipei He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jiashu Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| |
Collapse
|
30
|
Photoluminescent nickel(II) carbene complexes with ligand-to-ligand charge-transfer excited states. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
31
|
Ham R, Nielsen CJ, Pullen S, Reek JNH. Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chem Rev 2023; 123:5225-5261. [PMID: 36662702 PMCID: PMC10176487 DOI: 10.1021/acs.chemrev.2c00759] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Because sunlight is the most abundant energy source on earth, it has huge potential for practical applications ranging from sustainable energy supply to light driven chemistry. From a chemical perspective, excited states generated by light make thermodynamically uphill reactions possible, which forms the basis for energy storage into fuels. In addition, with light, open-shell species can be generated which open up new reaction pathways in organic synthesis. Crucial are photosensitizers, which absorb light and transfer energy to substrates by various mechanisms, processes that highly depend on the distance between the molecules involved. Supramolecular coordination cages are well studied and synthetically accessible reaction vessels with single cavities for guest binding, ensuring close proximity of different components. Due to high modularity of their size, shape, and the nature of metal centers and ligands, cages are ideal platforms to exploit preorganization in photocatalysis. Herein we focus on the application of supramolecular cages for photocatalysis in artificial photosynthesis and in organic photo(redox) catalysis. Finally, a brief overview of immobilization strategies for supramolecular cages provides tools for implementing cages into devices. This review provides inspiration for future design of photocatalytic supramolecular host-guest systems and their application in producing solar fuels and complex organic molecules.
Collapse
Affiliation(s)
- Rens Ham
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - C Jasslie Nielsen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| |
Collapse
|
32
|
Leon F, Li C, Reynes JF, Singh VK, Lian X, Ong HC, Hum G, Sun H, García F. Mechanosynthesis and photophysics of colour-tunable photoluminescent group 13 metal complexes with sterically demanding salen and salophen ligands. Faraday Discuss 2023; 241:63-78. [PMID: 36218327 DOI: 10.1039/d2fd00117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A series of four photoluminescent Al and In complexes were synthesised using an environmentally-benign mechanosynthesis strategy. Sterically crowded 3,5-di-tert-butyl functionalised salophen and salen ligands and their respective complexes have been synthesised in the solid-state and fully characterised. Subsequent photophysics and electrochemistry studies of the resulting complexes suggest that these new group 13 complexes can be viable alternatives to traditional photoluminescent complexes based on expensive and low abundant noble metals. The herein-reported strategy avoids the use of organic solvents and provides a process with low environmental impact and enhanced energy efficiency.
Collapse
Affiliation(s)
- Felix Leon
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Chenfei Li
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Javier F Reynes
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo 33006, Asturias, Spain.
| | - Varun K Singh
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Xiao Lian
- School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Gavin Hum
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Handong Sun
- School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo 33006, Asturias, Spain.
| |
Collapse
|
33
|
Sokolova E, Kinzhalov MA, Smirnov AS, Cheranyova AM, Ivanov DM, Kukushkin VY, Bokach NA. Polymorph-Dependent Phosphorescence of Cyclometalated Platinum(II) Complexes and Its Relation to Non-covalent Interactions. ACS OMEGA 2022; 7:34454-34462. [PMID: 36188282 PMCID: PMC9520548 DOI: 10.1021/acsomega.2c04110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Cyclometalated platinum(II) complexes [Pt(ppy)Cl(CNAr)] (ppy = 2-phenylpyridinato-C2,N; Ar = C6H4-2-I 1, C6H4-4-I 2, C6H3-2-F-4-I 3, and C6H3-2,4-I2 4) bearing ancillary isocyanide ligands were obtained by the bridge-splitting reaction between the dimer [Pt(ppy)(μ-Cl)]2 and 2 equiv any one of the corresponding CNAr. Complex 2 was crystallized in two polymorphic forms, namely, 2 I and 2 II, exhibiting green (emission quantum yield of 0.5%) and orange (emission quantum yield of 12%) phosphorescence, respectively. Structure-directing non-covalent contacts in these polymorphs were verified by a combination of experimental (X-ray diffraction) and theoretical methods (NCIplot analysis, combined electron localization function (ELF), and Bader quantum theory of atoms in molecules (QTAIM analysis)). A noticeable difference in the spectrum of non-covalent interactions of 2 I and 2 II is seen in the Pt···Pt interactions in 2 II and absence of these metallophilic contacts in 2 I. The other solid luminophores, namely, 1, 3 I-II, 4, and 4·CHCl3, exhibit green luminescence; their structures include intermolecular C-I···Cl-Pt halogen bonds as the structure-directing interactions. Crystals of 1, 2 I, 3 I, 3 II, 4, and 4·CHCl3 demonstrated a reversible mechanochromic color change achieved by mechanical grinding (green to orange) and solvent adsorption (orange to green).
Collapse
Affiliation(s)
- Elina
V. Sokolova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Mikhail A. Kinzhalov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Andrey S. Smirnov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Anna M. Cheranyova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Daniil M. Ivanov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Vadim Yu. Kukushkin
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Institute
of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| | - Nadezhda A. Bokach
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| |
Collapse
|
34
|
Khan M, Assal ME, Nawaz Tahir M, Khan M, Ashraf M, Rafe Hatshan M, Khan M, Varala R, Mohammed Badawi N, Farooq Adil S. Graphene/Inorganic Nanocomposites: Evolving Photocatalysts for Solar Energy Conversion for Environmental Remediation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Jakobi M, Sparr C. Streamlined Synthesis of Aminoacridinium Photocatalysts with Improved Photostability. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Markus Jakobi
- Department of Chemistry University of Basel, 4056 Basel, Switzerland
| | - Christof Sparr
- Department of Chemistry University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
36
|
Jakobi M, Zilate B, Sparr C. Synthesis of Diarylaminoacridinium Photocatalysts by Halogen‐Metal Exchange Combined with Directed <i>ortho</i> Metalations. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Qin Q, Wang D, Shao Z, Zhang Y, Zhang Q, Li X, Huang C, Mi L. Sequentially Regulating the Structural Transformation of Copper Metal-Organic Frameworks (Cu-MOFs) for Controlling Site-Selective Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36845-36854. [PMID: 35938901 DOI: 10.1021/acsami.2c09290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Regulating atomically precise sites in catalysts to achieve site-selective reactions is remarkable but challenging. In this work, a convenient and facile solid-gas/liquid reaction strategy was used to construct controllable active sites in metal-organic frameworks (MOFs) to guide an orientation site-selective reaction. A flexible CuI-MOF-1 with dynamics originating from an anionic and tailorable framework could undergo a reversible structural transformation to engineer a topologically equivalent mixed-valent CuICuII-MOF-2 via a solid-gas/liquid oxidation/reduction process. More importantly, CuI-MOF-1 and CuICuII-MOF-2 could further execute the solid-gas/liquid reaction under ammonia vapor/solution to generate CuII-MOF-3. Furthermore, the transformation from CuI-MOF-1 to CuICuII-MOF-2 and CuII-MOF-3 served as controllable catalysts to facilitate site-selective reactions to realize direct C-N bond arylations. The results demonstrated that CuI-MOF-1 and CuII-MOF-3 possessed well-defined platforms with uniformly and accurately active sites to attain a "turn-on/off" process via different reaction routes, providing the desired site-selective ring-opening products.
Collapse
Affiliation(s)
- Qi Qin
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Di Wang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Zhichao Shao
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yingying Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Qiang Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xinyue Li
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Chao Huang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Liwei Mi
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
38
|
Yadav P, Varma AA, A J P, Gopinath P. Photoredox mediated multicomponent reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pooja Yadav
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - A Anagha Varma
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - Punnya A J
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - Purushothaman Gopinath
- Indian Institute of Science Education and Research Tirupati Chemistry Karkambadi Road 517507 Tirupati INDIA
| |
Collapse
|
39
|
Rentschler M, Boden PJ, Argüello Cordero MA, Steiger ST, Schmid MA, Yang Y, Niedner-Schatteburg G, Karnahl M, Lochbrunner S, Tschierlei S. Unexpected Boost in Activity of a Cu(I) Photosensitizer by Stabilizing a Transient Excited State. Inorg Chem 2022; 61:12249-12261. [PMID: 35877171 DOI: 10.1021/acs.inorgchem.2c01468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we present a slight but surprisingly successful structural modification of the previously reported heteroleptic Cu(I) photosensitizer Cubiipo ([(xantphos)Cu(biipo)]PF6; biipo = 16H-benzo-[4',5']-isoquinolino-[2',1':1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one). As a key feature, biipo bears a naphthalimide unit at the back, which is directly fused to a phenanthroline moiety to extend the conjugated π-system. This ligand was now altered to include two additional methyl groups at the 2,9-positions at the phenanthroline scaffold. Comparing the novel Cudmbiipo complex to its predecessor, ultrafast transient absorption spectroscopy reveals the efficient suppression of a major deactivation pathway by stabilization of a transient triplet state. Furthermore, quantitative measurements of singlet oxygen evolution in solution confirmed that a larger fraction of the excited-state population is transferred to the photocatalytically active ligand-centered triplet 3LC state with a much longer lifetime of ∼30 μs compared to Cubiipo (2.6 μs). In addition, Cudmbiipo was compared with the well-established reference complex Cubcp ([(xantphos)Cu(bathocuproine)]PF6) in terms of its photophysical and photocatalytic properties by applying time-resolved femto- and nanosecond absorption, step-scan Fourier transform infrared (FTIR), and emission spectroscopies. Superior light-harvesting properties and a greatly enhanced excited-state lifetime with respect to Cubcp enable Cudmbiipo to be more active in exemplary photocatalytic applications, i.e., in the formation of singlet oxygen and the isomerization of (E)-stilbene.
Collapse
Affiliation(s)
- Martin Rentschler
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Pit Jean Boden
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Miguel A Argüello Cordero
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Sophie Theres Steiger
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Marie-Ann Schmid
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Yingya Yang
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Gereon Niedner-Schatteburg
- Chemistry Department and State Research Center Optimas, TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 23, 18051 Rostock, Germany
| | - Stefanie Tschierlei
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
40
|
London HC, Pritchett DY, Pienkos JA, McMillen CD, Whittemore TJ, Bready CJ, Myers AR, Vieira NC, Harold S, Shields GC, Wagenknecht PS. Photochemistry and Photophysics of Charge-Transfer Excited States in Emissive d10/ d0 Heterobimetallic Titanocene Tweezer Complexes. Inorg Chem 2022; 61:10986-10998. [PMID: 35786924 DOI: 10.1021/acs.inorgchem.2c01746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transition-metal complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts due to the lack of deactivating d-d states. Herein, the synthesis and characterization of nine titanocene complexes of the formula Cp2Ti(C2Ar)2·MX (where Ar = phenyl, dimethylaniline, or triphenylamine; and MX = CuCl, CuBr, or AgCl) are presented. Solid-state structural characterization demonstrates that MX coordinates to the alkyne tweezers and CuX coordination has a greater structural impact than AgCl. All complexes, including the parent complexes without coordinated MX, are brightly emissive at 77 K (emission max between 575 and 767 nm), with the coordination of MX redshifting the emission in all cases except for the coordination of AgCl into Cp2Ti(C2Ph)2. TDDFT investigations suggest that emission is dominated by arylalkynyl-to-titanium 3LMCT in all cases except Cp2Ti(C2Ph)2·CuBr, which is dominated by CuBr-to-Ti charge transfer. In room-temperature fluid solution, only Cp2Ti(C2Ph)2 and Cp2Ti(C2Ph)2·AgCl are emissive, albeit with photoluminescent quantum yields ≤2 × 10-4. The parent complexes photodecompose in room-temperature solution with quantum yields, Φrxn, between 0.25 and 0.99. The coordination of MX decreases Φrxn by two to three orders of magnitude. There is a clear trend that Φrxn increases as the emission energy increases. This trend is consistent with a competition between energy-gap-law controlled nonradiative decay and thermally activated intersystem crossing between the 3LMCT state and the singlet transition state for decomposition.
Collapse
Affiliation(s)
- Henry C London
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - David Y Pritchett
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Jared A Pienkos
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Colin D McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Thomas J Whittemore
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Conor J Bready
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Alexis R Myers
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Noah C Vieira
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Shannon Harold
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Paul S Wagenknecht
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
41
|
Widness JK, Enny DG, McFarlane-Connelly KS, Miedenbauer MT, Krauss TD, Weix DJ. CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. J Am Chem Soc 2022; 144:12229-12246. [PMID: 35772053 DOI: 10.1021/jacs.2c03235] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Strong reducing agents (<-2.0 V vs saturated calomel electrode (SCE)) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI2 are commonly employed for these reactions; however, considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods. Recent approaches utilizing energy from multiple photons or electron-primed photoredox catalysis have accessed reduction potentials equivalent to Li0 and shown how this enables selective transformations of aryl chlorides via aryl radicals. However, in some cases, low stability of catalytic intermediates can limit turnover numbers. Herein, we report the ability of CdS nanocrystal quantum dots (QDs) to function as strong photoreductants and present evidence that a highly reducing electron is generated from two consecutive photoexcitations of CdS QDs with intermediate reductive quenching. Mechanistic experiments suggest that Auger recombination, a photophysical phenomenon known to occur in photoexcited anionic QDs, generates transient thermally excited electrons to enable the observed reductions. Using blue light-emitting diodes (LEDs) and sacrificial amine reductants, aryl chlorides and phosphate esters with reduction potentials up to -3.4 V vs SCE are photoreductively cleaved to afford hydrodefunctionalized or functionalized products. In contrast to small-molecule catalysts, QDs are stable under these conditions and turnover numbers up to 47 500 have been achieved. These conditions can also effect other challenging reductions, such as tosylate protecting group removal from amines, debenzylation of benzyl-protected alcohols, and reductive ring opening of cyclopropane carboxylic acid derivatives.
Collapse
Affiliation(s)
- Jonas K Widness
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | - Daniel G Enny
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | | | - Mahilet T Miedenbauer
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Daniel J Weix
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Bawden JC, Francis PS, DiLuzio S, Hayne DJ, Doeven EH, Truong J, Alexander R, Henderson LC, Gómez DE, Massi M, Armstrong BI, Draper FA, Bernhard S, Connell TU. Reinterpreting the Fate of Iridium(III) Photocatalysts─Screening a Combinatorial Library to Explore Light-Driven Side-Reactions. J Am Chem Soc 2022; 144:11189-11202. [PMID: 35704840 DOI: 10.1021/jacs.2c02011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photoredox catalysts are primarily selected based on ground and excited state properties, but their activity is also intrinsically tied to the nature of their reduced (or oxidized) intermediates. Catalyst reactivity often necessitates an inherent instability, thus these intermediates represent a mechanistic turning point that affords either product formation or side-reactions. In this work, we explore the scope of a previously demonstrated side-reaction that partially saturates one pyridine ring of the ancillary ligand in heteroleptic iridium(III) complexes. Using high-throughput synthesis and screening under photochemical conditions, we identified different chemical pathways, ultimately governed by ligand composition. The ancillary ligand was the key factor that determined photochemical stability. Following photoinitiated electron transfer from a sacrificial tertiary amine, the reduced intermediate of complexes containing 1,10-phenanthroline derivatives exhibited long-term stability. In contrast, complexes containing 2,2'-bipyridines were highly susceptible to hydrogen atom transfer and ancillary ligand modification. Detailed characterization of selected complexes before and after transformation showed differing effects on the ground and excited state reduction potentials dependent on the nature of the cyclometalating ligands and excited states. The implications of catalyst stability and reactivity in chemical synthesis was demonstrated in a model photoredox reaction.
Collapse
Affiliation(s)
- Joseph C Bawden
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stephen DiLuzio
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - David J Hayne
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Egan H Doeven
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Johnny Truong
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Richard Alexander
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3220, Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Daniel E Gómez
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Blake I Armstrong
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Felicity A Draper
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
43
|
An H, Luo H, Xu T, Chang S, Chen Y, Zhu Q, Huang Y, Tan H, Li YG. Visible-Light-Driven Oxidation of Amines to Imines in Air Catalyzed by Polyoxometalate-Tris(bipyridine)ruthenium Hybrid Compounds. Inorg Chem 2022; 61:10442-10453. [PMID: 35758283 DOI: 10.1021/acs.inorgchem.2c01243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of visible-light photocatalysts for the selective oxidative coupling of amines to imines is an area of great interest. Herein, four hybrid compounds based on polyoxometalate anions and tris(bipyridine)ruthenium cations, Ru(bpy)3[M6O19] (M = Mo, W) 1-2, [Ru(bpy)3]2[Mo8O26] 3, [Ru(bpy)3]2[W10O32] 4, are prepared and characterized by X-ray diffraction (single-crystal and powder), elemental analysis, energy-dispersive X-ray spectroscopy (EDS) analysis, infrared (IR) spectroscopy, and solid diffuse reflective spectroscopy. Single-crystal structural analysis indicates that polyoxometalate anions and tris(bipyridine)ruthenium cations interact with each other through extensive hydrogen bonds in these compounds. These hybrid species with strong visible-light-harvesting abilities and suitable photocatalytic energy potentials show excellent photocatalytic activity and selectivity for the oxidation of amines to imines at room temperature in air as an oxidant. Among them, compound 1 with the [Mo6O19]2- anion has the highest catalytic activity, which can swiftly convert >99.0% of benzylamine into N-benzylidenebenzylamine with a selectivity of 98.0% in 25 min illumination by a 10 W 445 nm light-emitting diode (LED). Its turnover frequency reaches 392 h-1, which is not only better than the homogeneous catalyst [Ru(bpy)3]Cl2 but also much superior to those achieved over most of reported heterogeneous catalysts. Moreover, it shows a wide generality for various aromatic amines, accompanied by the advantages of good recyclability and stability. The photocatalytic oxidation mechanism of amines to the corresponding imines over polyoxometalate-based hybrid compounds was fully investigated.
Collapse
Affiliation(s)
- Haiyan An
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Huiyun Luo
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Tieqi Xu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shenzhen Chang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yanhong Chen
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Qingshan Zhu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yaohui Huang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
44
|
Manikandan R, Phatake RS, Lemcoff NG. Metal‐Free Photochemical Olefin Isomerization of Unsaturated Ketones via 1,5‐Hydrogen Atom Transfer. Chemistry 2022; 28:e202200634. [PMID: 35325491 PMCID: PMC9321148 DOI: 10.1002/chem.202200634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 11/22/2022]
Abstract
The photochemical isomerization of α,β‐ to β,γ‐unsaturated ketones through a 1,5‐hydrogen atom transfer mechanism under mild conditions with high efficiency and selectivity is reported. The reaction is carried out in the absence of metal catalysts or other additives, and its stereoselectivity can be tuned by selecting appropriate solvent mixtures. The reaction‘s scope and tolerance towards functional groups, including light‐sensitive halogens, free acids and alcohols, were studied, providing reliable access to a wide variety of β,γ‐unsaturated ketones. This methodology details the deconjugation of a wide range of unsaturated ketones and, when combined with olefin metathesis, provides an efficient process for either dehomologation or one‐carbon double‐bond migration of terminal alkenes.
Collapse
Affiliation(s)
- Rajendran Manikandan
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Ravindra S. Phatake
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - N. Gabriel Lemcoff
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
45
|
Poland EM, Ho CC. Photoactive N‐Heterocyclic Carbene Transition Metal Complexes in Bond‐Forming Photocatalysis: State‐of‐the‐Art and Opportunities. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eve M. Poland
- School of Natural Sciences – Chemistry University of Tasmania Hobart Tasmania Australia
| | - Curtis C. Ho
- School of Natural Sciences – Chemistry University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
46
|
Adachi J, Naito M, Sugiura S, Le NHT, Nishimura S, Huang S, Suzuki S, Kawamorita S, Komiya N, Hill JP, Ariga K, Naota T, Mori T. Coordination Amphiphile: Design of Planar-Coordinated Platinum Complexes for Monolayer Formation at an Air-Water Interface Based on Ligand Characteristics and Molecular Topology. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Junya Adachi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masaya Naito
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Sho Sugiura
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ngoc Ha-Thu Le
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shoma Nishimura
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shufang Huang
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shuichi Suzuki
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Soichiro Kawamorita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Naruyoshi Komiya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Jonathan P. Hill
- Functional Chromophores Group, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-0827, Japan
- International Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Taizo Mori
- International Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| |
Collapse
|
47
|
Tang JH, Han G, Li G, Yan K, Sun Y. Near-infrared light photocatalysis enabled by a ruthenium complex-integrated metal–organic framework via two-photon absorption. iScience 2022; 25:104064. [PMID: 35355522 PMCID: PMC8958328 DOI: 10.1016/j.isci.2022.104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Photocatalysis under UV/visible light irradiation has emerged as one of the green methodologies for solar energy utilization and organic synthesis. These photocatalytic processes are typically initiated by one-photon-absorbing metal complexes or organic dyes. Nevertheless, the intrinsic restrictions of UV/visible light irradiation, such as shallow penetration in reaction solutions, competing absorption by substrates, and limited coverage of the solar spectrum, call for the development of innovative photocatalysts functioning under longer wavelength irradiation. Herein, we report a ruthenium complex containing a metal-organic framework, MOF-Ru1, which can drive diverse organic reactions under 740 nm light irradiation following the two-photon absorption (TPA) process. Various organic transformations such as energy transfer, reductive, oxidative, and redox neutral reactions were realized using this heterogeneous hybrid photocatalyst. Overall, MOF-Ru1 represents an intriguing TPA photocatalyst active under near-infrared light irradiation, paving a way for the efficient utilization of low-energy light and convenient photocatalyst recycling because of phase separation. Ru complexes with π-conjugation ligands show two-photon absorption of NIR photons Hybrid MOF-Ru has NIR light-driven photocatalytic performance with recyclability A variety of organic reactions were photocatalyzed by MOF-Ru under 740 nm irradiation
Collapse
Affiliation(s)
- Jian-Hong Tang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guodong Li
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kaili Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
- Corresponding author
| |
Collapse
|
48
|
Lorenzo-Aparicio C, Gómez Gallego M, Ramírez de Arellano C, Sierra MA. Phosphorescent Ir(III) complexes derived from purine nucleobases. Dalton Trans 2022; 51:5138-5150. [PMID: 35266928 DOI: 10.1039/d1dt04148g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the preparation and the study of new types of neutral and cationic phosphorescent heteroleptic Ir(III) complexes derived from 6-phenylpurine nucleosides and nucleotides. Neutral complexes of general formula Ir(C^N)2(acac) 7, and 8a-c (HC^N = 9-substituted-6-phenyl purine) are orange-red emissive upon photoexcitation, with short lifetimes and good quantum yields (0.42-0.65) in both PMMA films and 2-MeTHF at room temperature. In turn, cationic complexes [Ir(C^N)2(dtb-bpy)][PF6] 9, 12a and 12c (dtb-bpy = 4,4'-di-tert-butyl-2,2'-dipyridine) are yellow-green emitters with moderate quantum yields (0.24-0.32).
Collapse
Affiliation(s)
- Carmen Lorenzo-Aparicio
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Mar Gómez Gallego
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Carmen Ramírez de Arellano
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain.,Departamento de Química Orgánica, Universidad de Valencia, 46100-Valencia, Spain
| | - Miguel A Sierra
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
49
|
Shen Q, Zheng X, Li L, Zhong T, Yin C, Yu C. Photoinduced Three-Component Difluoroamidosulfonylation/Bicyclization: A Route to Dihydrobenzofuran Derivatives. Org Lett 2022; 24:2556-2561. [PMID: 35348346 DOI: 10.1021/acs.orglett.2c00761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A visible-light-induced photocatalyst-free three-component radical cascade bicyclization has been achieved to obtain diverse difluoroamidosulfonylated dihydrobenzofurans in moderate to good yields. This protocol avoids potential toxicity and the tedious removal procedure for photocatalysts and also features mild reaction conditions and a good functional group tolerance. Moreover, mechanistic investigations reveal the formation of a charge-transfer complex and the involvement of an intramolecular 1,5-hydrogen atom transfer process in this transformation.
Collapse
Affiliation(s)
- Qitao Shen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Lianghao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
50
|
Corpas J, Mauleón P, Gómez Arrayás R, Carretero JC. E/Z
Photoisomerization of Olefins as an Emergent Strategy for the Control of Stereodivergence in Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Pablo Mauleón
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Juan C. Carretero
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| |
Collapse
|