1
|
Burguera S, Vidal L, Bauzá A. Aluminum Fluorides as Noncovalent Lewis Acids in Proteins: The Case of Phosphoryl Transfer Enzymes. Chempluschem 2024:e202400578. [PMID: 39363715 DOI: 10.1002/cplu.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
The Protein Data Bank (PDB) was scrutinized for the presence of noncovalent O ⋅ ⋅ ⋅ Al Triel Bonding (TrB) interactions, involving protein residues (e. g. GLU and GLN), adenosine/guanine diphosphate moieties (ADP and GDP), water molecules and two aluminum fluorides (AlF3 and AlF4 -). The results were statistically analyzed, revealing a vast number of O ⋅ ⋅ ⋅ Al contacts in the active sites of phosphoryl transfer enzymes, with a marked directionality towards the Al σ-/π-hole. The physical nature of the TrBs studied herein was analyzed using Molecular Electrostatic Potential (MEP) maps, the Quantum Theory of Atoms in Molecules (QTAIM), the Non Covalent Interaction plot (NCIplot) visual index and Natural Bonding Orbital (NBO) studies. As far as our knowledge extends, it is the first time that O ⋅ ⋅ ⋅ Al TrBs are analyzed within a biological context, participating in protein trapping mechanisms related to phosphoryl transfer enzymes. Moreover, since they are involved in the stabilization of aluminum fluorides inside the protein's active site, we believe the results reported herein will be valuable for those scientists working in supramolecular chemistry, catalysis and rational drug design.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa, km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain
| | - Lenin Vidal
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa, km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa, km. 7.5, 07122, Palma de Mallorca, Islas Baleares, Spain
| |
Collapse
|
2
|
Lebedev IS, Belova NV, Giricheva NI, Andreev VP, Sobolev PS, Girichev GV. Is There an Adduct of Pyridine N-Oxide and Boron Trifluoride in the Gaseous State? Gas Electron Diffraction vs Mass Spectrometry. Inorg Chem 2024; 63:16451-16460. [PMID: 39158087 DOI: 10.1021/acs.inorgchem.4c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A study of saturated vapor over the pyridine N-oxide-boron trifluoride (PyO-BF3) adduct was carried out at T = 448(5) K by a synchronous gas electron diffraction/mass spectrometry (GED/MS) experiment. Due to the absence of ions in the mass spectrum, indicating the presence of a structure with an O-B dative bond, several models of vapor composition were tested by the GED method. It was found that the dominant molecular form (up to 100%) in vapor is the PyO-BF3 adduct. Using the DFT/M06-2X/aug-cc-pVTZ method, geometric optimization of the molecular ion [PyO-BF3]+ was carried out, which showed its intrinsic instability and dissociation into a [PyO]+ cation and a BF3 molecule. This study certainly demonstrates the significant advantage of the GED method to determine the qualitative and quantitative gas-phase composition of dative-bonded adducts and other noncovalent complexes as well, whereas the interpretation of mass spectra may be ambiguous due to the possible intrinsic instability of ions containing a dative bond. The nature of the O-B bond is discussed in terms of the natural bond orbitals (NBOs) and the quantum theory of atoms in molecules (QTAIM). A comparison of structural and energetic parameters for PyO-BF3 and the previously studied BF3 adducts allows the theoretical comprehension of the nature of the O-B bond to be extended and to explain the different thermal stabilities of these compounds.
Collapse
Affiliation(s)
- Ivan S Lebedev
- Ivanovo State University of Chemistry and Technology, Research Institute for Thermodynamics and Kinetics of Chemical Processes, Sheremetevsky Avenue, 7, Ivanovo 153000, Russia
| | - Natalya V Belova
- Ivanovo State University of Chemistry and Technology, Research Institute for Thermodynamics and Kinetics of Chemical Processes, Sheremetevsky Avenue, 7, Ivanovo 153000, Russia
| | - Nina I Giricheva
- Ivanovo State University, Ermaka Street, 39, Ivanovo 153025, Russia
| | - Vladimir P Andreev
- Petrozavodsk State University, Lenina Street, 33, Petrozavodsk 185033, Russia
| | - Pavel S Sobolev
- Petrozavodsk State University, Lenina Street, 33, Petrozavodsk 185033, Russia
| | - Georgiy V Girichev
- Ivanovo State University of Chemistry and Technology, Research Institute for Thermodynamics and Kinetics of Chemical Processes, Sheremetevsky Avenue, 7, Ivanovo 153000, Russia
| |
Collapse
|
3
|
Pérez-Sánchez JC, Herrera RP, Gimeno MC. The Potential of Self-Activating Au(I) Complexes in Gold Catalysis. Chemistry 2024; 30:e202401825. [PMID: 38818661 DOI: 10.1002/chem.202401825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Gold catalysis has emerged as a groundbreaking field in synthetic chemistry, revolutionizing numerous organic transformations. Despite the significant achieved advancements, the mechanistic understanding behind many gold-catalyzed reactions remains elusive. This Concept article covers the so-called "self-activating" Au(I) complexes, sorting out their pivotal role in gold catalysis. We comment on how Au(I) complexes can undergo self-activation, triggering diverse catalytic transformations without the need for external additives. The most important examples reported so far that underlie the catalytic activity of these species are discussed. This intrinsic reactivity represents a paradigm shift in gold catalysis, offering new avenues for the design of efficient and sustainable catalytic systems. Furthermore, we explore the factors influencing the stability, reactivity, and selectivity of these Au(I) complexes, providing insights into their synthetic utility and potential applications. This area of research not only advances our fundamental understanding of gold catalysis but also paves the way for the development of novel catalytic strategies with broad implications in organic synthesis and the chemical industry.
Collapse
Affiliation(s)
- Juan Carlos Pérez-Sánchez
- Department of Inorganic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
- Department of Organic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Raquel P Herrera
- Department of Organic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - M Concepción Gimeno
- Department of Inorganic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| |
Collapse
|
4
|
Wang X, Niu Z, Li Q, Scheiner S. Strong Triel Bonds with Be as Electron Donor. Inorg Chem 2024; 63:14656-14664. [PMID: 39034471 DOI: 10.1021/acs.inorgchem.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A systematic theoretical study was conducted on the triel bonds (TrBs) within the TrX3···Be(CO)3 complexes (Tr = B, Al, Ga, In, Tl; X = H, F, Cl, Br, I). The interaction energies of these systems range between 4 and 38 kcal/mol. The TrB weakens as X becomes more electronegative in the B and Al systems, while the opposite pattern of stronger bonds is observed in the In and Tl analogues. The dominant component of the TrB is polarization energy, which arises from charge transfer from Be(CO)3 to TrX3. The source of the density is a confluence of CO π-bonding orbitals at the Be center that resembles a Be lone pair, and which makes the molecular electrostatic potential above the Be somewhat negative. This π-lump is paired with the highly positive π-hole above the Tr, and a large amount of charge is transferred to the empty pz orbital of Tr. These factors, when considered in conjunction with large AIM measures, confer on this TrB a certain degree of covalency.
Collapse
Affiliation(s)
- Xin Wang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Zhihao Niu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
5
|
Brzeski J. Can H 2 be Superacidic? A Computational Study of Triel-Bonded Brønsted Acids. J Phys Chem A 2024; 128:5009-5020. [PMID: 38869476 PMCID: PMC11215784 DOI: 10.1021/acs.jpca.4c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
The abundance of XIII group element compounds in science and industry together with their electron-deficient character gives rise to their influence on properties of the systems they interact with. This paper is an attempt to assess the strength, nature, and effect of formation of a triel bond on acidity. A wide set of Brønsted acids among others comprising hydrocarbons, halogen hydrides, and amines bonded with B, Al, and Ga trifluorides forming HX/TF3 was selected for the research. Various computational approaches (e.g., MP2, GFN2-xTB, SAPT2 + 3(CCD)δMP2, quantum theory of atoms in molecules analysis, and density overlap regions indicator) are used to describe the triel-bonded systems. Among other things, it was found that the electrostatics may not be the dominant contribution to the triel binding in some cases. Additionally, it was established that even weak Brønsted acids such as C2H2 or H2 may be superacidic if bonded to a Lewis acid (TF3) that is strong enough. The calculations indicate a significant covalent character of some of the studied HX/TF3 triel-bonded systems. Moreover, the effect of solvation of HX with TF3 as well as that of the reverse process on the acidity of the resulting system is thoroughly described.
Collapse
Affiliation(s)
- Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| |
Collapse
|
6
|
Topić NB, Bedeković N, Poljanić L, Stilinović V, Cinčić D. Evaluation of Concomitant Halogen and Pnictogen Bonds in Cocrystals of Imines Derived from 2-Nitrobenzaldehyde and 4-Haloaniline. CRYSTAL GROWTH & DESIGN 2024; 24:3010-3020. [PMID: 38585379 PMCID: PMC10996288 DOI: 10.1021/acs.cgd.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Three imines have been prepared by condensation of 2-nitrobenzaldehyde and 4-haloanilines (halo = Cl, Br, and I) with functionalities that enabled them to act as both halogen and pnictogen bond donors; however, both interactions were found to be absent in the solid state. The prepared imines were further cocrystallized with 1,3-diiodotetrafluorobenzene and 1,3,5-triiodotetrafluorobenzene as halogen bond donors. Six novel cocrystals were prepared by means of liquid-assisted mechanochemical synthesis and by crystallization from solution. All six cocrystals were of 1:1 stoichiometry and comprised a N···I halogen bond between an iodine atom of the perhalogenated halogen bond donor and the imino nitrogen atom of the imine acting as an acceptor. Additionally, in all six cocrystals, the imine molecules were interconnected by NO2···NO2 pnictogen bonding interactions. Computational analysis has shown that the NO2···NO2 exhibits bond critical point electron densities in the region (4.897-8.306) × 10-3 e Å-3 and interaction energies of 23.6-27.7 kJ mol-1, whereas the N···I halogen bonds generally have higher critical point electron densities ((1.795-1.937) × 10-2 e Å-3), but the corresponding total interaction energies are lower (19.4-20.4 kJ mol-1). Statistical analysis of the appearance of NO2···NO2 contacts concomitantly with halogen or hydrogen bonds seems to indicate that there is a positive correlation between the presence of NO2···NO2 pnictogen bonding interactions and other directional interactions in crystal structures.
Collapse
Affiliation(s)
- Nea Baus Topić
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| | - Nikola Bedeković
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| | | | - Vladimir Stilinović
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| | - Dominik Cinčić
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10000, Croatia
| |
Collapse
|
7
|
Ferrer M, Alkorta I, Elguero J, Oliva-Enrich JM. (Pyridin-2-ylmethyl)triel Derivatives as Masked Frustrated Lewis Pairs. Interactions and CO 2 -Sequestration. Chemphyschem 2024; 25:e202300750. [PMID: 38215389 DOI: 10.1002/cphc.202300750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
The isolated (pyridin-2-ylmethyl)triel derivatives (triel=B, Al and Ga) show an intramolecular N⋅⋅⋅Tr triel bond as shown by compounds found in the Cambridge Structural Database and DFT calculations. The possibility to use them as masked frustrated Lewis pairs (mFLP) has been explored theoretically concerning their reaction with CO2 . The adduct formation proceeds in two steps. In the first one, the (pyridin-2-ylmethyl)triel derivatives break the intramolecular N⋅⋅⋅Tr bond assisted by CO2 and in the second step the adduct is formed with Tr-O and N-C covalent bonds. The corresponding energy minima and transition states (TS) of the reaction have been characterized and analyzed. The distortion/interaction model analysis of the stationary points indicates that the whole process can be divided in two parts: reorganization of the mFLP in the first steps of the reaction while the reaction with CO2 (associated to the distortion of this molecule) is more important in the formation of the final adduct. In all cases studied, the final products are more stable than the starting molecules that combine with reasonable TS energies indicating that these reactions can occur.
Collapse
Affiliation(s)
- Maxime Ferrer
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006, Madrid, Spain
- PhD Program in Theoretical Chemistry and Computational Modeling, Doctoral School, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Jose Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Josep M Oliva-Enrich
- Instituto de Química-Física Blas Cabrera (CSIC), Serrano, 119, 28006, Madrid, Spain
| |
Collapse
|
8
|
Bürgi HB. The Cambridge Structural Database and structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:021302. [PMID: 38504974 PMCID: PMC10950365 DOI: 10.1063/4.0000244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
With the availability of the computer readable information in the Cambridge Structural Database (CSD), wide ranging, largely automated comparisons of fragment, molecular, and crystal structures have become possible. They show that the distributions of interatomic distances, angles, and torsion angles for a given structural fragment occurring in different environments are highly correlated among themselves and with other observables such as spectroscopic signals, reaction and activation energies. The correlations often extend continuously over large ranges of parameter values. They are reminiscent of bond breaking and forming reactions, polyhedral rearrangements, and conformational changes. They map-qualitatively-the regions of the structural parameter space in which molecular dynamics take place, namely, the low energy regions of the respective (free) energy surfaces. The extension and continuous nature of the correlations provides an organizing principle of large groups of structural data and suggests a reconsideration of traditional definitions and descriptions of bonds, "nonbonded" and "noncovalent" interactions in terms of Lewis acids interacting with Lewis bases. These aspects are illustrated with selected examples of historic importance and with some later developments. It seems that the amount of information in the CSD (and other structural databases) and the knowledge on the nature of, and the correlations within, this body of information should allow one-in the near future-to make credible interpolations and possibly predictions of structures and their properties with machine learning methods.
Collapse
Affiliation(s)
- Hans-Beat Bürgi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Berne, Freiestr. 3, CH-3012 Bern, Switzerland
| |
Collapse
|
9
|
Wang X, Li Q, Scheiner S. Search for Osme Bonds with π Systems as Electron Donors. Molecules 2023; 29:79. [PMID: 38202661 PMCID: PMC10779769 DOI: 10.3390/molecules29010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
The Osme bond is defined as pairing a Group 8 metal atom as an electron acceptor in a noncovalent interaction with a nucleophile. DFT calculations with the ωB97XD functional consider MO4 (M = Ru, Os) as the Lewis acid, paired with a series of π electron donors C2H2, C2H4, C6H6, C4H5N, C4H4O, and C4H4S. The calculations establish interaction energies in the range between 9.5 and 26.4 kJ/mol. Os engages in stronger interactions than does Ru, and those involving more extensive π-systems within the aromatic rings form stronger bonds than do the smaller ethylene and acetylene. Extensive analysis questions the existence of a true Osme bond, as the bonding chiefly involves interactions with the three O atoms of MO4 that lie closest to the π-system, via π(C-C)→σ*(M-O) transfers. These interactions are supplemented by back donation from M-O bonds to the π*(CC) antibonding orbitals of the π-systems. Dispersion makes a large contribution to these interactions, higher than electrostatics and much greater than induction.
Collapse
Affiliation(s)
- Xin Wang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| |
Collapse
|
10
|
Aarabi M, Gholami S, Grabowski SJ. Double Centrosymmetric Si···π Tetrel Bonds as New Synthons─Evidence from Crystal Structures and DFT Calculations. J Phys Chem A 2023; 127:9995-10007. [PMID: 37975750 DOI: 10.1021/acs.jpca.3c06514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The crystal structure of bis((μ2-ethynylsilyloxo)-dichloro-aluminum), BEDCA, and a few related structures are characterized by the occurrence of tetrel bonds that link molecules. Particularly, centosymmetric dimers in such structures occur that are connected by two equivalent Si···π tetrel bonds. The dimer of BEDCA and dimers of other model species that similarly are linked by two equivalent Si···π tetrel bonds are analyzed theoretically. Some of the complexes calculated here are also characterized by the occurrence of triel bonds. Thus, ωB97XD/aug-cc-pVTZ calculations are performed and these DFT results are further supported by calculations with the use of other theoretical approaches: the quantum theory of atoms in molecules, QTAIM; the natural bond orbital, NBO; the energy decomposition analysis, EDA; and the noncovalent interactions method, NCI. The results show that the tetrel bonds analyzed here are rather weak, and they are not detected by the QTAIM approach; however, they are detected by other approaches, like NBO, for example. On the other hand, the triel bonds that occur in a few complexes discussed here are very strong and possess characteristics of covalent bonds.
Collapse
Affiliation(s)
- Mohammad Aarabi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Samira Gholami
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Sławomir J Grabowski
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU & Donostia International Physics Center (DIPC) PK 1072, 20080 Donostia, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
11
|
Shukla R, Sen A. Exploring the electron donor-acceptor duality of B 3N 3 in noncovalent interactions. Phys Chem Chem Phys 2023; 25:32040-32050. [PMID: 37982166 DOI: 10.1039/d3cp02656f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Boron nitrides are very important and are used as lubricants, insulating agents, etc. Interactions of such systems with small molecules are important. This study examined the potential of B3N3 (triboron trinitride) to act as both an electron acceptor and an electron donor in the formation of noncovalent interactions. The anisotropic electronic distribution observed in the electrostatic potential map supported the B3N3's ability to exhibit the predicted electron donor-acceptor duality. Further computational investigations on optimized gas-phase complexes of B3N3:(NH3)n=1-3, B3N3:(NCH)n=1-6, B3N3:(N2H2)n=1-3 and (B3N3)2 confirmed that the B3N3 molecule can participate in B⋯N triel bonding interactions and H···N hydrogen bonding interactions. These energetically stable complexes are primarily governed by electrostatic and polarization interactions.
Collapse
Affiliation(s)
- Rahul Shukla
- Department of Chemistry (NCI Lab), GITAM School of Science, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
| | - Anik Sen
- Department of Chemistry (CMDD Lab), GITAM School of Science, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
12
|
Puttreddy R, Rautiainen JM, Yu S, Rissanen K. N-X⋅⋅⋅O-N Halogen Bonds in Complexes of N-Haloimides and Pyridine-N-oxides: A Large Data Set Study. Angew Chem Int Ed Engl 2023; 62:e202307372. [PMID: 37314001 DOI: 10.1002/anie.202307372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
N-X⋅⋅⋅- O-N+ halogen-bonded systems formed by 27 pyridine N-oxides (PyNOs) as halogen-bond (XB) acceptors and two N-halosuccinimides, two N-halophthalimides, and two N-halosaccharins as XB donors are studied in silico, in solution, and in the solid state. This large set of data (132 DFT optimized structures, 75 crystal structures, and 168 1 H NMR titrations) provides a unique view to structural and bonding properties. In the computational part, a simple electrostatic model (SiElMo) for predicting XB energies using only the properties of halogen donors and oxygen acceptors is developed. The SiElMo energies are in perfect accord with energies calculated from XB complexes optimized with two high-level DFT approaches. Data from in silico bond energies and single-crystal X-ray structures correlate; however, data from solution do not. The polydentate bonding characteristic of the PyNOs' oxygen atom in solution, as revealed by solid-state structures, is attributed to the lack of correlation between DFT/solid-state and solution data. XB strength is only slightly affected by the PyNO oxygen properties [(atomic charge (Q), ionization energy (Is,min ) and local negative minima (Vs,min )], as the σ-hole (Vs,max ) of the donor halogen is the key determinant leading to the sequence N-halosaccharin>N-halosuccinimide>N-halophthalimide on the XB strength.
Collapse
Affiliation(s)
- Rakesh Puttreddy
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| | - J Mikko Rautiainen
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| | - Shilin Yu
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| |
Collapse
|
13
|
Grabowski SJ. Ga···C Triel Bonds-Why They Are Not Strong Enough to Change Trigonal Configuration into Tetrahedral One: DFT Calculations on Dimers That Occur in Crystal Structures. Int J Mol Sci 2023; 24:12212. [PMID: 37569593 PMCID: PMC10418643 DOI: 10.3390/ijms241512212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Structures characterized by the trigonal coordination of the gallium center that interacts with electron rich carbon sites are described. These interactions may be classified as Ga···C triel bonds. Their properties are analyzed in this study since these interactions may be important in numerous chemical processes including catalytical activities; additionally, geometrical parameters of corresponding species are described. The Ga···C triel bonds discussed here, categorized also as the π-hole bonds, do not change the trigonal configuration of the gallium center into the tetrahedral one despite total interactions in dimers being strong; however, the main contribution to the stabilization of corresponding structures comes from the electrostatic forces. The systems analyzed theoretically here come from crystal structures since the Cambridge Structural Database, CSD, search was performed to find structures where the gallium center linked to CC bonds of Lewis base units occurs. The majority structures found in CSD are characterized by parallel, stacking-like arrangements of species containing the Ga-centers. The theoretical results show that interactions within dimers are not classified as the three-centers links as in a case of typical hydrogen bonds and numerous other interactions. The total interactions in dimers analyzed here consist of several local intermolecular atom-atom interactions; these are mainly the Ga···C links. The DFT results are supported in this study by calculations with the use of the quantum theory of atoms in molecules, QTAIM, the natural bond orbital, NBO, and the energy decomposition analysis, EDA, approaches.
Collapse
Affiliation(s)
- Sławomir J. Grabowski
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU & Donostia International Physics Center (DIPC) PK 1072, 20080 Donostia, Spain;
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
14
|
Brammer L, Peuronen A, Roseveare TM. Halogen bonds, chalcogen bonds, pnictogen bonds, tetrel bonds and other σ-hole interactions: a snapshot of current progress. Acta Crystallogr C Struct Chem 2023; 79:204-216. [PMID: 37212787 PMCID: PMC10240169 DOI: 10.1107/s2053229623004072] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023] Open
Abstract
We report here on the status of research on halogen bonds and other σ-hole interactions involving p-block elements in Lewis acidic roles, such as chalcogen bonds, pnictogen bonds and tetrel bonds. A brief overview of the available literature in this area is provided via a survey of the many review articles that address this field. Our focus has been to collect together most review articles published since 2013 to provide an easy entry into the extensive literature in this area. A snapshot of current research in the area is provided by an introduction to the virtual special issue compiled in this journal, comprising 11 articles and entitled `Halogen, chalcogen, pnictogen and tetrel bonds: structural chemistry and beyond.'
Collapse
Affiliation(s)
- Lee Brammer
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| | - Anssi Peuronen
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, United Kingdom
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Thomas M. Roseveare
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| |
Collapse
|
15
|
Oliveira BGD. Why much of Chemistry may be indisputably non-bonded? SEMINA: CIÊNCIAS EXATAS E TECNOLÓGICAS 2023. [DOI: 10.5433/1679-0375.2022v43n2p211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this compendium, the wide scope of all intermolecular interactions ever known has been revisited, in particular giving emphasis the capability of much of the elements of the periodic table to form non-covalent contacts. Either hydrogen bonds, dihydrogen bonds, halogen bonds, pnictogen bonds, chalcogen bonds, triel bonds, tetrel bonds, regium bonds, spodium bonds or even the aerogen bond interactions may be cited. Obviously that experimental techniques have been used in some works, but it was through the theoretical methods that these interactions were validate, wherein the QTAIM integrations and SAPT energy partitions have been useful in this regard. Therefore, the great goal concerns to elucidate the interaction strength and if the intermolecular system shall be total, partial or non-covalently bonded, wherein this last one encompasses the most majority of the intermolecular interactions what leading to affirm that chemistry is debatably non-bonded.
Collapse
|
16
|
Nag T, Ovens JS, Bryce DL. 77Se and 125Te solid-state NMR and X-ray diffraction structural study of chalcogen-bonded 3,4-dicyano-1,2,5-chalcogenodiazole cocrystals. Acta Crystallogr C Struct Chem 2022; 78:517-523. [PMID: 36196784 DOI: 10.1107/s2053229622008518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Three novel chalcogen-bonded cocrystals featuring 3,4-dicyano-1,2,5-selenodiazole (C4N4Se) or 3,4-dicyano-1,2,5-tellurodiazole (C4N4Te) as chalcogen-bond donors and hydroquinone (C6H6O2), tetraphenylphosphonium chloride (C24H20P+·Cl-) or tetraethylphosphonium chloride (C8H20P+·Cl-) as chalcogen-bond acceptors have been prepared and characterized by single-crystal X-ray diffraction (XRD), powder X-ray diffraction and 77Se/125Te magic-angle spinning solid-state NMR spectroscopy. The single-crystal XRD results show that the chalcogenodiazole molecules interact with the electron donors through two σ-holes on each of the chalcogen atoms, which results in highly directional and moderately strong chalcogen bonds. Powder XRD confirms that the crystalline phases are preserved upon moderate grinding of the samples for solid-state NMR experiments. Measurement of 77Se and 125Te chemical shift tensors via magic-angle spinning solid-state NMR spectroscopy confirms the number of magnetically unique chalcogen sites in each asymmetric unit and reveals the impact of chalcogen-bond formation on the local electronic structure. These NMR data are further assessed in the context of analogous data for a wider range of crystalline chalcogen-bonded systems.
Collapse
Affiliation(s)
- Tamali Nag
- Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Jeffrey S Ovens
- Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
17
|
Grabowski SJ, Parra RD. Sandwich, Triple-Decker and Other Sandwich-like Complexes of Cyclopentadienyl Anions with Lithium or Sodium Cations. Molecules 2022; 27:molecules27196269. [PMID: 36234808 PMCID: PMC9571536 DOI: 10.3390/molecules27196269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Density functional theory, DFT, calculations were carried out on complexes containing cyclopentadienyl anions and lithium or sodium cations; half-sandwich, sandwich and sandwich-like complexes (among them triple-decker ones) are analyzed. Searches performed through the Cambridge Structural Database revealed that crystal structures containing these motifs exist, mostly structures with sodium cations. The DFT calculations performed here include geometry optimization and frequency calculations of the complexes at the ωB97XD/aug-cc-pVTZ level, followed by the partitioning of the energy of interaction via the Energy Decomposition Analysis scheme, EDA, at the BP86-D3/TZ2P level. Additional calculations and analyses were performed using both the Quantum Theory of Atoms in Molecules, QTAIM, and the Natural Bond Orbital analyses, NBO. The results of this work show that the electrostatic interaction energy is the most important attractive contribution to the total interaction energy of each of the complex systems analyzed here, and that complexation itself leads to minor electron charge shifts.
Collapse
Affiliation(s)
- Sławomir J. Grabowski
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU & Donostia International Physics Center (DIPC) PK 1072, 20080 Donostia, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
- Correspondence: (S.J.G.); (R.D.P.)
| | - Rubén D. Parra
- Department of Chemistry and Biochemistry, DePaul University, Chicago, IL 60614, USA
- Correspondence: (S.J.G.); (R.D.P.)
| |
Collapse
|
18
|
Wu Q, Yang S, Li Q. Triel Bond Formed by Malondialdehyde and Its Influence on the Intramolecular H-Bond and Proton Transfer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186091. [PMID: 36144822 PMCID: PMC9505241 DOI: 10.3390/molecules27186091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
Malondialdehyde (MDA) engages in a triel bond (TrB) with TrX3 (Tr = B and Al; X = H, F, Cl, and Br) in three modes, in which the hydroxyl O, carbonyl O, and central carbon atoms of MDA act as the electron donors, respectively. A H···X secondary interaction coexists with the TrB in the former two types of complexes. The carbonyl O forms a stronger TrB than the hydroxyl O, and both of them are better electron donors than the central carbon atom. The TrB formed by the hydroxyl O enhances the intramolecular H-bond in MDA and thus promotes proton transfer in MDA-BX3 (X = Cl and Br) and MDA-AlX3 (X = halogen), while a weakening H-bond and the inhibition of proton transfer are caused by the TrB formed by the carbonyl O. The TrB formed by the central carbon atom imposes little influence on the H-bond. The BH2 substitution on the central C-H bond can also realise the proton transfer in the triel-bonded complexes between the hydroxyl O and TrH3 (Tr = B and Al).
Collapse
|
19
|
|
20
|
Derbali I, Aroule O, Hoffmann G, Thissen R, Alcaraz C, Romanzin C, Zins EL. On the relevance of the electron density analysis for the study of micro-hydration and its impact on the formation of a peptide-like bond. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Gholami S, Aarabi M, Grabowski SJ. The proton and the lithium cation linked with π-electron and σ-electron systems: are such interactions beyond or within the definition of hydrogen/lithium bond? Chemphyschem 2022; 23:e202200273. [PMID: 35738996 DOI: 10.1002/cphc.202200273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Indexed: 11/06/2022]
Abstract
MP2/aug-cc-pVTZ calculations were performed on systems containing the proton or the lithium cation located between two π-electron systems or between π-electron and σ-electron units. The proton or the lithium cation attached to the acetylene or its derivative may be treated as the Lewis acid unit while the remaining part of the complex, the π-electron species or the dihydrogen, act as the Lewis base through their π-electrons or σ-electrons, respectively. The complexes analysed here are linked by the π∙∙∙H + /Li + ∙∙∙π and π∙∙∙H + /Li + ∙∙∙σ interactions. It is discussed whether these interactions are classified as hydrogen and lithium bonds. Therefore, different definitions of the latter interactions are presented. The Electron Localization Function (ELF) and the Natural Bond Orbital (NBO) approaches were applied to analyse the above-mentioned complexes. The unique properties of interactions with the proton and with the lithium cation that occur in complexes analysed here are described.
Collapse
Affiliation(s)
- Samira Gholami
- Universitá degli Studi di Bologna, Dipartimento di Chimica Industriale, ITALY
| | - Mohammad Aarabi
- Universitá degli Studi de Bologna, Dipartimento di Chimica Industriale, ITALY
| | - Slawomir Janusz Grabowski
- Euskal Herriko Unibertsitatea, Kimika Fakultatea, P.Manuel de Lardizabal/Paseolekua, 3, 20080, San Sebastian, SPAIN
| |
Collapse
|
22
|
Avila-Montiel C, Tlahuext H, Ariza A, Godoy-Alcántar C, Tapia-Benavides AR, Tlahuextl M. Indium coordination compounds derived from amino amides. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Hugo Tlahuext
- Universidad Autonoma del Estado de Morelos Centro de Investigaciones Químicas MEXICO
| | - Armando Ariza
- Centro de Investigacion y de Estudios Avanzados del IPN: Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Chemistry Department MEXICO
| | | | | | - Margarita Tlahuextl
- Universidad Autonoma del Estado de Hidalgo Centro de Investigaciones Quimicas Carretera Pachuca-Tulancingo km 4.5 42184 Mineral de la Reforma MEXICO
| |
Collapse
|
23
|
Zierkiewicz W, Michalczyk M, Mahmoudi G, García-Santos I, Castiñeiras A, Zangrando E, Scheiner S. Experimental and Theoretical Evidence of a Pb⋅⋅⋅Pb Ditetrel Bond Without a σ-Hole. Chemphyschem 2022; 23:e202200306. [PMID: 35638192 DOI: 10.1002/cphc.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/07/2022]
Abstract
The crystal structure of a newly synthesized compound, [PbL(Ac)]2 , (where L=2 (amino(pyrazin-2-yl) methylene) hydrazinecarbothioamide, Ac=acetate anion) exhibits a close contact between pairs of Pb atoms, suggesting a ditetrel bond, in addition to two Pb⋅⋅⋅O tetrel bonds, and two C-H⋅⋅⋅O H-bonds. The presence of this ditetrel bond as an attractive component is confirmed by various quantum chemical methods. This novelty of this particular bond is its existence even in the absence of a σ-hole on the Pb atom, which is typically considered a prerequisite for a bond of this type. From a wider perspective, a survey of the Cambridge Structural Database suggests this bond may be more common than was hitherto thought, with 44 examples of Pb⋅⋅⋅Pb contacts amongst a total number of 219 examples of T⋅⋅⋅T interactions in general (T=Si, Ge, Sn, Pb).
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Ghodrat Mahmoudi
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55136-83111, Maragheh, Iran
| | - Isabel García-Santos
- Departamento de Química Inorgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Alfonso Castiñeiras
- Departamento de Química Inorgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, United States
| |
Collapse
|
24
|
σ-Hole Bonds and the VSEPR Model—From the Tetrahedral Structure to the Trigonal Bipyramid. SCI 2022. [DOI: 10.3390/sci4020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Complexes linked by various interactions are analysed in this study. They are characterized by the tetrahedral configuration of the Lewis acid centre. Interactions, being a subject of this study, are classified as σ-hole bonds, such as the halogen, chalcogen, pnicogen, and tetrel bonds. In the case of strong interactions, the tetrahedral configuration of the Lewis acid centre changes into the trigonal bipyramid configuration. This change is in line with the Valence-Shell Electron-Pair Repulsion model, VSEPR, and this is supported here by the results of high-level ab initio calculations. The theoretical results concerning the geometries are supported mainly by the Natural Bond Orbital, NBO, method.
Collapse
|
25
|
Metal Coordination Enhances Chalcogen Bonds: CSD Survey and Theoretical Calculations. Int J Mol Sci 2022; 23:ijms23084188. [PMID: 35457005 PMCID: PMC9030556 DOI: 10.3390/ijms23084188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
In this study the ability of metal coordinated Chalcogen (Ch) atoms to undergo Chalcogen bonding (ChB) interactions has been evaluated at the PBE0-D3/def2-TZVP level of theory. An initial CSD (Cambridge Structural Database) inspection revealed the presence of square planar Pd/Pt coordination complexes where divalent Ch atoms (Se/Te) were used as ligands. Interestingly, the coordination to the metal center enhanced the σ-hole donor ability of the Ch atom, which participates in ChBs with neighboring units present in the X-ray crystal structure, therefore dictating the solid state architecture. The X-ray analyses were complemented with a computational study (PBE0-D3/def2-TZVP level of theory), which shed light into the strength and directionality of the ChBs studied herein. Owing to the new possibilities that metal coordination offers to enhance or modulate the σ-hole donor ability of Chs, we believe that the findings presented herein are of remarkable importance for supramolecular chemists as well as for those scientists working in the field of solid state chemistry.
Collapse
|
26
|
Piña MDLN, Burguera S, Buils J, Crespí MÀ, Morales JE, Pons J, Bauzá A, Frontera A. Substituent effects in π-hole regium bonding interactions between Au(p-X-Py)2 complexes and Lewis bases: an ab initio study. Chemphyschem 2022; 23:e202200010. [PMID: 35191571 DOI: 10.1002/cphc.202200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Indexed: 11/10/2022]
Abstract
For the first time, long range substituent effects in regium bonding interactions involving Au(I) linear complexes are investigated. The Au(I) atom is coordinated to two para -substituted pyridine ligands. The interaction energy (RI-MP2/def2-TZVP level of theory) of the π-hole regium bonding assemblies is affected by the pyridine substitution. The Hammett's plot representations for several sets of Lewis bases have been carried out and, in all cases, good regression plots have been obtained (interaction energies vs. Hammett's σ parameter). The Bader's theory of "atoms-in-molecules" has been used to evidence that the electron density computed at the bond critical point that connects the Au-atom to the electron donor can be used as a measure of bond order in regium bonding. Several X-ray structures retrieved from the Cambridge Structural Database (CSD) provide some experimental support to the existence of regium π-hole bonding in [Au(Py) 2 ] + derivatives.
Collapse
Affiliation(s)
| | | | - Jordi Buils
- Universitat de les Illes Balears, Chemistry, SPAIN
| | | | | | - Jordi Pons
- Universitat de les Illes Balears, Chemistry, SPAIN
| | | | - Antonio Frontera
- Universitat Illes Balears, Chemistry, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca, SPAIN
| |
Collapse
|
27
|
Radiush EA, Pritchina EA, Chulanova EA, Dmitriev AA, Bagryanskaya IY, Slawin AMZ, Woollins JD, Gritsan NP, Zibarev AV, Semenov NA. Chalcogen-bonded donor–acceptor complexes of 5,6-dicyano[1,2,5]selenadiazolo[3,4- b]pyrazine with halide ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With halides X− (X = Cl, Br, I) 5,6-dicyano-[1,2,5]selenadiazolo[3,4-b]pyrazine 1 forms chalcogen-bonded complexes [1–X]− structurally defined by XRD. UV/Vis spectra of [1–X]− feature red-shifted charge-transfer bands in the Vis part.
Collapse
Affiliation(s)
- Ekaterina A. Radiush
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena A. Pritchina
- Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, National Research University – Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena A. Chulanova
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey A. Dmitriev
- Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, National Research University – Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Irina Yu Bagryanskaya
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | - J. Derek Woollins
- School of Chemistry, University of St. Andrews, St Andrews, Fife KY16 9ST, UK
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Nina P. Gritsan
- Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zibarev
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikolay A. Semenov
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
28
|
Zelenkov LE, Eliseeva AA, Baykov S, Ivanov DM, Sumina AI, Gomila RM, Frontera A, Kukushkin VY, Bokach NA. Inorganic–Organic {dz2-MIIS4}···π-Hole Stacking in Reverse Sandwich Structures. The Case of Cocrystals of Group 10 Metal Dithiocarbamates with Electron-deficient Arenes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00438k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocrystallization of the dithiocarbamate complexes [M(S2CNEt2)2] (M = Ni 1, Pd 2, Pt 3) and X-substituted perfluoroarenes (X = I, Br; 1,2-dibromoperfluorobenzene FBrB and 1,2-diiodoperfluorobenzene FIB) gives isomorphous cocrystals of...
Collapse
|
29
|
Frontera A, Bauza A. On the Importance of Pnictogen and Chalcogen Bonding Interactions in Supramolecular Catalysis. Int J Mol Sci 2021; 22:12550. [PMID: 34830432 PMCID: PMC8623369 DOI: 10.3390/ijms222212550] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
In this review, several examples of the application of pnictogen (Pn) (group 15) and chalcogen (Ch) bonding (group 16) interactions in organocatalytic processes are gathered, backed up with Molecular Electrostatic Potential surfaces of model systems. Despite the fact that the use of catalysts based on pnictogen and chalcogen bonding interactions is taking its first steps, it should be considered and used by the scientific community as a novel, promising tool in the field of organocatalysis.
Collapse
Affiliation(s)
| | - Antonio Bauza
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain;
| |
Collapse
|
30
|
Daolio A, Pizzi A, Terraneo G, Frontera A, Resnati G. Anion⋅⋅⋅Anion Interactions Involving σ-Holes of Perrhenate, Pertechnetate and Permanganate Anions. Chemphyschem 2021; 22:2281-2285. [PMID: 34541753 PMCID: PMC9291842 DOI: 10.1002/cphc.202100681] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 01/14/2023]
Abstract
In this communication experimental and theoretical results are reported affording strong evidence that interactions between electron rich atoms and the metal of tetroxide anions of group 7 elements are a new case of attractive and σ-hole interactions. Single crystal X-ray analyses, molecular electrostatic potentials, quantum theory of atoms-in-molecules, and noncovalent interaction plot analyses show that in crystalline permanganate and perrhenate salts the metal in Mn/ReO4- anion can act as electron acceptors, the oxygen of another Mn/ReO4- anion can act as the donor and supramolecular anionic dimers or polymers are formed. The name matere bond (MaB) is proposed to categorize these noncovalent interactions and to differentiate them from the classical metal-ligand coordination bond.
Collapse
Affiliation(s)
- Andrea Daolio
- Department of Chemistry, Materials andChemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 720131MilanoItaly
| | - Andrea Pizzi
- Department of Chemistry, Materials andChemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 720131MilanoItaly
| | - Giancarlo Terraneo
- Department of Chemistry, Materials andChemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 720131MilanoItaly
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes BalearsCrta. de Valldemossa07122Palma de MallorcaBalearesSpain
| | - Giuseppe Resnati
- Department of Chemistry, Materials andChemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 720131MilanoItaly
| |
Collapse
|
31
|
Michalczyk M, Zierkiewicz W, Wysokiński R, Scheiner S. Triel bonds within anion ···anion complexes. Phys Chem Chem Phys 2021; 23:25097-25106. [PMID: 34751289 DOI: 10.1039/d1cp04296c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of two anions to interact with one another is tested in the context of pairs of TrX4- homodimers, where Tr represents any of the triel atoms B, Al, Ga, In, or Tl, and X refers to a halogen substituent F, Cl, or Br. None of these pairs engage in a stable complex in the gas phase, but the situation reverses in water where the two monomers are held together by Tr⋯X triel bonds, complemented by stabilizing interactions between X atoms. Some of these bonds are quite strong, notably those involving TrF4-, with interaction energies surpassing 30 kcal mol-1. Others are very much weaker, with scarcely exothermic binding energies. The highly repulsive electrostatic interactions are counteracted by large polarization energies.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
32
|
Abstract
Elements from groups 14–18 and periods 3–6 commonly behave as Lewis acids, which are involved in directional noncovalent interactions (NCI) with electron-rich species (lone pair donors), π systems (aromatic rings, triple and double bonds) as well as nonnucleophilic anions (BF4−, PF6−, ClO4−, etc.). Moreover, elements of groups 15 to 17 are also able to act as Lewis bases (from one to three available lone pairs, respectively), thus presenting a dual character. These emerging NCIs where the main group element behaves as Lewis base, belong to the σ–hole family of interactions. Particularly (i) tetrel bonding for elements belonging to group 14, (ii) pnictogen bonding for group 15, (iii) chalcogen bonding for group 16, (iv) halogen bonding for group 17, and (v) noble gas bondings for group 18. In general, σ–hole interactions exhibit different features when moving along the same group (offering larger and more positive σ–holes) or the same row (presenting a different number of available σ–holes and directionality) of the periodic table. This is illustrated in this review by using several examples retrieved from the Cambridge Structural Database (CSD), especially focused on σ–hole interactions, complemented with molecular electrostatic potential surfaces of model systems.
Collapse
|
33
|
Tarannam N, Shukla R, Kozuch S. Yet another perspective on hole interactions. Phys Chem Chem Phys 2021; 23:19948-19963. [PMID: 34514473 DOI: 10.1039/d1cp03533a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hole interactions are known by different names depending on the key atom of the bond (halogen bond, chalcogen bond, hydrogen bond, etc.), and the geometry of the interaction (σ if in line, π if perpendicular to the Lewis acid plane). However, its origin starts with the creation of a Lewis acid by an underlying covalent bond, which forms an electrostatic depletion and a virtual antibonding orbital, which can create non-covalent interactions with Lewis bases. In this (maybe subjective) perspective, we will claim that hole interactions must be defined via the molecular orbital origin of the molecule. Under this premise we can better explore the richness of such bonding patterns. For that, we will study old, recent and new systems, trying to pinpoint some misinterpretations that are often associated with them. We will use as exemplars the triel bonds, a couple of metal complexes, a discussion on convergent σ-holes, and many cases of anti-electrostatic hole interactions.
Collapse
Affiliation(s)
- Naziha Tarannam
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| | - Rahul Shukla
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| |
Collapse
|
34
|
A-X⋯σ Interactions-Halogen Bonds with σ-Electrons as the Lewis Base Centre. Molecules 2021; 26:molecules26175175. [PMID: 34500610 PMCID: PMC8434224 DOI: 10.3390/molecules26175175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
CCSD(T)/aug-cc-pVTZ//ωB97XD/aug-cc-pVTZ calculations were performed for halogen-bonded complexes. Here, the molecular hydrogen, cyclopropane, cyclobutane and cyclopentane act as Lewis base units that interact through the electrons of the H–H or C–C σ-bond. The FCCH, ClCCH, BrCCH and ICCH species, as well as the F2, Cl2, Br2 and I2 molecular halogens, act as Lewis acid units in these complexes, interacting through the σ-hole localised at the halogen centre. The Quantum Theory of Atoms in Molecules (QTAIM), the Natural Bond Orbital (NBO) and the Energy Decomposition Analysis (EDA) approaches were applied to analyse these aforementioned complexes. These complexes may be classified as linked by A–X···σ halogen bonds, where A = C, X (halogen). However, distinct properties of these halogen bonds are observed that depend partly on the kind of electron donor: dihydrogen, cyclopropane, or another cycloalkane. Examples of similar interactions that occur in crystals are presented; Cambridge Structural Database (CSD) searches were carried out to find species linked by the A–X···σ halogen bonds.
Collapse
|
35
|
Classification of So-Called Non-Covalent Interactions Based on VSEPR Model. Molecules 2021; 26:molecules26164939. [PMID: 34443526 PMCID: PMC8399763 DOI: 10.3390/molecules26164939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
The variety of interactions have been analyzed in numerous studies. They are often compared with the hydrogen bond that is crucial in numerous chemical and biological processes. One can mention such interactions as the halogen bond, pnicogen bond, and others that may be classified as σ-hole bonds. However, not only σ-holes may act as Lewis acid centers. Numerous species are characterized by the occurrence of π-holes, which also may play a role of the electron acceptor. The situation is complicated since numerous interactions, such as the pnicogen bond or the chalcogen bond, for example, may be classified as a σ-hole bond or π-hole bond; it ultimately depends on the configuration at the Lewis acid centre. The disadvantage of classifications of interactions is also connected with their names, derived from the names of groups such as halogen and tetrel bonds or from single elements such as hydrogen and carbon bonds. The chaos is aggravated by the properties of elements. For example, a hydrogen atom can act as the Lewis acid or as the Lewis base site if it is positively or negatively charged, respectively. Hence names of the corresponding interactions occur in literature, namely hydrogen bonds and hydride bonds. There are other numerous disadvantages connected with classifications and names of interactions; these are discussed in this study. Several studies show that the majority of interactions are ruled by the same mechanisms related to the electron charge shifts, and that the occurrence of numerous interactions leads to specific changes in geometries of interacting species. These changes follow the rules of the valence-shell electron-pair repulsion model (VSEPR). That is why the simple classification of interactions based on VSEPR is proposed here. This classification is still open since numerous processes and interactions not discussed in this study may be included within it.
Collapse
|
36
|
Mahmudov KT, Huseynov FE, Aliyeva VA, Guedes da Silva MFC, Pombeiro AJL. Noncovalent Interactions at Lanthanide Complexes. Chemistry 2021; 27:14370-14389. [PMID: 34363268 DOI: 10.1002/chem.202102245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Lanthanide complexes have attracted a widespread attention due to their structural diversity, as well as multifunctional and tunable properties. The development of lanthanide based functional materials has often relied on the design of the secondary coordination sphere of the corresponding lanthanide complexes. For instance, usually simple lanthanide salts (solvento complexes) do not catalyze effectively organic reactions or provide low yield of the expected product, whereas the presence of a suitable organic ligand with a noncovalent bond donor or acceptor centre (secondary coordination sphere) modifies the symmetry around the metal centre in lanthanide complexes which then successfully can act as catalysts in both homogenous and heterogenous catalysis. In this minireview, we discuss several relevant examples, based on X-ray crystal structure analyses, in which the hydrogen, halogen, chalcogen, pnictogen, tetrel and rare-earth bonds, as well as cation-π, anion-π, lone pair-π, π-π and pancake interactions, are used as a synthon in the decoration of the secondary coordination sphere of lanthanide complexes.
Collapse
Affiliation(s)
- Kamran T Mahmudov
- University of Lisbon Higher Technical Institute: Universidade de Lisboa Instituto Superior Tecnico, CQE, R., 1009 - 001, Lisbon, PORTUGAL
| | - Fatali E Huseynov
- Baku State University, Department of Ecology and Soil Sciences, AZERBAIJAN
| | | | | | | |
Collapse
|
37
|
Wang X, Li B, Li Y, Wang H, Ni Y, Wang H. The influence of monomer deformation on triel and tetrel bonds between TrR3/TR4 (Tr = Al, Ga, In; T = Si, Ge, Sn) and N-base (N-base = HCN, NH3, CN−). COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Yang Q, Li Q, Scheiner S. Diboron Bonds Between BX 3 (X=H, F, CH 3 ) and BYZ 2 (Y=H, F; Z=CO, N 2 , CNH). Chemphyschem 2021; 22:1461-1469. [PMID: 34089563 DOI: 10.1002/cphc.202100332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Indexed: 11/12/2022]
Abstract
The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2 (Z=CO, N2 , and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3 molecule (X=H, F, and CH3 ), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2 and BH(CNH)2 , and their fluorosubstituted analogues BF(CO)2 and BF(CNH)2 , engage in a typical noncovalent bond with B(CH3 )3 and BF3 , with interaction energies in the 3-8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26-44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3 is added to BH(CO)2 , BH(CNH)2 , BH(N2 )2 , and BF(CO)2 , or in the complexes of BH(N2 )2 with B(CH3 )3 and BF3 . The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.
Collapse
Affiliation(s)
- Qingqing Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322-0300, USA
| |
Collapse
|
39
|
Wysokiński R, Zierkiewicz W, Michalczyk M, Scheiner S. Crystallographic and Theoretical Evidences of Anion⋅⋅⋅Anion Interaction. Chemphyschem 2021; 22:818-821. [PMID: 33719162 DOI: 10.1002/cphc.202100132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Indexed: 11/10/2022]
Abstract
Planar (HgCl3 )- anions are stacked fairly closely together in a slipped parallel arrangement within several crystal structures. Quantum chemical analysis shows evidence of strong noncovalent spodium bonds between the Hg π-hole of one unit and the Cl atom of an adjacent unit. Anion⋅⋅⋅anion spodium bonds work in tandem with crystal packing forces.
Collapse
Affiliation(s)
- Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah, 84322-0300, United States
| |
Collapse
|
40
|
Actual Symmetry of Symmetric Molecular Adducts in the Gas Phase, Solution and in the Solid State. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This review discusses molecular adducts, whose composition allows a symmetric structure. Such adducts are popular model systems, as they are useful for analyzing the effect of structure on the property selected for study since they allow one to reduce the number of parameters. The main objectives of this discussion are to evaluate the influence of the surroundings on the symmetry of these adducts, steric hindrances within the adducts, competition between different noncovalent interactions responsible for stabilizing the adducts, and experimental methods that can be used to study the symmetry at different time scales. This review considers the following central binding units: hydrogen (proton), halogen (anion), metal (cation), water (hydrogen peroxide).
Collapse
|
41
|
Semrád H, Mazal C, Munzarová M. Free Radical Isomerizations in Acetylene Bromoboration Reaction. Molecules 2021; 26:2501. [PMID: 33922945 PMCID: PMC8123272 DOI: 10.3390/molecules26092501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The experimentally motivated question of the acetylene bromoboration mechanism was addressed in order to suggest possible radical isomerization pathways for the syn-adduct. Addition-elimination mechanisms starting with a bromine radical attack at the "bromine end" or the "boron end" of the C=C bond were considered. Dispersion-corrected DFT and MP2 methods with the SMD solvation model were employed using three all-electron bases as well as the ECP28MWB ansatz. The rate-determining, elimination step had a higher activation energy (12 kcal mol-1) in case of the "bromine end" attack due to intermediate stabilization at both the MP2 and DFT levels. In case of the "boron end" attack, two modes of C-C bond rotation were followed and striking differences in MP2 vs. DFT potential energy surfaces were observed. Employing MP2, addition was followed by either a 180° rotation through an eclipsed conformation of vicinal bromine atoms or by an opposite rotation avoiding that conformation, with 5 kcal mol-1 of elimination activation energy. Within B3LYP, the addition and rotation proceeded simultaneously, with a 9 (7) kcal mol-1 barrier for rotation involving (avoiding) eclipsed conformation of vicinal bromines. For weakly bound complexes, ZPE corrections with MP2 revealed significant artifacts when diffuse bases were included, which must be considered in the Gibbs free energy profile interpretation.
Collapse
Affiliation(s)
| | | | - Markéta Munzarová
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (H.S.); (C.M.)
| |
Collapse
|
42
|
Anion-Anion Interactions in Aerogen-Bonded Complexes. Influence of Solvent Environment. Molecules 2021; 26:molecules26082116. [PMID: 33917030 PMCID: PMC8067769 DOI: 10.3390/molecules26082116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Ab initio calculations are applied to the question as to whether a AeX5- anion (Ae = Kr, Xe) can engage in a stable complex with another anion: F-, Cl-, or CN-. The latter approaches the central Ae atom from above the molecular plane, along its C5 axis. While the electrostatic repulsion between the two anions prevents their association in the gas phase, immersion of the system in a polar medium allows dimerization to proceed. The aerogen bond is a weak one, with binding energies less than 2 kcal/mol, even in highly polar aqueous solvent. The complexes are metastable in the less polar solvents THF and DMF, with dissociation opposed by a small energy barrier.
Collapse
|
43
|
Zierkiewicz W, Michalczyk M, Scheiner S. Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons. Molecules 2021; 26:1740. [PMID: 33804617 PMCID: PMC8003638 DOI: 10.3390/molecules26061740] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Over the last years, scientific interest in noncovalent interactions based on the presence of electron-depleted regions called σ-holes or π-holes has markedly accelerated. Their high directionality and strength, comparable to hydrogen bonds, has been documented in many fields of modern chemistry. The current review gathers and digests recent results concerning these bonds, with a focus on those systems where both σ and π-holes are present on the same molecule. The underlying principles guiding the bonding in both sorts of interactions are discussed, and the trends that emerge from recent work offer a guide as to how one might design systems that allow multiple noncovalent bonds to occur simultaneously, or that prefer one bond type over another.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, UT 84322-0300, USA;
| |
Collapse
|
44
|
Yang Q, Zhou B, Li Q, Scheiner S. Weak σ‐Hole Triel Bond between C
5
H
5
Tr (Tr=B, Al, Ga) and Haloethyne: Substituent and Cooperativity Effects. Chemphyschem 2021; 22:481-487. [DOI: 10.1002/cphc.202000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Qingqing Yang
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering Yantai University 264005 Yantai China
| | - Bohua Zhou
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering Yantai University 264005 Yantai China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering Yantai University 264005 Yantai China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry Utah State University 84322-0300 Logan UT USA
| |
Collapse
|
45
|
Berski S, Gordon AJ. In the search for ditriel B⋯Al non-covalent bonding. NEW J CHEM 2021. [DOI: 10.1039/d1nj01963e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ditriel B⋯Al interaction has been characterised using SAPT, AIM and ELF.
Collapse
Affiliation(s)
- Slawomir Berski
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383, Wroclaw, Poland
| | - Agnieszka J. Gordon
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383, Wroclaw, Poland
| |
Collapse
|
46
|
Rana A, Galmés B, Frontera A, Biswal HS, Chopra D. Unravelling the electronic nature of C-FO-C non-covalent interaction in proteins and small molecules in the solid state. Phys Chem Chem Phys 2020; 22:25704-25711. [PMID: 33146185 DOI: 10.1039/d0cp05280a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The participation of organic fluorine as a halogen bond donor is rare and is sensitive to the electronic environment in the vicinity of the fluorine atom. The enhancement in the electropositive character (the σ-hole formalism) in fluorine is established by the presence of electron withdrawing groups and this has been examined in the solid-state structures in small molecules and proteins. Short, directional FO contacts have been observed and physical insights obtained, from quantum mechanical calculations, via the molecular electrostatic potential, an analysis of their topological features from atoms-in-molecules, and donor-acceptor characteristics from natural bond orbital analyses. It was observed that such contacts, cooperatively act in the presence of other interactions, and the formed aggregates are stabilizing in nature. In addition, the FO has a bonding character and is attractive in nature. The halogen bonding character of fluorine is relevant in supramolecular chemistry.
Collapse
Affiliation(s)
- Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, 752050, Bhubaneswar, India.
| | | | | | | | | |
Collapse
|
47
|
Grabowski SJ. Hydrogen Bond and Other Lewis Acid-Lewis Base Interactions as Preliminary Stages of Chemical Reactions. Molecules 2020; 25:E4668. [PMID: 33066201 PMCID: PMC7587390 DOI: 10.3390/molecules25204668] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/21/2023] Open
Abstract
Various Lewis acid-Lewis base interactions are discussed as initiating chemical reactions and processes. For example, the hydrogen bond is often a preliminary stage of the proton transfer process or the tetrel and pnicogen bonds lead sometimes to the SN2 reactions. There are numerous characteristics of interactions being first stages of reactions; one can observe a meaningful electron charge transfer from the Lewis base unit to the Lewis acid; such interactions possess at least partly covalent character, one can mention other features. The results of different methods and approaches that are applied in numerous studies to describe the character of interactions are presented here. These are, for example, the results of the Quantum Theory of Atoms in Molecules, of the decomposition of the energy of interaction or of the structure-correlation method.
Collapse
Affiliation(s)
- Sławomir J. Grabowski
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU & Donostia International Physics Center (DIPC) PK 1072, 20080 Donostia, Euskadi, Spain; ; Tel.: +34-943-018-187
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
48
|
Wang R, Wang Z, Yu X, Li Q. Synergistic and Diminutive Effects between Regium and Aerogen Bonds. Chemphyschem 2020; 21:2426-2431. [PMID: 32889745 DOI: 10.1002/cphc.202000720] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Indexed: 11/07/2022]
Abstract
The aerogen bond is formed in complexes of HCN-XeF2 O and C2 H4 -XeF2 O. The lone pair on the N atom of HCN is a better electron donor in the aerogen bond than the π electron on the C=C bond of C2 H4 . The coinage substitution strengthens the aerogen bond in MCN-XeF2 O (M=Cu, Ag, and Au) and its enhancing effect becomes larger in the Au<Cu<Ag pattern. The aerogen bond is further enhanced by the regium bond in C2 H2 -MCN-XeF2 O and C2 H4 -MCN-XeF2 O, but is weakened by the regium bond in MCN-C2 H4 -XeF2 O and C2 (CN)4 -MCN-XeF2 O. Simultaneously, the regium bond is also strengthened or weakened in these triads. The synergistic and diminutive effects between regium and aerogen bonds have been explained by means of charge transfer and electrostatic potentials.
Collapse
Affiliation(s)
- Ruijing Wang
- Laboratory of Theoretical and Computational Chemistry, and School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zheng Wang
- Laboratory of Theoretical and Computational Chemistry, and School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xuefang Yu
- Laboratory of Theoretical and Computational Chemistry, and School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry, and School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
49
|
Van der Maelen JF, Ceroni M, Ruiz J. The X-ray constrained wavefunction of the [Mn(CO) 4{(C 6H 5) 2P-S-C(Br 2)-P(C 6H 5) 2}]Br complex: a theoretical and experimental study of dihalogen bonds and other noncovalent interactions. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:802-814. [PMID: 33017314 DOI: 10.1107/s2052520620009889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The synthesis and X-ray structure determination of the [Mn(CO)4{(C6H5)2P-S-C(Br2)-P(C6H5)2}]Br complex (1) are described. The C-Br...Br dihalogen bond present in 1 has been characterized by means of topological studies of the electron density. Both the quantum theory of atoms in molecules and the electron localization function approaches have been applied to several theoretically calculated wavefunctions as well as to an X-ray constrained wavefunction. In addition, a number of theoretical techniques, such as the source function, the reduced density gradient method and the interacting quantum atoms approach, among others, have been used to analyse the dihalogen bond as well as several intramolecular interactions of the type C-H...Br-C which have also been detected in 1. The results show clearly that while bonding in the latter interactions are dominated by electrostatic components, the former has a high degree of covalency.
Collapse
Affiliation(s)
- Juan F Van der Maelen
- Dept. Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, Oviedo, Asturias E-33006, Spain
| | - Mario Ceroni
- Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Javier Ruiz
- Dept. Química Orgánica e Inorgánica, Universidad de Oviedo, Avda. Julián Clavería 8, Oviedo, Asturias E-33006, Spain
| |
Collapse
|
50
|
Mahmudov KT, Gurbanov AV, Aliyeva VA, Resnati G, Pombeiro AJ. Pnictogen bonding in coordination chemistry. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213381] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|