1
|
Arojojoye AS, Holmes J, Obisesan OA, Parkin S, Awuah SG. Stoichiometry effect on the structure, coordination and anticancer activity of gold(I/III) bisphosphine complexes. Dalton Trans 2025; 54:2018-2026. [PMID: 39688257 PMCID: PMC11650976 DOI: 10.1039/d4dt01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Rationalizing the impact of oxidation states of Au-based complexes on function require synthetic strategies that allow for conserved molecular formula in Au(I) and their Au(III) counterparts. Oftentimes achieving Au(I) and Au(III) coordination complexes with the same ligand system is challenging due to the reactivity and stability of the starting Au(I) or Au(III) starting materials. Thus, attempts to study the impact of oxidation state on biological function has been elusive. We posit that Au complexes with the same ligand framework but different oxidation states will affect complex geometry and hence elicit differences in biological function or mechanism. In this work, we reacted 1,2-bis(diphenylphosphino)benzene with respective Au starting materials in different mole ratios to facilitate the synthesis of structurally distinct Au(I) or Au(III) complexes. Briefly, by reacting two stoichiometric equivalents of HAuCl4·3H2O or AuCl3(tht) with one equivalent of 1,2-bis(diphenylphosphino)benzene, we obtained dicationic bis-[1,2-bis-(diphenylphosphino)benzene]gold(III) chloride whereas an equimolar ratio of HAuCl4·3H2O and 1,2-bis(diphenylphosphino)benzene gave the monocationic bis-[1,2-bis-(diphenylphosphino)benzene]gold(I) complex in moderate yield. The complexes were characterized spectroscopically by HRMS, RP-HPLC-MS, NMR and the purity ascertained by elemental analysis. The 31P NMR showed characteristic singlet peak at ∼22 ppm for the Au(I) complexes and ∼57 ppm for the Au(III) complexes. The structure of the Au(III) complexes was further confirmed by X-ray crystallography as a 5-coordinate Au(III) complex. Although both Au(I) and Au(III) complexes showed promising anticancer activity in MDA-MB-231 (breast cancer) and BT-333 (glioblastoma) cancer cell lines and inhibited maximal mitochondria respiration in MDA-MB-231 cells, the Au(III) complexes further induce ROS accumulation and facilitate depolarization of the mitochondria membrane potential in MDA-MB-231 cells. Taken together, the synthetic approach provides a way to elucidate the effect of Au(I)/Au(III) oxidation states on structure, activity, and potential mechanism with respect to the same ligand.
Collapse
Affiliation(s)
| | - Justin Holmes
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | | | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Centre, University of Kentucky, Lexington, KY, 50536, USA
| |
Collapse
|
2
|
Xiao K, Hou DY, Zhang NY, Wang W, Leung MY, Kwok WK, Chen Z, Jin C, Xu W, Wang H, Yam VWW, Zhao L. Synergistic Enhancement of Ferroptosis via Mitochondrial Accumulation and Photodynamic-Controlled Release of an Organogold(I) Cluster Prodrug. J Am Chem Soc 2025. [PMID: 39851086 DOI: 10.1021/jacs.4c15820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors. In contrast to the distorted [CAu4] kernel of a pentanuclear HCGC compound [A5], its dimeric congener [A9] exhibits a symmetrical [{CAu4}-Au-{CAu4}] structure with a remarkable hypercarbon-to-Au4 electron donation. This unique arrangement results in a microsecond long metal-metal-to-ligand charge transfer excited state relative to the nanosecond intraligand excited state of [A5]. Upon light irradiation at 560 nm, [A9] generates active 1O2 to oxidize glutathione (GSH) into poorly coordinating GSSG in the cytoplasm and finally promotes subcellular delivery of HCGCs to mitochondria. Moreover, GSH further triggers consecutive release of active [AuPPh3]+ ions to inhibit cytoplasmic glutathione peroxidase GPX4 and mitochondrial thioredoxin reductase TrxR2, which collectively result in accelerated ferroptosis of human bladder cancer EJ cells and show excellent antitumor performance in mouse bladder tumor models.
Collapse
Affiliation(s)
- Kui Xiao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Da-Yong Hou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150081, P. R. China
| | - Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Wan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Hong Kong Quantum AI Lab Limited, Hong Kong 999077, P. R. China
| | - Wing-Kei Kwok
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Hong Kong Quantum AI Lab Limited, Hong Kong 999077, P. R. China
| | - Ziyong Chen
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Hong Kong Quantum AI Lab Limited, Hong Kong 999077, P. R. China
| | - Cong Jin
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150081, P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Hong Kong Quantum AI Lab Limited, Hong Kong 999077, P. R. China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
3
|
Paolillo M, Ferraro G, Pisanu F, Maréchal JD, Sciortino G, Garribba E, Merlino A. Protein-Protein Stabilization in V IVO/8-Hydroxyquinoline-Lysozyme Adducts. Chemistry 2024; 30:e202401712. [PMID: 38923243 DOI: 10.1002/chem.202401712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The binding of the potential drug [VIVO(8-HQ)2], where 8-HQ is 8-hydroxyquinolinato, with hen egg white lysozyme (HEWL) was evaluated through spectroscopic (electron paramagnetic resonance, EPR, and UV-visible), spectrometric (electrospray ionization-mass spectrometry, ESI-MS), crystallographic (X-ray diffraction, XRD), and computational (DFT and docking) studies. ESI-MS indicates the interaction of [VIVO(8-HQ)(H2O)]+ and [VIVO(8-HQ)2(H2O)] species with HEWL. Room temperature EPR spectra suggest both covalent and non-covalent binding of the two different V-containing fragments. XRD analyses confirm these findings, showing that [VIVO(8-HQ)(H2O)]+ interacts covalently with the solvent exposed Asp119, while cis-[VIVO(8-HQ)2(H2O)] non-covalently with Arg128 and Lys96 from a symmetry mate. The covalent binding of [VIVO(8-HQ)(H2O)]+ to Asp119 is favored by a π-π contact with Trp62 and a H-bond with Asn103 of a symmetry-related molecule. Additionally, the covalent binding of VVO2 + to Asp48 and non-covalent binding of other V-containing fragments to Arg5, Cys6, and Glu7 are revealed. Molecular docking indicates that, in the absence of the interactions occurring at the protein-protein interface close to Asp119, the covalent binding to Glu35 or Asp52 should be preferred. Such a protein-protein stabilization could be more common than what believed up today, at least in the solid state, and should be considered in the characterization of metal-protein adducts.
Collapse
Affiliation(s)
- Maddalena Paolillo
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| |
Collapse
|
4
|
Vitali V, Massai L, Messori L. Strategies for the design of analogs of auranofin endowed with anticancer potential. Expert Opin Drug Discov 2024; 19:855-867. [PMID: 38803122 DOI: 10.1080/17460441.2024.2355329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug. AREAS COVERED This article reviews the strategies for chemical modification of the AF scaffold. Several auranofin analogs have been prepared and characterized for medical application in the field of cancer treatment over the last 20 years. Some emerging structure-function relationships are proposed and discussed. EXPERT OPINION The chemical modification of the AF scaffold has been the subject of intense activity in recent years and this strategy has led to the preparation and evaluation of several AF analogs. The case of iodauranofin is a particularly promising example. The availability of homogeneous biological data for a group of AF derivatives allows some initial structure-function relationships to be proposed, which may inspire the design and synthesis of new and better AF analogs for cancer treatment.
Collapse
Affiliation(s)
- Valentina Vitali
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Lara Massai
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine (MetMed), Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Binacchi F, Giorgi E, Salvadori G, Cirri D, Stifano M, Donati A, Garzella L, Busto N, Garcia B, Pratesi A, Biver T. Exploring the interaction between a fluorescent Ag(I)-biscarbene complex and non-canonical DNA structures: a multi-technique investigation. Dalton Trans 2024; 53:9700-9714. [PMID: 38775704 DOI: 10.1039/d4dt00851k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Silver compounds are mainly studied as antimicrobial agents, but they also have anticancer properties, with the latter, in some cases, being better than their gold counterparts. Herein, we analyse the first example of a new Ag(I)-biscarbene that can bind non-canonical structures of DNA, more precisely G-quadruplexes (G4), with different binding signatures depending on the type of G4. Moreover, we show that this Ag-based carbene binds the i-motif DNA structure. Alternatively, its Au(I) counterpart, which was investigated for comparison, stabilises mitochondrial G4. Theoretical in silico studies elucidated the details of different binding modes depending on the geometry of G4. The two complexes showed increased cytotoxic activity compared to cisplatin, overcoming its resistance in ovarian cancer. The binding of these new drug candidates with other relevant biosubstrates was studied to afford a more complete picture of their possible targets. In particular, the Ag(I) complex preferentially binds DNA structures over RNA structures, with higher binding constants for the non-canonical nucleic acids with respect to natural calf thymus DNA. Regarding possible protein targets, its interaction with the albumin model protein BSA was also tested.
Collapse
Affiliation(s)
- Francesca Binacchi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Ester Giorgi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Mariassunta Stifano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Aurora Donati
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Linda Garzella
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Natalia Busto
- Departamento de Ciencias de la Salud, Universidad de Burgos, Paseo de los Comendadores s/n, 09001 Burgos, Spain
| | - Begona Garcia
- Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
6
|
Mattioli EJ, Cipriani B, Zerbetto F, Marforio TD, Calvaresi M. Interaction of Au(III) with amino acids: a vade mecum for medicinal chemistry and nanotechnology. J Mater Chem B 2024; 12:5162-5170. [PMID: 38687242 DOI: 10.1039/d4tb00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Au(III) is highly reactive. At odds with its reduced counterpart, Au(I), it is hardly present in structural databases. And yet, it is the starting reactant to form gold nanoclusters (AuNCs) and the constitutive component of a new class of drugs. Its reactivity is a world apart from that of the iso-electronic Pt(II) species. Rather than DNA, it targets proteins. Its interaction with amino acid residues is manifold. It can strongly interact with the residue backbones, amino acid side chains and protein ends, it can form appropriate complexes whose stabilization energy reaches up to more than 40 kcal mol-1, it can affect the pKa of amino acid residues, and it can promote charge transfer from the residues to the amount that it is reduced. Here, quantum chemical calculations provide quantitative information on all the processes where Au(III) can be involved. A myriad of structural arrangements are examined in order to determine the strongest interactions and quantify the amount of charge transfer between protonated and deprotonated residues and Au(III). The calculated interaction energies of the amino acid side chains with Au(III) quantitatively reproduce the experimental tendency of Au(III) to interact with selenocysteine, cysteine and histidine and negatively charged amino acids such as Glu and Asp. Also, aromatic residues such as tyrosine and tryptophan strongly interact with Au(III). In proteins, basic pH plays a role in the deprotonation of cysteine, lysine and tyrosine and strongly increases the binding affinity of Au(III) toward these amino acids. The amino acid residues in the protein can also trigger the reduction of Au(III) ions. Sulfur-containing amino acids (cysteine and methionine) and selenocysteine provide almost one electron to Au(III) upon binding. Tyrosine also shows a considerable tendency to act as a reductant. Other amino acids, commonly identified in Au-protein adducts, such as Ser, Trp, Thr, Gln, Glu, Asn, Asp, Lys, Arg and His, possess a notable reducing power toward Au(III). These results and their discussion form a vade mecum that can find application in medicinal chemistry and nanotech applications of Au(III).
Collapse
Affiliation(s)
- Edoardo Jun Mattioli
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Beatrice Cipriani
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Zerbetto
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Tainah Dorina Marforio
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
7
|
Geri A, Massai L, Novinec M, Turel I, Messori L. Reactions of Medicinal Gold Compounds with Cathepsin B Explored through Electrospray Mass Spectrometry Measurements. Chempluschem 2024; 89:e202300321. [PMID: 37930642 DOI: 10.1002/cplu.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Medicinal gold compounds, a novel class of potential anticancer drugs, are believed to produce their pharmacological effects mainly through direct gold binding to protein targets at the level of solvent exposed cysteine (or selenocysteine) residues. We have explored therein the reactions of a panel of seven representative gold compounds with the cysteine protease cathepsin B according to an established ESI MS approach. Detailed information on the mode of protein binding of these gold compounds is gained; notably, quite distinct patterns of cathepsin B metalation have emerged from these studies. It is shown that panel gold compounds interact preferentially, often exclusively, with the free cysteine located in the active site of the enzyme.
Collapse
Affiliation(s)
- Andrea Geri
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Ferraro G, Tito G, Sciortino G, Garribba E, Merlino A. Stabilization and Binding of [V 4 O 12 ] 4- and Unprecedented [V 20 O 54 (NO 3 )] n- to Lysozyme upon Loss of Ligands and Oxidation of the Potential Drug V IV O(acetylacetonato) 2. Angew Chem Int Ed Engl 2023; 62:e202310655. [PMID: 37768728 DOI: 10.1002/anie.202310655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
High-resolution crystal structures of lysozyme in the presence of the potential drug VIV O(acetylacetonato)2 under two different experimental conditions have been solved. The crystallographic study reveals the loss of the ligands, the oxidation of VIV to VV and the subsequent formation of adducts of the protein with two different polyoxidovanadates: [V4 O12 ]4- , which interacts with lysozyme non-covalently, and the unprecedented [V20 O54 (NO3 )]n- , which is covalenty bound to the side chain of an aspartate residue of symmetry related molecules.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Gabriella Tito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16, Avinguda dels Països Catalans, 43007, Tarragona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| |
Collapse
|
9
|
Morales AH, Hero JS, Ledesma AE, Perez HA, Navarro MC, Gómez MI, Romero CM. Interfacial Hyperactivation of Candida rugosa Lipase onto Ca 2Fe 2O 5 Nanoparticles: pH and Ionic Strength Fine-Tuning to Modulate Protein-Support Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12004-12019. [PMID: 37585874 DOI: 10.1021/acs.langmuir.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The current study provides a comprehensive look of the adsorption process of Candida rugosa lipase (CRL) on Ca2Fe2O5 iron oxide nanoparticles (NPs). Protein-support interactions were identified across a broad range of pH and ionic strengths (mM) through a response surface methodology, surface charge determination, and spectroscopic and in silico analyses. The maximum quantity of immobilized protein was achieved at an ionic strength of 50 mM and pH 4. However, this condition did not allow for the greatest hydrolytic activity to be obtained. Indeed, it was recorded at acidic pH, but at 150 mM, where evaluation of the recovered activity revealed hyperactivation of the enzyme. These findings were supported by adsorption isotherms performed under different conditions. Based on zeta potential measurements, electrostatic interactions contributed differently to protein-support binding under the conditions tested, showing a strong correlation with experimentally determined immobilization parameters. Raman spectra revealed an increase in hydrophobicity around tryptophan residues, whereas the enzyme immobilization significantly reduced the phenylalanine signal in CRL. This suggests that this residue was involved in the interaction with Ca2Fe2O2 and molecular docking analysis confirmed these findings. Fluorescence spectroscopy showed distinct behaviors in the CRL emission patterns with the addition of Ca2Fe2O5 at pH 4 and 7. The calculated thermodynamic parameters indicated that the contact would be mediated by hydrophobic interactions at both pHs, as well as by ionic ones at pH 4. In this approach, this work adds to our understanding of the design of biocatalysts immobilized in iron oxide NPs.
Collapse
Affiliation(s)
- Andrés H Morales
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
| | - Johan S Hero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
| | - Ana E Ledesma
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE-CONICET), Departamento Académico de Química, Facultad de Ciuencias Exactas y Tecnológicas, Universidad Nacional de Santiago del Estero, Av. Belgrano Sur 1912, Santiago del Estero 4200, Argentina
| | - Hugo A Perez
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE-CONICET), Departamento Académico de Química, Facultad de Ciuencias Exactas y Tecnológicas, Universidad Nacional de Santiago del Estero, Av. Belgrano Sur 1912, Santiago del Estero 4200, Argentina
| | - María C Navarro
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| | - María I Gómez
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| |
Collapse
|
10
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
11
|
Merlino A. Metallodrug binding to serum albumin: Lessons from biophysical and structural studies. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Dyrda-Terniuk T, Pryshchepa O, Rafińska K, Kolankowski M, Gołębiowski A, Gloc M, Dobrucka R, Kurzydłowski K, Pomastowski P. Immobilization Of Silver Ions Onto Casein. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
13
|
Milutinović MG, Milivojević NN, Đorđević NM, Nikodijević DD, Radisavljević SR, Đeković Kesić AS, Marković SD. Gold(III) Complexes with Phenanthroline-derivatives Ligands Induce Apoptosis in Human Colorectal and Breast Cancer Cell Lines. J Pharm Sci 2022; 111:3215-3223. [PMID: 36162493 DOI: 10.1016/j.xphs.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023]
Abstract
Due to their promising effects, gold(III) complexes recently drew increasing attention in the design of new metal-based anticancer therapeutics. Two gold(III) complexes, square-planar [Au(DPP)Cl2]+ - Complex 1 and distorted square-pyramidal [Au(DMP)Cl3] - Complex 2 (where DPP=4,7-diphenyl-1,10-phenanthroline and DMP=2,9-dimethyl-1,10-phenanthroline) were previously synthetized, described and approved as complexes with pronounced cytotoxic effects on colorectal HCT-116 and breast MDA-MB-231 cancer cells. This study investigated the type of cell death by AO/EB double staining, and identification of possible targets responsible for their cytotoxicity, monitored by immunofluorescence and qPCR methods. Both complexes induced apoptosis in all applied concentrations. In the HCT-116 cells apoptosis was activated by external apoptotic pathway, via increase of Fas receptor protein expression and Caspase 8 gene expression. Also, the mitochondrial pathway was triggered by affecting the Bcl-2 members of regulatory proteins and increased caspase 9 protein expression. In MDA-MB-231 cells, apoptosis was initiated from the mitochondria, due to disbalance between expressions of pro- and anti-apoptotic Bcl-2 family members and caspase 9 activation. Complex 1 shows better activity compared to Complex 2, which is in accordance with its structural characteristics. The results deal weighty data about proapoptotic activity of gold(III) complexes and highlighted potential targets for cancer therapy.
Collapse
Affiliation(s)
- Milena G Milutinović
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nevena N Milivojević
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena M Đorđević
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Danijela D Nikodijević
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Snežana R Radisavljević
- University of Kragujevac, Department of Chemistry, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ana S Đeković Kesić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Snežana D Marković
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
14
|
Luo Y, Cao B, Zhong M, Liu M, Xiong X, Zou T. Organogold(III) Complexes Display Conditional Photoactivities: Evolving From Photodynamic into Photoactivated Chemotherapy in Response to O 2 Consumption for Robust Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202212689. [PMID: 36109339 DOI: 10.1002/anie.202212689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 11/09/2022]
Abstract
Photodynamic therapy (PDT) is a spatiotemporally controllable, powerful approach in combating cancers but suffers from low activity under hypoxia, whereas photoactivated chemotherapy (PACT) operates in an O2 -independent manner but compromises the ability to harness O2 for potent photosensitization. Herein we report that cyclometalated gold(III)-alkyne complexes display a PDT-to-PACT evolving photoactivity for efficient cancer treatment. On the one hand, the gold(III) complexes can act as dual photosensitizers and substrates, leading to conditional PDT activity in oxygenated condition that progresses to highly efficient PACT (ϕ up to 0.63) when O2 is depleted in solution and under cellular environment. On the other hand, the conditional PDT-to-PACT reactivity can be triggered by external photosensitizers in a similar manner in vitro and in vivo, giving additional tumor-selectivity and/or deep tissue penetration by red-light irradiation that leads to robust anticancer efficacy.
Collapse
Affiliation(s)
- Yunli Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Mingjie Zhong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Moyi Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
15
|
The role of tridentate ligands on the redox stability of anticancer gold(III) complexes. J Inorg Biochem 2022; 236:111970. [PMID: 36049259 DOI: 10.1016/j.jinorgbio.2022.111970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/15/2022]
Abstract
Gold(III) complexes are promising compounds for cancer chemotherapy, whose action depends on their redox stability. In this context, the choice of ligands is crucial to adjust their reactivity and biological response. The present study addressed the effect of the gold coordination sphere on the reduction potential (Eo) for ten gold(III) complexes containing five or six-membered rings tridentate ligands - [AuIII(trident)Cl]3+n (trident = N^N^N, C^N^N, C^C^N, C^N^C, and N^C^N). The calculated Eo covered a broad range of 2500 mV with the most stable complexes containing two AuC bonds (Eo = -1.85 V for [AuIII(C^C^N)Cl] - f). For complexes with one AuC bond, the N^C^N ligands stabilize the gold(III) complex more efficiently than N^N^C; however, the inclusion of the non-innocent ligand bipy (2,2'-bipyridine) in N^N portion provides an extra stabilization effect. Among the derivatives with one AuC bond, [AuIII(N^N^C)Cl]+ (N^N = bipy) (a) showed Eo = -1.20 V. For the complexes with N^N^N ligands, Eo was positive and almost constant (+0.60 V). Furthermore, the kinetics for ligand exchange reactions (Cl-/H2O, H2O/Cys and Cl-/Cys) were monitored for the most stable compounds and the energy profiles compared to the reduction pathways.
Collapse
|
16
|
Ferraro G, Paolillo M, Sciortino G, Garribba E, Merlino A. Multiple and Variable Binding of Pharmacologically Active Bis(maltolato)oxidovanadium(IV) to Lysozyme. Inorg Chem 2022; 61:16458-16467. [PMID: 36205235 PMCID: PMC9579999 DOI: 10.1021/acs.inorgchem.2c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The interaction with
proteins of metal-based drugs plays a crucial
role in their transport, mechanism, and activity. For an active MLn complex, where L is the organic carrier,
various binding modes (covalent and non-covalent, single or multiple)
may occur and several metal moieties (M, ML, ML2, etc.)
may interact with proteins. In this study, we have evaluated the interaction
of [VIVO(malt)2] (bis(maltolato)oxidovanadium(IV)
or BMOV, where malt = maltolato, i.e., the common name for 3-hydroxy-2-methyl-4H-pyran-4-onato) with the model protein hen egg white lysozyme
(HEWL) by electrospray ionization mass spectrometry, electron paramagnetic
resonance, and X-ray crystallography. The multiple binding of different
V-containing isomers and enantiomers to different sites of HEWL is
observed. The data indicate both non-covalent binding of cis-[VO(malt)2(H2O)] and [VO(malt)(H2O)3]+ and covalent binding of [VO(H2O)3–4]2+ and cis-[VO(malt)2] and other V-containing fragments to the side chains of Glu35,
Asp48, Asn65, Asp87, and Asp119 and to the C-terminal carboxylate.
Our results suggest that the multiple and variable interactions of
potential VIVOL2 drugs with proteins can help
to better understand their solution chemistry and contribute to define
the molecular basis of the mechanism of action of these intriguing
molecules. The interaction of [VIVO(malt)2] (BMOV,
malt = maltolato) with hen egg white lysozyme (HEWL) reveals the multiple
binding of different V-containing isomers and enantiomers to different
sites and non-covalent and covalent binding of cis-[VO(malt)2(H2O)], [VO(malt)(H2O)3]+, [VO(H2O)3−4]2+, and cis-[VO(malt)2] to Glu,
Asp, and Asn residues.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Maddalena Paolillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
17
|
Schwartz‐Duval AS, Sokolov KV. Prospecting Cellular Gold Nanoparticle Biomineralization as a Viable Alternative to Prefabricated Gold Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105957. [PMID: 35508715 PMCID: PMC9284136 DOI: 10.1002/advs.202105957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Gold nanoparticles (GNPs) have shown considerable potential in a vast number of biomedical applications. However, currently there are no clinically approved injectable GNP formulations. Conversely, gold salts have been used in the clinic for nearly a century. Further, there is evidence of GNP formation in patients treated with gold salts (i.e., chrysiasis). Recent reports evaluating this phenomenon in human cells and in murine models indicate that the use of gold ions for in situ formation of theranostic GNPs could greatly improve the delivery within dense biological tissues, increase efficiency of intracellular gold uptake, and specificity of GNP formation within cancer cells. These attributes in combination with safe clinical application of gold salts make this process a viable strategy for clinical translation. Here, the first summary of the current knowledge related to GNP biomineralization in mammalian cells is provided along with critical assessment of potential biomedical applications of this newly emergent field.
Collapse
Affiliation(s)
- Aaron S. Schwartz‐Duval
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
| | - Konstantin V. Sokolov
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences6767 Bertner AveHoustonTX77030USA
- Department of BioengineeringRice University6100 Main St.HoustonTX77030USA
- Department of Biomedical EngineeringThe University of Texas at Austin107 W Dean Keeton St.AustinTX78712USA
| |
Collapse
|
18
|
Wang L, Liang YS, Wu ZB, Liu YS, Xiao YH, Hu T, Gao R, Fang J, Liu J, Wu AP. Exploring the interaction between Cry1Ac protein and Zn 2+, Cd 2+ metal ions by fluorescence quenching and molecular docking approaches. CHEMOSPHERE 2022; 297:134105. [PMID: 35245590 DOI: 10.1016/j.chemosphere.2022.134105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Bacillus Thuringiensis (Bt) protein has a strong ability to complex with metal ions, which may increase the transport of metal ions in the soil multi-media system. In this study, the interactions between Cry1Ac protein and metal ions (Zn2+ and Cd2+) were investigated through spectroscopies and molecular docking methods. The spectra results showed that both Zn2+ and Cd2+ quenched the fluorescence intensity of Cry1Ac protein through the static quenching. The binding constants with 4-5 orders of magnitude also indicated the interactions between the ions and the Cry1Ac protein. The thermodynamic analysis showed that hydrogen bonds and van der Waals forces were predominant during the processes. In terms of the Förster non-radiation energy transfer theory, the binding distances between metal ions and Cry1Ac protein were approximately 0.21-0.24 nm, indicating the existence of a non-radiative energy transfer between them. Furthermore, molecular docking revealed that the metal ions participated in ligand binding with the Cry1Ac at the locations Asp569, Thr560, Asn564 and Gln566. The present work provided reasonable models helping us further understand the transport effect of heavy metals in the presence of Cry1Ac. The results could provide mechanistic insights into the nature of metal ions-Cry1Ac interactions and offer important information on the toxicity risk of metal ions-Cry1Ac binding interactions.
Collapse
Affiliation(s)
- Li Wang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| | - Yun-Shan Liang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China.
| | - Zhi-Bin Wu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| | - Yi-Song Liu
- College of Veterinary Medicine, Hunan Agricultural University and National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resource and Initiative, Changsha, 410128, PR China
| | - Yun-Hua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Teng Hu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| | - Rong Gao
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, PR China
| | - Jiao Liu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| | - Ai Ping Wu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| |
Collapse
|
19
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202201103. [PMID: 35165986 DOI: 10.1002/anie.202201103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/07/2022]
Abstract
Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced β-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.
Collapse
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
20
|
Tolbatov I, Marrone A. Selenocysteine of thioredoxin reductase as the primary target for the antitumor metallodrugs: A computational point of view. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Manca G, Fabrizi de Biani F, Corsini M, Cesari C, Femoni C, Iapalucci MC, Zacchini S, Ienco A. Inverted Ligand Field in a Pentanuclear Bow Tie Au/Fe Carbonyl Cluster. Inorg Chem 2022; 61:3484-3492. [PMID: 35175757 DOI: 10.1021/acs.inorgchem.1c03386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gold chemistry has experienced in the last decades exponential attention for a wide spectrum of chemical applications, but the +3 oxidation state, traditionally assigned to gold, remains somewhat questionable. Herein, we present a detailed analysis of the electronic structure of the pentanuclear bow tie Au/Fe carbonyl cluster [Au{η2-Fe2(CO)8}2]- together with its two one-electron reversible reductions. A new interpretation of the bonding pattern is provided with the help of inverted ligand field theory. The classical view of a central gold(III) interacting with two [Fe2(CO)8]2- units is replaced by Au(I), with a d10 gold configuration, with two interacting [Fe2(CO)8]- fragments. A d10 configuration for the gold center in the compound [Au{η2-Fe2(CO)8}2]- is confirmed by the LUMO orbital composition, which is mainly localized on the iron carbonyl fragments rather than on a d gold orbital, as expected for a d8 configuration. Upon one-electron stepwise reduction, the spectroelectrochemical measurements show a progressive red shift in the carbonyl stretching, in agreement with the increased population of the LUMO centered on the iron units. Such a trend is also confirmed by the X-ray structure of the direduced compound [Au{η1-Fe2(CO)8}{η2-Fe2(CO)6(μ-CO)2}]3-, featuring the cleavage of one Au-Fe bond.
Collapse
Affiliation(s)
- Gabriele Manca
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Fabrizia Fabrizi de Biani
- Dipartimento di Biotecnologie Chimica e Farmacia and C.I.R.C.M.S.B., Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Maddalena Corsini
- Dipartimento di Biotecnologie Chimica e Farmacia and C.I.R.C.M.S.B., Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Cristiana Cesari
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Maria Carmela Iapalucci
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Andrea Ienco
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Annunziata A, Ferraro G, Cucciolito ME, Imbimbo P, Tuzi A, Monti DM, Merlino A, Ruffo F. Halo complexes of gold( i) containing glycoconjugate carbene ligands: synthesis, characterization, cytotoxicity and interaction with proteins and DNA model systems. Dalton Trans 2022; 51:10475-10485. [DOI: 10.1039/d2dt00423b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New neutral Au(i) glycoconjugate carbene complexes show stability in aqueous solutions and interact with both DNA and protein model systems. Cytotoxicity studies demonstrate that the activity depends on the halide ancillary ligand.
Collapse
Affiliation(s)
- Alfonso Annunziata
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Giarita Ferraro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Maria Elena Cucciolito
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Paola Imbimbo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Daria Maria Monti
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Antonello Merlino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
| | - Francesco Ruffo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, 80126, Napoli, Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
23
|
Lamarche J, Alcoceba Álvarez E, Cordeau E, Enjalbal C, Massai L, Messori L, Lobinski R, Ronga L. Comparative reactivity of medicinal gold(I) compounds with the cyclic peptide vasopressin and its diselenide analogue. Dalton Trans 2021; 50:17487-17490. [PMID: 34796892 DOI: 10.1039/d1dt03470g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of the medicinal gold(I) compound auranofin and its close analogues with vasopressin and the diselenide analogue were comparatively investigated by LC-electrospray MS/MS. Evidence is gained of the possible cleavage of the S-S and Se-Se bridges induced by Au(I). Notably, we found that, in the absence of reducing agents, the sulfur and selenium atoms are metallated only at high temperature (70 °C) with the preferential binding of gold to selenium. The reaction with the S-S bridge can take place at physiological temperature (37 °C) under reducing conditions. The implications of these results are discussed in the general frame of the reactivity of biologically relevant soft Lewis acids with peptides and proteins.
Collapse
Affiliation(s)
- Jeremy Lamarche
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| | | | | | | | - Lara Massai
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Ryszard Lobinski
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France. .,IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Luisa Ronga
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
24
|
van der Westhuizen D, Bezuidenhout DI, Munro OQ. Cancer molecular biology and strategies for the design of cytotoxic gold(I) and gold(III) complexes: a tutorial review. Dalton Trans 2021; 50:17413-17437. [PMID: 34693422 DOI: 10.1039/d1dt02783b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review highlights key principles underpinning the design of selected metallodrugs to target specific biological macromolecules (DNA and proteins). The review commences with a descriptive overview of the eukaryotic cell cycle and the molecular biology of cancer, particularly apoptosis, which is provided as a necessary foundation for the discovery, design, and targeting of metal-based anticancer agents. Drugs which target DNA have been highlighted and clinically approved metallodrugs discussed. A brief history of the development of mainly gold-based metallodrugs is presented prior to addressing ligand systems for stabilizing and adding functionality to bio-active gold(I) and gold(III) complexes, particularly in the burgeoning field of anticancer metallodrugs. Concepts such as multi-modal and selective cytotoxic agents are covered where necessary for selected compounds. The emerging role of carbenes as the ligand system of choice to achieve these goals for gold-based metallodrug candidates is highlighted prior to closing the review with comments on some future directions that this research field might follow. The latter section ultimately emphasizes the importance of understanding the fate of metal complexes in cells to garner key mechanistic insights.
Collapse
Affiliation(s)
- Danielle van der Westhuizen
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Daniela I Bezuidenhout
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland.
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
25
|
Ok K, Filipovic MR, Michel SLJ. Targeting Zinc Finger Proteins with Exogenous Metals and Molecules: Lessons learned from Tristetraprolin, a CCCH type Zinc Finger. Eur J Inorg Chem 2021; 2021:3795-3805. [PMID: 34867080 PMCID: PMC8635303 DOI: 10.1002/ejic.202100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/09/2022]
Abstract
ZF proteins are ubiquitous eukaryotic proteins that play important roles in gene regulation. ZFs contain small domains made up of a combination of four cysteine and histidine residues, and are classified based up on the identity of these residues and their spacing. One emerging class of ZFs are the Cys3His (or CCCH) class of ZFs. These ZFs play key roles in regulating RNA. In this minireview, an overview of the CCCH class of ZFs, with a focus on tristetraprolin (TTP) is provided. TTP regulates inflammation by controlling cytokine mRNAs, and there is an interest in modulating TTP activity to control inflammation. Two methods to control TTP activity are to target with exogenous metals (a 'metals in medicine' approach) or to target with endogenous signaling molecules. Work that has been done to target TTP with Fe, Cu, Cd and Au as well as with H2S is reviewed. This includes attention to new methods that have been developed to monitor metal exchange with the spectroscopically silent ZnII including native electro-spray ionization mass spectrometry (ESI-MS), spin-filter inductively coupled plasma mass spectrometry (ICP-MS) and cryo-electro-spray mass spectrometry (CSI-MS); along with fluorescence anisotropy (FA) to follow RNA binding.
Collapse
Affiliation(s)
- Kiwon Ok
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Milos R Filipovic
- Leibniz-Institut für Analytische, Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Pohanka M. Current Biomedical and Diagnostic Applications of Gold Micro and Nanoparticles. Mini Rev Med Chem 2021; 21:1085-1095. [PMID: 32744971 DOI: 10.2174/1389557520666200730155616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Production of particles and their adaptation in the pharmacology became an object of interest, and they are the currently introduced therapies based on the use of micro and nanoparticles. The use of gold particles is not an exception. This review has focused on the application of gold micro and nanoparticles in pharmacology and biomedicine. The particles can be used for diagnosis respective theranostic of cancer, rheumatoid arthritis and as antimicrobial means. Besides these applications, specifications of gold, gold particles, and colloidal gold manufacturing and their comparison with the solid gold, are described as well. This review is based on a survey of actual scientific literature.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
27
|
Cirri D, Bartoli F, Pratesi A, Baglini E, Barresi E, Marzo T. Strategies for the Improvement of Metal-Based Chemotherapeutic Treatments. Biomedicines 2021; 9:504. [PMID: 34064364 PMCID: PMC8147839 DOI: 10.3390/biomedicines9050504] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
This article provides an overview of the various research approaches we have explored in recent years to improve metal-based agents for cancer or infection treatments. Although cisplatin, carboplatin, and oxaliplatin remain the cornerstones in tumor chemotherapy, the discovery and approval of novel inorganic anticancer drugs is a very slow process. Analogously, although a few promising inorganic drugs have found clinical application against parasitic or bacterial infections, their use remains relatively limited. Moreover, the discovery process is often affected by small therapeutic enhancements that are not attractive for the pharmaceutical industry. However, the availability of increasing mechanistic information for the modes of action of established inorganic drugs is fueling the exploration of various approaches for developing effective inorganic chemotherapy agents. Through a series of examples, some from our own research experience, we focus our attention on a number of promising strategies, including (1) drug repurposing, (2) the simple modification of the chemical structures of approved metal-based drugs, (3) testing novel drug combinations, and (4) newly synthesized complexes coupling different anticancer drugs. Accordingly, we aim to suggest and summarize a series of reliable approaches that are exploitable for the development of improved and innovative treatments.
Collapse
Affiliation(s)
- Damiano Cirri
- Department of Chemistry and Industrial Chemistry (DCCI), Univerisity of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy;
| | - Francesco Bartoli
- Department of Translational Research and of New Surgical and Medical Technologies, Univerisity of Pisa, Via Risorgimento, 36, 56126 Pisa, Italy;
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry (DCCI), Univerisity of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy;
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (E.B.); (E.B.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (E.B.); (E.B.)
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; (E.B.); (E.B.)
| |
Collapse
|
28
|
Silva MJSA, Gois PMP, Gasser G. Unveiling the Potential of Transition Metal Complexes for Medicine: Translational in Situ Activation of Metal-Based Drugs from Bench to in Vivo Applications. Chembiochem 2021; 22:1740-1742. [PMID: 33507625 DOI: 10.1002/cbic.202100015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The development of metal-based anticancer drugs has been hampered, among other reasons, by their lack of selectivity for cancer cells. In a recent article, Zou and co-workers presented the successful intracellular activation of organogold(I) complexes for potential cancer treatment through Pd(II)-mediated transmetallation, overcoming some off-target activity of novel gold-based drugs. This unique strategy builds the perfect bridge between metallodrug usage and bioorthogonal intracellular catalysis for more advanced and selective therapies. Such an approach will hopefully pave the way for forthcoming studies in medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Maria J S A Silva
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology, FR-75005, Paris, France.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology, FR-75005, Paris, France
| |
Collapse
|
29
|
Abstract
Recent advances in structural studies unveiling the basis of the metal compounds/protein recognition process are discussed.
Collapse
Affiliation(s)
- Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant’Angelo
- Napoli
- Italy
| |
Collapse
|
30
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
31
|
Long Y, Cao B, Xiong X, Chan ASC, Sun RW, Zou T. Bioorthogonal Activation of Dual Catalytic and Anti‐Cancer Activities of Organogold(I) Complexes in Living Systems. Angew Chem Int Ed Engl 2020; 60:4133-4141. [DOI: 10.1002/anie.202013366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Long
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | | | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
32
|
|
33
|
Loreto D, Ferraro G, Merlino A. Protein-metallodrugs interactions: Effects on the overall protein structure and characterization of Au, Ru and Pt binding sites. Int J Biol Macromol 2020; 163:970-976. [DOI: 10.1016/j.ijbiomac.2020.07.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
|
34
|
Massai L, Zoppi C, Cirri D, Pratesi A, Messori L. Reactions of Medicinal Gold(III) Compounds With Proteins and Peptides Explored by Electrospray Ionization Mass Spectrometry and Complementary Biophysical Methods. Front Chem 2020; 8:581648. [PMID: 33195070 PMCID: PMC7609534 DOI: 10.3389/fchem.2020.581648] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Electrospray ionization mass spectrometry (ESI MS) is a powerful investigative tool to analyze the reactions of metallodrugs with proteins and peptides and characterize the resulting adducts. Here, we have applied this type of approach to four experimental anticancer gold(III) compounds for which extensive biological and mechanistic data had previously been gathered, namely, Auoxo6, Au2phen, AuL12, and Aubipyc. These gold(III) compounds were reacted with two representative proteins, i.e., human serum albumin (HSA) and human carbonic anhydrase I (hCA I), and with the C-terminal dodecapeptide of thioredoxin reductase. ESI MS analysis allowed us to elucidate the nature of the resulting metal-protein adducts from which the main features of the occurring metallodrug-protein reactions can be inferred. In selected cases, MS data were integrated and supported by independent 1HNMR and UV-Vis absorption measurements to gain an overall description of the occurring processes. From data analysis, it emerges that most of the investigated gold(III) complexes, endowed with an appreciable oxidizing character, undergo quite facile reduction to gold(I); the resulting gold(I) species tightly associate with the above proteins/peptides with a remarkable selectivity for free cysteine residues. In contrast, in the case of the less-oxidizing Aubipyc complex, the gold(III) oxidation state is conserved, and a gold(III) fragment still containing the original ligand is found to be associated with the target proteins. It is notable that the C-terminal dodecapeptide of thioredoxin reductase containing the characteristic -Gly-Cys-Sec-Gly metal-binding motif is able in all cases to trigger gold(III)-to-gold(I) reduction. Our investigation allowed us to identify in detail the nature of the gold fragments that ultimately bind the protein targets and determine the exact binding stoichiometry; some insight on the reaction kinetics was also gained. Notably, a few clear correlations could be established between the structure of the metal complexes and the nature of the resulting protein adducts. The mechanistic implications of these findings are analyzed and thoroughly discussed. Overall, the present results set the stage to better understand the real target biomolecules of these gold compounds and elucidate at the atomic level their interaction modes with proteins and peptides.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry, University of Florence, Florence, Italy
| | - Carlotta Zoppi
- Department of Chemistry, University of Florence, Florence, Italy
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Florence, Italy
| |
Collapse
|
35
|
Abstract
The regium-π interaction is an attractive noncovalent force between group 11 elements (Cu, Ag, and Au) acting as Lewis acids and aromatic surfaces. Herein, we report for the first time experimental (Protein Data Bank analysis) and theoretical (RI-MP2/def2-TZVP level of theory) evidence of regium-π bonds involving Au(I) and aromatic amino acids (Phe, Tyr, Trp, and His). These findings might be important in the field of drug design and for retrospectively understanding the role of gold in proteins.
Collapse
Affiliation(s)
- María de Las Nieves Piña
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| |
Collapse
|
36
|
Hishikawa Y, Maity B, Ito N, Abe S, Lu D, Ueno T. Design of Multinuclear Gold Binding Site at the Two-fold Symmetric Interface of the Ferritin Cage. CHEM LETT 2020. [DOI: 10.1246/cl.200217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuki Hishikawa
- Department of Chemical Engineering, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100-084, P. R. China
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Basudev Maity
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Nozomi Ito
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100-084, P. R. China
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
37
|
Radisavljević S, Petrović B. Gold(III) Complexes: An Overview on Their Kinetics, Interactions With DNA/BSA, Cytotoxic Activity, and Computational Calculations. Front Chem 2020; 8:379. [PMID: 32509724 PMCID: PMC7251155 DOI: 10.3389/fchem.2020.00379] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
In the last few years, metallodrugs play a key role in the development of medicinal chemistry. The choice of metal ion, its oxidation state and stability, and the choice of inert and labile ligands are just some of the very important facts which must be considered before starting the synthesis of complexes with utilization in medicinal purpose. As a result, a lot of compounds of different transition metal ions found application for diagnostic and therapeutic purpose. Beside all, gold compounds have attracted particular attention. It is well-known that gold compounds could be used for the treatment of cancer, HIV, rheumatoid arthritis (chrysotherapy), and other diseases. This metal ion has unoccupied d-sublevels and possibility to form compounds with different oxidation states, from -1 to +5. However, gold(I) and gold(III) complexes are dominant in chemistry and medicine. Especially, gold(III) complexes are of great interest due to their structural similarity with cisplatin. Accordingly, this review summarizes the chemistry of some mononuclear and polynuclear gold(III) complexes. Special attention is given to gold(III) complexes with nitrogen-donor inert ligands (aliphatic or aromatic that have a possibility to stabilize complex) and their kinetic behavior toward different biologically relevant nucleophiles, mechanism of interaction with DNA/bovine serum albumin (BSA), cytotoxic activity, as well as computational calculations.
Collapse
Affiliation(s)
- Snežana Radisavljević
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Petrović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|