1
|
Gupta S, Arora P, Aghaei Z, Singh B, Jackson TA, Draksharapu A. Formation and Reactivity of a Mn IV(O)(μ-O)Ce IV Species: A Closest Mimic of Photosystem II. J Am Chem Soc 2024. [PMID: 39687935 DOI: 10.1021/jacs.4c12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Understanding the basic structure of the oxygen-evolving complex (OEC) in photosystem II (PS-II) and the water oxidation mechanism can aid in the discovery of more efficient and sustainable catalysts for water oxidation. In this context, we present evidence of the formation of a [(TPA)MnIV(O)(μ-O)CeIV(NO3)3]+ (2) complex (TPA = tris(pyridyl-2-methyl)amine) by adding aqueous ceric ammonium nitrate to an acetonitrile solution of the [(TPA)MnII]2+ (1) complex. This unique intermediate (2) was analyzed by using various spectroscopic techniques and electrospray ionization mass spectrometry. Remarkably, 2 closely mimics the structure of MnV(O)(μ-O)CaII(OH2) proposed in the OEC of PS-II. Notably, 2 reacts effectively with ferrocene derivatives, indicating that redox-active CeIV binding enhances the electron transfer efficiency. Additionally, 2 demonstrated the ability to perform oxygen atom transfer and hydrogen atom abstraction reactions. The discovery of this reactive [(TPA)MnIV(O)(μ-O)CeIV(NO3)3]+ species provides exciting opportunities for investigating the structure of the MnV(O)(μ-O)CaII(OH2) unit in the OEC.
Collapse
Affiliation(s)
- Sikha Gupta
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pragya Arora
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Zahra Aghaei
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Baghendra Singh
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Apparao Draksharapu
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Chu JM, Khade RL, Nguyen V, Richter-Addo GB, Zhang Y. One-Electron NO to N 2O Pathways via Heme Models and Lewis Acid: Metal Effects and Differences from the Enzymatic Reaction. Chemistry 2024:e202403677. [PMID: 39480457 DOI: 10.1002/chem.202403677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Some pathogens use heme-containing nitric oxide reductases (NORs) to reduce NO to N2O as their defense mechanism to detoxify NO and reduce nitrosative stress. This reduction is also significant in the global N cycle. Our previous experimental work showed that Fe and Co porphyrin NO complexes can couple with external NO to form N2O when activated by the Lewis acid BF3. A key difference from conventional two-electron enzymatic reaction is that one electron is sufficient. However, a complete understanding of the entire reaction pathways and the more favorable reactivity for Fe remains unknown. Here, we present a quantum chemical study to provide such information. Our results confirmed Fe's higher experimental reactivity, showing advantages in all steps of the reaction pathway: easier metal oxidation for NO reduction and N-O cleavage as well as a larger size to expedite the N/O coordination mode transition. The Co system, with a similar product energy as the enzyme, shows potential for further development in catalytic NO coupling. This work also offers the first evidence that this new one-electron NO reduction is both kinetically competitive and thermodynamically more favorable than the native pathway, supporting future initiatives in optimizing NO reduction agents in biology, environment, and industry.
Collapse
Affiliation(s)
- Jia-Min Chu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, United States
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, United States
| | - Vy Nguyen
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, United States
| | - George B Richter-Addo
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, United States
| |
Collapse
|
3
|
McCormick MJ, Machan CW. Developing homogeneous first row early transition metal catalysts for the oxygen reduction reaction. Dalton Trans 2024; 53:16807-16814. [PMID: 39344902 DOI: 10.1039/d4dt01969e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The oxygen reduction reaction (ORR) remains an important fixture in biological and synthetic systems for energy conversion and chemical functionalization. Late transition metals continue to dominate in the development of new catalyst systems, inspired by well-characterized metallocofactors and prior successes. By comparison, metals to the left of Fe on the periodic table are relatively understudied for the ORR. This Frontier article summarizes advancements related to the use of Mn, Cr, and V in homogeneous catalyst systems for the ORR and discusses the implications of these results for the development of catalyst systems from these metals and those earlier in the transition metal series.
Collapse
Affiliation(s)
- Mary Jo McCormick
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| |
Collapse
|
4
|
Mangue J, Wehrung I, Pécaut J, Ménage S, Orio M, Torelli S. Bio-inspired copper complexes with Cu 2S cores: (solvent) effects on oxygen reduction reactions. Dalton Trans 2024; 53:15576-15582. [PMID: 39229908 DOI: 10.1039/d4dt01629g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The need for effective alternative energy sources and "green" industrial processes is a more crucial societal topic than ever. In this context, mastering oxygen reduction reactions (ORRs) is a key step to develop fuel cells or to propose alternatives to energy-intensive setups such as the anthraquinone process for hydrogen peroxide production. Achieving this goal using bio-inspired metal complexes based on abundant and non-toxic elements could provide an environmentally friendly option. Given the prevalence of Cu-containing active sites capable of reductive activation of dioxygen in nature, the development of Cu-based catalysts for the ORR thus appears to be a relevant approach. We herein report the preparation, full characterization and (TD)DFT investigation of a new dinuclear mixed-valent copper complex 6 exhibiting a Cu2S core and a bridging triflate anion. Its ORR activity was compared with that of its parent catalyst 1. Two types of solvents were used, acetonitrile and acetone, and various catalyst/Me8Fc (electron source) ratios were tested. Our results highlight a counterintuitive solvent effect for 1 and a drastic drop in the activity for 6 in coordinating acetonitrile together with the modification of its chemical structure.
Collapse
Affiliation(s)
- Jordan Mangue
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| | - Iris Wehrung
- Aix Marseille Univ. Centrale Med., ISM2, Marseille, France.
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES, UMR 5819, F-38000 Grenoble, France
| | - Stéphane Ménage
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| | - Maylis Orio
- Aix Marseille Univ. Centrale Med., ISM2, Marseille, France.
| | - Stéphane Torelli
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
5
|
Kornowicz A, Pietrzak T, Korona K, Terlecki M, Justyniak I, Kubas A, Lewiński J. Fresh Impetus in the Chemistry of Calcium Peroxides. J Am Chem Soc 2024; 146:18938-18947. [PMID: 38847558 PMCID: PMC11258691 DOI: 10.1021/jacs.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/18/2024]
Abstract
Redox-inactive metal ions are essential in modulating the reactivity of various oxygen-containing metal complexes and metalloenzymes, including photosystem II (PSII). The heart of this unique membrane-protein complex comprises the Mn4CaO5 cluster, in which the Ca2+ ion acts as a critical cofactor in the splitting of water in PSII. However, there is still a lack of studies involving Ca-based reactive oxygen species (ROS) systems, and the exact nature of the interaction between the Ca2+ center and ROS in PSII still generates intense debate. Here, harnessing a novel Ca-TEMPO complex supported by the β-diketiminate ligand to control the activation of O2, we report the isolation and structural characterization of hitherto elusive Ca peroxides, a homometallic Ca hydroperoxide and a heterometallic Ca/K peroxide. Our studies indicate that the presence of K+ cations is a key factor controlling the outcome of the oxygenation reaction of the model Ca-TEMPO complex. Combining experimental observations with computational investigations, we also propose a mechanistic rationalization for the reaction outcomes. The designed approach demonstrates metal-TEMPO complexes as a versatile platform for O2 activation and advances the understanding of Ca/ROS systems.
Collapse
Affiliation(s)
- Arkadiusz Kornowicz
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Pietrzak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Krzesimir Korona
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Michał Terlecki
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Iwona Justyniak
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Kubas
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Lewiński
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
6
|
Nagasawa S, Itagaki Y, Sasano Y, Iwabuchi Y. Controlled Aerobic Oxidative Dimerization of Hydroxystilbenoids by Chromium Catalysis. Org Lett 2024; 26:4178-4182. [PMID: 38728298 DOI: 10.1021/acs.orglett.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Aerobic oxidative dimerization of hydroxystilbenoids is described. A Cr-salen complex catalyzed the dimerization of hydroxystilbenoids in 1,1,1,3,3,3-hexafluoroisopropanol to form compounds comprising a natural product-like scaffold (quadrangularin) or its precursor depending on the aromatic substituents. The addition of a catalytic amount of scandium triflate [Sc(OTf)3] to the reaction system altered the reaction outcome to give a different natural product-like compound, a pallidol-type dimer.
Collapse
Affiliation(s)
- Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yudai Itagaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yusuke Sasano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
7
|
Singh P, Massie AA, Denler MC, Lee Y, Mayfield JR, Lomax MJA, Singh R, Nordlander E, Jackson TA. C-H Bond Oxidation by Mn IV-Oxo Complexes: Hydrogen-Atom Tunneling and Multistate Reactivity. Inorg Chem 2024; 63:7754-7769. [PMID: 38625043 DOI: 10.1021/acs.inorgchem.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The reactivity of six MnIV-oxo complexes in C-H bond oxidation has been examined using a combination of kinetic experiments and computational methods. Variable-temperature studies of the oxidation of 9,10-dihydroanthracene (DHA) and ethylbenzene by these MnIV-oxo complexes yielded activation parameters suitable for evaluating electronic structure computations. Complementary kinetic experiments of the oxidation of deuterated DHA provided evidence for hydrogen-atom tunneling in C-H bond oxidation for all MnIV-oxo complexes. These results are in accordance with the Bell model, where tunneling occurs near the top of the transition-state barrier. Density functional theory (DFT) and DLPNO-CCSD(T1) computations were performed for three of the six MnIV-oxo complexes to probe a previously predicted multistate reactivity model. The DFT computations predicted a thermal crossing from the 4B1 ground state to a 4E state along the C-H bond oxidation reaction coordinate. DLPNO-CCSD(T1) calculations further confirm that the 4E transition state offers a lower energy barrier, reinforcing the multistate reactivity model for these complexes. We discuss how this multistate model can be reconciled with recent computations that revealed that the kinetics of C-H bond oxidation by this set of MnIV-oxo complexes can be well-predicted on the basis of the thermodynamic driving force for these reactions.
Collapse
Affiliation(s)
- Priya Singh
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Allyssa A Massie
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Yuri Lee
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Jaycee R Mayfield
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Markell J A Lomax
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Reena Singh
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ebbe Nordlander
- Lund University, Chemical Physics, Department of Chemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
8
|
Shoji Y, Terashima Y, Ohkubo K, Ito H, Maruyama K, Fukuzumi S, Nakanishi I. Scandium Ion-Promoted Electron-Transfer Disproportionation of 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxide (PTIO •) in Acetonitrile and Its Regeneration Induced by Water. Int J Mol Sci 2024; 25:4417. [PMID: 38674002 PMCID: PMC11050215 DOI: 10.3390/ijms25084417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO•), a persistent nitronyl nitroxide radical, has been used for the detection and trapping of nitric oxide, as a redox mediator for batteries, for the activity estimation of antioxidants, and so on. However, there is no report on the reactivity of PTIO• in the presence of redox-inactive metal ions. In this study, it is demonstrated that the addition of scandium triflate, Sc(OTf)3 (OTf = OSO2CF3), to an acetonitrile (MeCN) solution of PTIO• resulted in an electron-transfer disproportionation to generate the corresponding cation (PTIO+) and anion (PTIO-), the latter of which is suggested to be stabilized by Sc3+ to form [(PTIO)Sc]2+. The decay of the absorption band at 361 nm due to PTIO•, monitored using a stopped-flow technique, obeyed second-order kinetics. The second-order rate constant for the disproportionation, thus determined, increased with increasing the Sc(OTf)3 concentration to reach a constant value. A drastic change in the cyclic voltammogram recorded for PTIO• in deaerated MeCN containing 0.10 M Bu4NClO4 was also observed upon addition of Sc(OTf)3, suggesting that the large positive shift of the one-electron reduction potential of PTIO• (equivalent to the one-electron oxidation potential of PTIO-) in the presence of Sc(OTf)3 may result in the disproportionation. When H2O was added to the PTIO•-Sc(OTf)3 system in deaerated MeCN, PTIO• was completely regenerated. It is suggested that the complex formation of Sc3+ with H2O may weaken the interaction between PTIO- and Sc3+, leading to electron-transfer comproportionation to regenerate PTIO•. The reversible disproportionation of PTIO• was also confirmed by electron paramagnetic resonance (EPR) spectroscopy.
Collapse
Grants
- JP18K06620 Ministry of Education, Culture, Sports, Science and Technology
- JP20H02779 Ministry of Education, Culture, Sports, Science and Technology
- JP20H04819 Ministry of Education, Culture, Sports, Science and Technology
- JP18H04650 Ministry of Education, Culture, Sports, Science and Technology
- JP17H03010 Ministry of Education, Culture, Sports, Science and Technology
- JP16H02268 Ministry of Education, Culture, Sports, Science and Technology
- JP23K04686 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Yoshimi Shoji
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba-shi 263-8555, Chiba, Japan; (Y.S.); (H.I.)
| | - Yuri Terashima
- Environmental Radiation Effects Research Group, Department of Radiation Measurement and Dose Assessment, Institute for Radiological Science (NIRS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba-shi 263-8555, Chiba, Japan; (Y.T.); (K.M.)
| | - Kei Ohkubo
- Institute for Advanced Co-Creation Studies, Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Hiromu Ito
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba-shi 263-8555, Chiba, Japan; (Y.S.); (H.I.)
| | - Kouichi Maruyama
- Environmental Radiation Effects Research Group, Department of Radiation Measurement and Dose Assessment, Institute for Radiological Science (NIRS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba-shi 263-8555, Chiba, Japan; (Y.T.); (K.M.)
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea;
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba-shi 263-8555, Chiba, Japan; (Y.S.); (H.I.)
| |
Collapse
|
9
|
Satpathy JK, Yadav R, Bagha UK, Kumar D, Sastri CV, de Visser SP. Enhanced Reactivity through Equatorial Sulfur Coordination in Nonheme Iron(IV)-Oxo Complexes: Insights from Experiment and Theory. Inorg Chem 2024; 63:6752-6766. [PMID: 38551622 DOI: 10.1021/acs.inorgchem.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.
Collapse
Affiliation(s)
- Jagnyesh K Satpathy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Umesh K Bagha
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
10
|
Li D, Zhang X, Sun Y, Bu Y, Li H, Qian J. Investigating the evolution of reactive species in the CuO-mediated peroxymonosulfate activation process. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133425. [PMID: 38198860 DOI: 10.1016/j.jhazmat.2024.133425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
The utilization of copper oxide (CuO) as a catalyst in the peroxymonosulfate (PMS) activation process holds great promise for effectively degrading aqueous organic pollutants, while the relevant mechanism remains inadequately understood. In this study, we delve into the evolution pathways of reactive species in the CuO/PMS system through a comprehensive series of experimental analyses. Our findings indicate that various reactive species are generated in the CuO/PMS system with the specific sequence, where the decomposition of surface Cu(II)-OOSO3- leads to the formation of surface Cu(III) species, which are responsible for the subsequent generation of HO•. The reactivity of these reactive species and the sequence of their generation explain the distinct oxidation behaviors of pollutants with different values of ionization potential (IP). In addition, singlet oxygen (1O2) may be produced during the PMS activation process, while its involvement in the oxidation of substrates is deemed negligible. This investigation presents a novel perspective, enhancing our comprehension of the mechanism underlying transition metal-mediated PMS activation processes. ENVIRONMENTAL IMPLICATION: The removal of refractory organic contaminations in water constitutes a fundamental concern within the realm of environmental pollution management. Peroxymonosulfate activation induced by transition metal oxides has garnered significant recognition as a promising technological approach for the degradation of aqueous organic contaminants, while the underlying mechanism remains enigmatic. In this study, we systematically investigate the evolution pathways of reactive species in the CuO/peroxymonosulfate system to reveal the mystery of the reaction mechanism between CuO and peroxymonosulfate. The outcomes of our study contribute to enhancing the practical applicability of transition metal-triggered PMS activation processes.
Collapse
Affiliation(s)
- Dawei Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xinyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yibing Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yuanqing Bu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, China.
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China; School of Environmental Engineering, Wuxi University, Jiangsu 214105, China
| |
Collapse
|
11
|
Yu J, Deng W, Huang X, Zhao M, Li X, Zhang T, Pan B. Intramolecular generation of endogenous Cu(III) for selectively self-catalytic degradation of Cu(II)-EDTA from wastewater by UV/peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133521. [PMID: 38232554 DOI: 10.1016/j.jhazmat.2024.133521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
HO•/SO4•--based advanced oxidation processes for the decomplexation of heavy metal-organic complexes usually encounter poor efficiency in real scenarios. Herein, we reported an interesting self-catalyzed degradation of Cu(II)-EDTA with high selectivity in UV/peroxymonosulfate (PMS). Chemical probing experiments and competitive kinetic analysis quantitatively revealed the crucial role of in situ formed Cu(III). The Cu(III) species not only oxidized Cu(II)-EDTA rapidly at ∼3 × 107 M-1 s-1, but also exhibited 2-3 orders of magnitude higher steady-state concentration than HO•/SO4•-, leading to highly efficient and selective degradation of Cu(II)-EDTA even in complex matrices. The ternary Cu(II)-OOSO3- complexes derived from Cu(II)-EDTA decomposition could generate Cu(III) in situ via the Cu(II)-Cu(I)-Cu(III)-Cu(II) cycle involving intramolecular electron transfer. This method was also applicable to various Cu(II) complexes in real electroplating wastewater, demonstrating higher energy efficiency than commonly studied UV-based AOPs. This study provids a proof of concept for efficient decomplexation through activating complexed heavy metals into endogenous reactive species.
Collapse
Affiliation(s)
- Junyi Yu
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wei Deng
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Min Zhao
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Lionetti D, Suseno S, Shiau AA, de Ruiter G, Agapie T. Redox Processes Involving Oxygen: The Surprising Influence of Redox-Inactive Lewis Acids. JACS AU 2024; 4:344-368. [PMID: 38425928 PMCID: PMC10900226 DOI: 10.1021/jacsau.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
Metalloenzymes with heteromultimetallic active sites perform chemical reactions that control several biogeochemical cycles. Transformations catalyzed by such enzymes include dioxygen generation and reduction, dinitrogen reduction, and carbon dioxide reduction-instrumental transformations for progress in the context of artificial photosynthesis and sustainable fertilizer production. While the roles of the respective metals are of interest in all these enzymatic transformations, they share a common factor in the transfer of one or multiple redox equivalents. In light of this feature, it is surprising to find that incorporation of redox-inactive metals into the active site of such an enzyme is critical to its function. To illustrate, the presence of a redox-inactive Ca2+ center is crucial in the Oxygen Evolving Complex, and yet particularly intriguing given that the transformation catalyzed by this cluster is a redox process involving four electrons. Therefore, the effects of redox inactive metals on redox processes-electron transfer, oxygen- and hydrogen-atom transfer, and O-O bond cleavage and formation reactions-mediated by transition metals have been studied extensively. Significant effects of redox inactive metals have been observed on these redox transformations; linear free energy correlations between Lewis acidity and the redox properties of synthetic model complexes are observed for several reactions. In this Perspective, these effects and their relevance to multielectron processes will be discussed.
Collapse
Affiliation(s)
| | - Sandy Suseno
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Angela A. Shiau
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Graham de Ruiter
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
13
|
Leng D, Xiong Z, Hu J, Zhu T, Chen X, Gong Y. A sulfur monoxide complex of platinum fluoride with a positively charged ligand. RSC Adv 2023; 13:12495-12501. [PMID: 37091604 PMCID: PMC10119878 DOI: 10.1039/d3ra01932b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
A sulfur monoxide complex of platinum fluoride in the form of PtF2(η1-SO) was generated via the isomerization of a molecular complex Pt(SOF2) in cryogenic matrixes under UV-vis irradiation. The infrared absorptions observed at 1205.4, 619.8 and 594.9 cm-1 are assigned to the S-O, antisymmetric and symmetric F-Pt-F stretching vibrations of the PtF2(η1-SO) complex, which possesses nonplanar Cs symmetry with a singlet ground state according to density functional theory calculations. The experimental vibrational frequency and computed distance (1.449 Å) of the SO ligand indicate that the SO ligand features a positively charged character, which is further confirmed by natural bond orbital analysis and Mayer bond order. Such character is completely different from that for early transition metal-SO complexes and dioxygen complexes of platinum. Formation of the PtF2(η1-SO) complex was found to occur via the consecutive transfer of the two fluorine atoms from SOF2 to Pt in the sulfur bound Pt(SOF2) complex, which involves a series of intermediates on the basis of the mechanism study at the B3LYP level. Although the whole process is hindered by the large energy barrier encountered during the transfer of the first fluorine atom, UV-vis irradiation can provide sufficient energy to surmount this barrier and facilitates the formation of the nonplanar PtF2(η1-SO) complex stabilized in matrix.
Collapse
Affiliation(s)
- Deji Leng
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhixin Xiong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jingwen Hu
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Tiejian Zhu
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Xiuting Chen
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
14
|
Zhang J, Lee YM, Seo MS, Nilajakar M, Fukuzumi S, Nam W. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom Transfer Reactions of a Nickel(III) Complex. Inorg Chem 2022; 61:19735-19747. [PMID: 36445726 DOI: 10.1021/acs.inorgchem.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
15
|
Liu K, Zeng N, Pan J, Gong D, Zhang G. Synthesis, characterization, toxicity evaluation and inhibitory effect of hesperitin-copper (Ⅱ) complex on xanthine oxidase. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Lueckheide MJ, Ertem MZ, Michon MA, Chmielniak P, Robinson JR. Peroxide-Selective Reduction of O 2 at Redox-Inactive Rare-Earth(III) Triflates Generates an Ambiphilic Peroxide. J Am Chem Soc 2022; 144:17295-17306. [PMID: 36083877 DOI: 10.1021/jacs.2c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal peroxides are key species involved in a range of critical biological and synthetic processes. Rare-earth (group III and the lanthanides; Sc, Y, La-Lu) peroxides have been implicated as reactive intermediates in catalysis; however, reactivity studies of isolated, structurally characterized rare-earth peroxides have been limited. Herein, we report the peroxide-selective (93-99% O22-) reduction of dioxygen (O2) at redox-inactive rare-earth triflates in methanol using a mild metallocene reductant, decamethylferrocene (Fc*). The first molecular praseodymium peroxide ([PrIII2(O22-)(18C6)2(EG)2][OTf]4; 18C6 = 18-crown-6, EG = ethylene glycol, -OTf = -O3SCF3; 2-Pr) was isolated and characterized by single-crystal X-ray diffraction, Raman spectroscopy, and NMR spectroscopy. 2-Pr displays high thermal stability (120 °C, 50 mTorr), is protonated by mild organic acids [pKa1(MeOH) = 5.09 ± 0.23], and engages in electrophilic (e.g., oxygen atom transfer) and nucleophilic (e.g., phosphate-ester cleavage) reactivity. Our mechanistic studies reveal that the rate of oxygen reduction is dictated by metal-ion accessibility, rather than Lewis acidity, and suggest new opportunities for differentiated reactivity of redox-inactive metal ions by leveraging weak metal-ligand binding events preceding electron transfer.
Collapse
Affiliation(s)
- Matthew J Lueckheide
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael A Michon
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Pawel Chmielniak
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
17
|
Kaur S, Bera M, Santra A, Munshi S, Sterbinsky GE, Wu T, Moonshiram D, Paria S. Effect of Redox-Inactive Metal Ion-Nickel(III) Interactions on the Redox Properties and Proton-Coupled Electron Transfer Reactivity. Inorg Chem 2022; 61:14252-14266. [PMID: 36041064 DOI: 10.1021/acs.inorgchem.2c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mononuclear nickel(II) and nickel(III) complexes of a bisamidate-bisalkoxide ligand, (NMe4)2[NiII(HMPAB)] (1) and (NMe4)[NiIII(HMPAB)] (2), respectively, have been synthesized and characterized by various spectroscopic techniques including X-ray crystallography. The reaction of redox-inactive metal ions (Mn+ = Ca2+, Mg2+, Zn2+, Y3+, and Sc3+) with 2 resulted in 2-Mn+ adducts, which was assessed by an array of spectroscopic techniques including X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and reactivity studies. The X-ray structure of Ca2+ coordinated to Ni(III) complexes, 2-Ca2+T, was determined and exhibited an average Ni-Ca distance of 3.1253 Å, close to the metal ions' covalent radius. XAS analysis of 2-Ca2+ and 2-Y3+ in solution further revealed an additional coordination to Ca and Y in the 2-Mn+ adducts with shortened Ni-M distances of 2.15 and 2.11 Å, respectively, implying direct bonding interactions between Ni and Lewis acids (LAs). Such a short interatomic distance between Ni(III) and M is unprecedented and was not observed before. EPR analysis of 2 and 2-Mn+ species, moreover, displayed rhombic signals with gav > 2.12 for all complexes, supporting the +III oxidation state of Ni. The NiIII/NiII redox potential of 2 and 2-Mn+ species was determined, and a plot of E1/2 of 2-Mn+ versus pKa of [M(H2O)n]m+ exhibited a linear relationship, implying that the NiIII/NiII potential of 2 can be tuned with different redox-inactive metal ions. Reactivity studies of 2 and 2-Mn+ with different 4-X-2,6-ditert-butylphenol (4-X-DTBP) and other phenol derivatives were performed, and based on kinetic studies, we propose the involvement of a proton-coupled electron transfer (PCET) pathway. Analysis of the reaction products after the reaction of 2 with 4-OMe-DTBP showed the formation of a Ni(II) complex (1a) where one of the alkoxide arms of the ligand is protonated. A pKa value of 24.2 was estimated for 1a. The reaction of 2-Mn+ species was examined with 4-OMe-DTBP, and it was observed that the k2 values of 2-Mn+ species increase by increasing the Lewis acidity of redox-inactive metal ions. However, the obtained k2 values for 2-Mn+ species are much lower compared to the k2 value for 2. Such a variation of PCET reactivity between 2 and 2-Mn+ species may be attributed to the interactions between Ni(III) and LAs. Our findings show the significance of the secondary coordination sphere effect on the PCET reactivity of Ni(III) complexes and furnish important insights into the reaction mechanism involving high-valent nickel species, which are frequently invoked as key intermediates in Ni-mediated enzymatic reactions, solar-fuel catalysis, and biomimetic/synthetic transformation reactions.
Collapse
Affiliation(s)
- Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - George E Sterbinsky
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Tianpin Wu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
18
|
Effect of Brшnsted Acid on the Reactivity and Selectivity of the Oxoiron(V) Intermediates in C-H and C=C Oxidation Reactions. Catalysts 2022. [DOI: 10.3390/catal12090949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of HClO4 on the reactivity and selectivity of the catalyst systems 1,2/H2O2/AcOH, based on nonheme iron complexes of the PDP families, [(Me2OMePDP)FeIII(μ-OH)2FeIII(MeOMe2PDP)](OTf)4 (1) and [(NMe2PDP)FeIII(μ-OH)2FeIII(NMe2PDP](OTf)4 (2), toward oxidation of benzylideneacetone (bna), adamantane (ada), and (3aR)-(+)-sclareolide (S) has been studied. Adding HClO4 (2–10 equiv. vs. Fe) has been found to result in the simultaneous improvement of the observed catalytic efficiency (i.e., product yields) and the oxidation regio- or enantioselectivity. At the same time, HClO4 causes a threefold increase of the second-order rate constant for the reaction of the key oxygen-transferring intermediate [(Me2OMePDP)FeV=O(OAc)]2+ (1a), with cyclohexane at −70 °C. The effect of strong Brønsted acid on the catalytic reactivity is discussed in terms of the reversible protonation of the Fe=O moiety of the parent perferryl intermediates.
Collapse
|
19
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022; 61:e202208143. [PMID: 35730106 DOI: 10.1002/anie.202208143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/10/2022]
Abstract
A cobalt porphyrin complex with a pendant imidazole base ([(L1 )CoII ]) is an efficient catalyst for the homogeneous catalytic two-electron reduction of dioxygen by 1,1'-dimethylferrocene (Me2 Fc) in the presence of triflic acid (HOTf), as compared with a cobalt porphyrin complex without a pendant imidazole base ([(L2 )CoII ]). The pendant imidazole ligand plays a crucial role not only to provide an imidazolinium proton for proton-coupled electron transfer (PCET) from [(L1 )CoII ] to O2 in the presence of HOTf but also to facilitate electron transfer (ET) from [(L1 )CoII ] to O2 in the absence of HOTf. The kinetics analysis and the detection of intermediates in the stoichiometric and catalytic reduction of O2 have provided clues to clarify the crucial roles of the pendant imidazole ligand of [(L1 )CoII ] for the first time.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ni Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaochao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
20
|
Teptarakulkarn P, Lorpaiboon W, Anusanti T, Laowiwatkasem N, Chainok K, Sangtrirutnugul P, Surawatanawong P, Chantarojsiri T. Incorporation of Cation Affects the Redox Reactivity of Fe- NNN Complexes on C-H Oxidation. Inorg Chem 2022; 61:11066-11074. [PMID: 35815773 DOI: 10.1021/acs.inorgchem.2c00762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cations such as Lewis acids have been shown to enhance the catalytic activity of high-valent Fe-oxygen intermediates. Herein, we present a pyridine diamine ethylene glycol macrocycle, which can form Zn(II)- or Fe(III)-complex with the NNN site, while allowing redox-inactive cations to bind to the ethylene glycol moiety. The addition of alkali, alkali earth, and lanthanum ions resulted in positive shifts to the Fe(III/II) redox potential. Calculation of dissociation constants showed the tightest binding with a Ba2+ ion. Density functional theory calculations were used to elucidate the effects of redox inactive cations toward the electronic structures of Fe complexes. Although the Fe-NNN complexes, both in the absence and presence of cations, can catalyze C-H oxidation of 9,10-dihydroanthracene, to give anthracene [hydrogen atom transfer (HAT) product], anthrone, and anthraquinone [oxygen atom transfer (OAT) products], highest overall activity and OAT/HAT product ratios were obtained in the presence of dications, that is, Ba2+ and Mg2+, respectively.
Collapse
Affiliation(s)
- Pathorn Teptarakulkarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wanutcha Lorpaiboon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thana Anusanti
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natchapol Laowiwatkasem
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Preeyanuch Sangtrirutnugul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
21
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jindou Yang
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Ping Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xialiang Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Lisi Xie
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ni Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haitao Lei
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chaochao Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yong-Min Lee
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Weiqiang Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Rui Cao
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Shunichi Fukuzumi
- Osaka University Department of Material and Life Science 2-1 Yamada-oka 565-0871 Suita JAPAN
| | - Wonwoo Nam
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| |
Collapse
|
22
|
Syntheses, spectroscopic, structural characterization of Co(III) and Co(II) carboxylates and electron transfer reactions with ferrocene derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Ershova IV, Meshcheryakova IN, Yu. Trofimova O, Pashanova KI, Arsenyeva KV, Rumyantsev RV, Fukin GK, Piskunov AV. Structural diversity of 9,10-phenanthrenequinone molecular complexes with metal halides. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Zhang J, Lee YM, Seo MS, Fukuzumi S, Nam W. Acid Catalysis in the Oxidation of Substrates by Mononuclear Manganese(III)-Aqua Complexes. Inorg Chem 2022; 61:6594-6603. [PMID: 35442673 DOI: 10.1021/acs.inorgchem.2c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acids are known to enhance the reactivities of metal-oxygen intermediates, such as metal-oxo, -hydroperoxo, -peroxo, and -superoxo complexes, in biomimetic oxidation reactions. Although metal-aqua (and metal-hydroxo) complexes have been shown to be potent oxidants in oxidation reactions, acid effects on the reactivities of metal-aqua complexes have never been investigated previously. In this study, a mononuclear manganese(III)-aqua complex, [(dpaq5NO2)MnIII(OH2)]2+ (1; dpaq5NO2 = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-ylacetamidate with an NO2 substituent at the 5 position), which is relatively stable in the presence of triflic acid (HOTf), is used in the investigation of acid-catalyzed oxidation reactions by metal-aqua complexes. As a result, we report a remarkable acid catalysis in the six-electron oxidation of anthracene by 1 in the presence of HOTf; anthraquinone is formed as the product. In the HOTf-catalyzed six-electron oxidation of anthracene by 1, the rate constant increases linearly with an increase of the HOTf concentration. Combined with the observed one-electron oxidation product, anthracene (derivative) radical cation, and the substitution effect at the 5 position of the dpaq ligand in 1 on the rate constants of the oxidation of anthracene, it is concluded that the oxidation of anthracene occurs via an acid-promoted electron transfer (APET) from anthracene to 1. The dependence of the rate constants of the APET from electron donors, including anthracene derivatives, to 1 on the driving force of electron transfer is also shown to be well fitted by the Marcus equation of outer-sphere electron transfer. To the best of our knowledge, this is the first example showing acid catalysis in the oxidation of substrates by metal(III)-aqua complexes.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
25
|
Albrecht PA, Rupf SM, Sellin M, Schlögl J, Riedel S, Malischewski M. Increasing the oxidation power of TCNQ by coordination of B(C 6F 5) 3. Chem Commun (Camb) 2022; 58:4958-4961. [PMID: 35380574 DOI: 10.1039/d2cc00314g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation power of the cyanocarbon TCNQ (tetracyano-quinodimethane) can be significantly increased to approximately E = +0.9 V vs. Cp2Fe by coordination of up to four equivalents of the strong fluorinated Lewis acid B(C6F5)3, resulting in a highly reactive but easy-to-use oxidation system. Thianthrene and tris(4-bromophenyl)amine were oxidized to the corresponding radical cations. Dianionic [TCNQ·4 B(C6F5)3]2- was formed upon reduction with two equivalents of ferrocene or decamethylcobaltocene. [TCNQ·4 B(C6F5)3]- and [TCNQ·4 B(C6F5)3]2- are rare cases of redox-active weakly-coordinating anions.
Collapse
Affiliation(s)
- Paul Anton Albrecht
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin, Germany.
| | - Susanne Margot Rupf
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin, Germany.
| | - Malte Sellin
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin, Germany. .,Albert-Ludwigs-Universität Freiburg, Institute of Inorganic and Analytical Chemistry, Albertstraße 21, 79104 Freiburg, Germany
| | - Johanna Schlögl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin, Germany.
| | - Sebastian Riedel
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin, Germany.
| | - Moritz Malischewski
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin, Germany.
| |
Collapse
|
26
|
Riesgo-Gonzalez V, Bhattacharjee S, Dong X, Hall DS, Andrei V, Bond AD, Grey CP, Reisner E, Wright DS. Single-Source Deposition of Mixed-Metal Oxide Films Containing Zirconium and 3d Transition Metals for (Photo)electrocatalytic Water Oxidation. Inorg Chem 2022; 61:6223-6233. [PMID: 35412823 PMCID: PMC9098167 DOI: 10.1021/acs.inorgchem.2c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fabrication of mixed-metal oxide films holds promise for the development of practical photoelectrochemical catalyst coatings but currently presents challenges in terms of homogeneity, cost, and scalability. We report a straightforward and versatile approach to produce catalytically active zirconium-based films for electrochemical and photoelectrochemical water oxidation. The mixed-metal oxide catalyst films are derived from novel single-source precursor oxide cage compounds containing Zr with first-row transition metals such as Co, Fe, and Cu. The Zr-based film doped with Co on fluorine-doped tin oxide (FTO)-coated glass exhibits the highest electrocatalytic O2 evolution performance in an alkaline medium and an operational stability above 18 h. The deposition of this film onto a BiVO4 photoanode significantly enhances its photoelectrochemical activity toward solar water oxidation, lowering the onset potential by 0.12-0.21 V vs reversible hydrogen electrode (RHE) and improving the maximum photocurrent density by ∼50% to 2.41 mA cm-2 for the CoZr-coated BiVO4 photoanodes compared to that for bare BiVO4.
Collapse
Affiliation(s)
- Victor Riesgo-Gonzalez
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Subhajit Bhattacharjee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Xinsheng Dong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - David S Hall
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Virgil Andrei
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Dominic S Wright
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| |
Collapse
|
27
|
Shi H, Cheng L, Pan Y, Mak CK, Lau KC, Lau TC. Synergistic effects of CH 3CO 2H and Ca 2+ on C–H bond activation by MnO 4−. Chem Sci 2022; 13:11600-11606. [PMID: 36320399 PMCID: PMC9555569 DOI: 10.1039/d2sc03089f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
The activation of metal-oxo species with Lewis acids is of current interest. In this work, the effects of a weak Brønsted acid such as CH3CO2H and a weak Lewis acid such as Ca2+ on C–H bond activation by KMnO4 have been investigated. Although MnO4− is rather non-basic (pKa of MnO3(OH) = −2.25), it can be activated by AcOH or Ca2+ to oxidize cyclohexane at room temperature to give cyclohexanone as the major product. A synergistic effect occurs when both AcOH and Ca2+ are present; the relative rates for the oxidation of cyclohexane by MnO4−/AcOH, MnO4−/Ca2+ and MnO4−/AcOH/Ca2+ are 1 : 73 : 198. DFT calculations show that in the active intermediate of MnO4−/AcOH/Ca2+, MnO4− is H-bonded to 3 AcOH molecules, while Ca2+ is bonded to 3 AcOH molecules as well as to an oxo ligand of MnO4−. Our results also suggest that these synergistic activating effects of a weak Brønsted acid and a weak Lewis acid should be applicable to a variety of metal-oxo species. The activation of metal-oxo species with Lewis acids is of current interest.![]()
Collapse
Affiliation(s)
- Huatian Shi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Lin Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Yi Pan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Chi-Keung Mak
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| |
Collapse
|
28
|
Karmalkar DG, Seo MS, Lee YM, Kim Y, Lee E, Sarangi R, Fukuzumi S, Nam W. Deeper Understanding of Mononuclear Manganese(IV)-Oxo Binding Brønsted and Lewis Acids and the Manganese(IV)-Hydroxide Complex. Inorg Chem 2021; 60:16996-17007. [PMID: 34705465 DOI: 10.1021/acs.inorgchem.1c02119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding of Lewis acidic metal ions and Brønsted acid at the metal-oxo group of high-valent metal-oxo complexes enhances their reactivities significantly in oxidation reactions. However, such a binding of Lewis acids and proton at the metal-oxo group has been questioned in several cases and remains to be clarified. Herein, we report the synthesis, characterization, and reactivity studies of a mononuclear manganese(IV)-oxo complex binding triflic acid, {[(dpaq)MnIV(O)]-HOTf}+ (1-HOTf). First, 1-HOTf was synthesized and characterized using various spectroscopic techniques, including resonance Raman (rRaman) and X-ray absorption spectroscopy/extended X-ray absorption fine structure. In particular, in rRaman experiments, we observed a linear correlation between the Mn-O stretching frequencies of 1-HOTf (e.g., νMn-O at ∼793 cm-1) and 1-Mn+ (Mn+ = Ca2+, Zn2+, Lu3+, Al3+, or Sc3+) and the Lewis acidities of H+ and Mn+ ions, suggesting that H+ and Mn+ bind at the metal-oxo moiety of [(dpaq)MnIV(O)]+. Interestingly, a single-crystal structure of 1-HOTf was obtained by X-ray diffraction analysis, but the structure was not an expected Mn(IV)-oxo complex but a Mn(IV)-hydroxide complex, [(dpaq)MnIV(OH)](OTf)2 (4), with a Mn-O bond distance of 1.8043(19) Å and a Mn-O stretch at 660 cm-1. More interestingly, 4 reverted to 1-HOTf upon dissolution, demonstrating that 1-HOTf and 4 are interconvertible depending on the physical states, such as 1-HOTf in solution and 4 in isolated solid. The reactivity of 1-HOTf was investigated in hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactions and then compared with those of 1-Mn+ complexes; an interesting correlation between the Mn-O stretching frequencies of 1-HOTf and 1-Mn+ and their reactivities in the OAT and HAT reactions is reported for the first time in this study.
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Youngsuk Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
29
|
Li X, Zhao Z, Li H, Qian J. Degradation of organic contaminants in the CoFe2O4/peroxymonosulfate process: The overlooked role of Co(II)-PMS complex. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
30
|
Brinkmeier A, Dalle KE, D'Amore L, Schulz RA, Dechert S, Demeshko S, Swart M, Meyer F. Modulation of a μ-1,2-Peroxo Dicopper(II) Intermediate by Strong Interaction with Alkali Metal Ions. J Am Chem Soc 2021; 143:17751-17760. [PMID: 34658244 DOI: 10.1021/jacs.1c08645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The properties of metal/dioxygen species, which are key intermediates in oxidation catalysis, can be modulated by interaction with redox-inactive Lewis acids, but structural information about these adducts is scarce. Here we demonstrate that even mildly Lewis acidic alkali metal ions, which are typically viewed as innocent "spectators", bind strongly to a reactive cis-peroxo dicopper(II) intermediate. Unprecedented structural insight has now been obtained from X-ray crystallographic characterization of the "bare" CuII2(μ-η1:η1-O2) motif and its Li+, Na+, and K+ complexes. UV-vis, Raman, and electrochemical studies show that the binding persists in MeCN solution, growing stronger in proportion to the cation's Lewis acidity. The affinity for Li+ is surprisingly high (∼70 × 104 M-1), leading to Li+ extraction from its crown ether complex. Computational analysis indicates that the alkali ions influence the entire Cu-OO-Cu core, modulating the degree of charge transfer from copper to dioxygen. This induces significant changes in the electronic, magnetic, and electrochemical signatures of the Cu2O2 species. These findings have far-reaching implications for analyses of transient metal/dioxygen intermediates, which are often studied in situ, and they may be relevant to many (bio)chemical oxidation processes when considering the widespread presence of alkali cations in synthetic and natural environments.
Collapse
Affiliation(s)
- Alexander Brinkmeier
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany
| | - Kristian E Dalle
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany
| | - Lorenzo D'Amore
- Institut de Química Computacional i Catàlisi (IQCC) & Department de Química, Universitat de Girona, 17003 Girona, Spain
| | - Roland A Schulz
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi (IQCC) & Department de Química, Universitat de Girona, 17003 Girona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany.,International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
31
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium‐Ion Binding Mediates the Reversible Interconversion of
Cis
and
Trans
Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Natasha P. Vargo
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| | - Jill B. Harland
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Bradley W. Musselman
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Brookhaven National Laboratory PO Box 5000 Upton NY 11973-5000 USA
| | - Jerome R. Robinson
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| |
Collapse
|
32
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium-Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021; 60:19836-19842. [PMID: 34101958 DOI: 10.1002/anie.202105421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Coupled dinuclear copper oxygen cores (Cu2 O2 ) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2 transport and substrate oxidation in many organisms. μ-1,2-cis peroxido dicopper cores (C P) have been proposed as key structures in the early stages of O2 binding in these proteins; their reversible isomerization to other Cu2 O2 cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallic C P cores in biological and synthetic systems, the properties and reactivity of C P Cu2 O2 species remain largely unexplored. Herein, we report the reversible interconversion of μ-1,2-trans peroxido (T P) and C P dicopper cores. CaII mediates this process by reversible binding at the Cu2 O2 core, highlighting the unique capability for metal-ion binding events to stabilize novel reactive fragments and control O2 activation in biomimetic systems.
Collapse
Affiliation(s)
- Natasha P Vargo
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Bradley W Musselman
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, PO Box 5000, Upton, NY, 11973-5000, USA
| | - Jerome R Robinson
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| |
Collapse
|
33
|
Zhu J, Wang S, Li H, Qian J, Lv L, Pan B. Degradation of phosphonates in Co(II)/peroxymonosulfate process: Performance and mechanism. WATER RESEARCH 2021; 202:117397. [PMID: 34246991 DOI: 10.1016/j.watres.2021.117397] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
The increased release of phosphonates to natural waters causes global concern due to their potential threat to the aquatic environment. It is curial to mineralize phosphonates to orthophosphate (PO43-) before they are thoroughly removed from wastewater via conventional biological treatment. In this study, we systematically investigated the performance and mechanism of degradation of phosphonates in Co(II)-triggered peroxymonosulfate (PMS) activation process. The degradation efficiency of various phosphonates is highly dependent on their coordination with Co(II). Using 1-hydroxyethane 1,1-diphosphonic acid (HEDP) as a target pollutant, the Co(II)/PMS process is effective in a broad solution pH range from 5.0 to 10.0. Multiple experimental results imply that Co(II)-PMS complex is the primary reactive species, while hydroxyl radicals (HO•), sulfate radicals (SO4•-), singlet oxygen (1O2) and Co(III) play as the secondary reactive species for the degradation of HEDP. The presence of Cl-, HCO3-, and natural organic matters (NOM) inhibits the degradation of HEDP. However, in real water samples, the selectivity and efficiency for HEDP removal in the Co(II)/PMS process are higher than that in free radicals-mediated advanced oxidation processes. This study not only sheds new lights on the mechanism of Co(II)-triggered PMS activation process, but also provides feasible technology for the degradation of phosphonates in wastewater.
Collapse
Affiliation(s)
- Jinglin Zhu
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lu Lv
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Kim K, Cho D, Noh H, Ohta T, Baik MH, Cho J. Controlled Regulation of the Nitrile Activation of a Peroxocobalt(III) Complex with Redox-Inactive Lewis Acidic Metals. J Am Chem Soc 2021; 143:11382-11392. [PMID: 34313127 DOI: 10.1021/jacs.1c01674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Redox-inactive metal ions play vital roles in biological O2 activation and oxidation reactions of various substrates. Recently, we showed a distinct reactivity of a peroxocobalt(III) complex bearing a tetradentate macrocyclic ligand, [CoIII(TBDAP)(O2)]+ (1) (TBDAP = N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane), toward nitriles that afforded a series of hydroximatocobalt(III) complexes, [CoIII(TBDAP)(R-C(═NO)O)]+ (R = Me (3), Et, and Ph). In this study, we report the effects of redox-inactive metal ions on nitrile activation of 1. In the presence of redox-inactive metal ions such as Zn2+, La3+, Lu3+, and Y3+, the reaction does not form the hydroximatocobalt(III) complex but instead gives peroxyimidatocobalt(III) complexes, [CoIII(TBDAP)(R-C(═NH)O2)]2+ (R = Me (2) and Ph (2Ph)). These new intermediates were characterized by various physicochemical methods including X-ray diffraction analysis. The rates of the formation of 2 are found to correlate with the Lewis acidity of the additive metal ions. Moreover, complex 2 was readily converted to 3 by the addition of a base. In the presence of Al3+, Sc3+, or H+, 1 is converted to [CoIII(TBDAP)(O2H)(MeCN)]2+ (4), and further reaction with nitriles did not occur. These results reveal that the reactivity of the peroxocobalt(III) complex 1 in nitrile activation can be regulated by the redox-inactive metal ions and their Lewis acidity. DFT calculations show that the redox-inactive metal ions stabilize the peroxo character of end-on Co-η1-O2 intermediate through the charge reorganization from a CoII-superoxo to a CoIII-peroxo intermediate. A complete mechanistic model explaining the role of the Lewis acid is presented.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dasol Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyeonju Noh
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSCLP Center, 679-5148 Hyogo, Japan
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
35
|
Li H, Zhao Z, Qian J, Pan B. Are Free Radicals the Primary Reactive Species in Co(II)-Mediated Activation of Peroxymonosulfate? New Evidence for the Role of the Co(II)-Peroxymonosulfate Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6397-6406. [PMID: 33882668 DOI: 10.1021/acs.est.1c02015] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The catalytic activation of peroxymonosulfate (PMS) is under intensive investigation with potentials as an alternative advanced oxidation process (AOP) in wastewater treatment. Among all catalysts examined, Co(II) exhibits the highest reactivity for the activation of PMS, following the conventional Fenton-like mechanism, in which free radicals (i.e., sulfate radicals and hydroxyl radicals) are reckoned as the reactive species. Herein, we report that the primary reactive species (PRS) is proposed to be a Co(II)-PMS complex (Co(II)-OOSO3-), while free radicals and Co(III) species act as the secondary reactive species (SRS) that play a minor role in the Co(II)/PMS process. This Co(II)-OOSO3- exhibits several intriguing properties including ability to conduct both one-electron-transfer and oxygen-atom-transfer reactions with selected molecules, both nucleophilic and electrophilic in nature, and strongly pH-dependent reactivity. This study provides novel insights into the chemical nature of the Co(II)-catalyzed PMS activation process.
Collapse
Affiliation(s)
- Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Zihao Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
36
|
Hong YH, Jang Y, Ezhov R, Seo MS, Lee YM, Pandey B, Hong S, Pushkar Y, Fukuzumi S, Nam W. A Highly Reactive Chromium(V)–Oxo TAML Cation Radical Complex in Electron Transfer and Oxygen Atom Transfer Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yuri Jang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bhawana Pandey
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, People’s Republic of China
| |
Collapse
|
37
|
Sharma N, Zou HB, Lee YM, Fukuzumi S, Nam W. A Mononuclear Non-Heme Manganese(III)-Aqua Complex in Oxygen Atom Transfer Reactions via Electron Transfer. J Am Chem Soc 2021; 143:1521-1528. [PMID: 33439643 DOI: 10.1021/jacs.0c11420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal-oxygen complexes, such as metal-oxo [M(O2-)], -hydroxo [M(OH-)], -peroxo [M(O22-)], -hydroperoxo [M(OOH-)], and -superoxo [M(O2•-)] species, are capable of conducting oxygen atom transfer (OAT) reactions with organic substrates, such as thioanisole (PhSMe) and triphenylphosphine (Ph3P). However, OAT of metal-aqua complexes, [M(OH2)]n+, has yet to be reported. We report herein OAT of a mononuclear non-heme Mn(III)-aqua complex, [(dpaq)MnIII(OH2)]2+ (1, dpaq = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-yl-acetamidate), to PhSMe and Ph3P derivatives for the first time; it is noted that no OAT occurs from the corresponding Mn(III)-hydroxo complex, [(dpaq)MnIII(OH)]+ (2), to the substrates. Mechanistic studies reveal that OAT reaction of 1 occurs via electron transfer from 4-methoxythioanisole to 1 to produce the 4-methoxythioanisole radical cation and [(dpaq)MnII(OH2)]+, followed by nucleophilic attack of H2O in [(dpaq)MnII(OH2)]+ to the 4-methoxythioanisole radical cation to produce an OH adduct radical, 2,4-(MeO)2C6H3S•(OH)Me, which disproportionates or undergoes electron transfer to 1 to yield methyl 4-methoxyphenyl sulfoxide. Formation of the thioanisole radical cation derivatives is detected by the stopped-flow transient absorption measurements in OAT from 1 to 2,4-dimethoxythioanisole and 3,4-dimethoxythioanisole, being compared with that in the photoinduced electron transfer oxidation of PhSMe derivatives, which are detected by laser-induced transient absorption measurements. Similarly, OAT from 1 to Ph3P occurs via electron transfer from Ph3P to 1, and the proton effect on the reaction rate has been discussed. The rate constants of electron transfer from electron donors, including PhSMe and Ph3P derivatives, to 1 are fitted well by the electron transfer driving force dependence of the rate constants predicted by the Marcus theory of outer-sphere electron transfer.
Collapse
Affiliation(s)
- Namita Sharma
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Huai-Bo Zou
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Department of Chemistry and Bioengineering, Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun 336000, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
38
|
Devi T, Lee YM, Fukuzumi S, Nam W. Acid-promoted hydride transfer from an NADH analogue to a Cr(iii)-superoxo complex via a proton-coupled hydrogen atom transfer. Dalton Trans 2021; 50:675-680. [PMID: 33331375 DOI: 10.1039/d0dt04004e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sequential transfer of an electron, a proton and an electron in a hydride transfer from dihydronicotinamide adenine dinucleotide (NADH) and its analogues has never been separated well. In addition, the effect of acids on hydride transfer from an NADH analogue to a metal-superoxo species has yet to be reported. We report herein the first example of an acid-promoted hydride transfer from an NADH analogue, 10-methyl-9,10-dihydroacridine (AcrH2), to a Cr(iii)-superoxo complex, [(TMC)CrIII(O2)]2+, in the presence of HOTf in MeCN at 233 K. The acid-promoted hydride transfer from AcrH2 to [(TMC)CrIII(O2)]2+ occurs via a proton-coupled hydrogen atom transfer from AcrH2 to [(TMC)CrIII(O2)]2+ to produce a radical cation (AcrH2˙+) with an inverse deuterium isotope effect (KIE) of 0.93(5). AcrH2˙+ decayed via a proton transfer from AcrH2˙+ to AcrH2 with a KIE of 2.0(1), followed by the reaction of 10-methylacridinyl radical (AcrH˙) with [(TMC)CrIII(H2O2)]3+ to produce a 10-methylacridinium ion (AcrH+) and [(TMC)CrIII]3+. This work provides valuable insights into the mechanism of hydride transfer of NADH analogues by metal-superoxo intermediates, such as the switchover of the reaction mechanism from a one-step to a separated multi-step pathway in the presence of an acid.
Collapse
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea. and Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea. and Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
39
|
Coin G, Dubourdeaux P, Bayle PA, Lebrun C, Maldivi P, Latour JM. Imidazoline synthesis: mechanistic investigations show that Fe catalysts promote a new multicomponent redox reaction. Dalton Trans 2021; 50:6512-6519. [PMID: 33908990 DOI: 10.1039/d1dt00919b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multicomponent reactions are attracting strong interest because they contribute to develop more efficient synthetic chemistry. Understanding their mechanism at the molecular level is thus an important issue to optimize their operation. The development of integrated experimental and theoretical approaches has very recently emerged as most powerful to achieve this goal. In the wake of our recent investigation of amidine synthesis, we used this approach to explore how an Fe-catalyzed aziridination can lead to an imidazoline when run in acetonitrile. We report that the synthesis of imidazoline by combination of styrene, acetonitrile, an iron catalyst and a nitrene precursor occurs along a new kind of multicomponent reaction. The formation of imidazoline results from acetonitrile interception of a benzyl radical styrene aziridination intermediate within Fe coordination sphere, as opposed to classical nucleophilic opening of the aziridine by a Lewis acid. Comparison of this mechanism to that of amidine formation allows a rationalization of the modes of intermediates trapping by acetonitrile according to the oxidation state Fe active species. The molecular understanding of these processes may help to design other multicomponent reactions.
Collapse
Affiliation(s)
- Guillaume Coin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - LCBM/pmb, F-38000 Grenoble, France. and Univ. Grenoble Alpes, CNRS, UMR 5250, DCM, F-38000 Grenoble, France
| | | | | | - Colette Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - SyMMES, F-38000 Grenoble, France.
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - SyMMES, F-38000 Grenoble, France.
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG - LCBM/pmb, F-38000 Grenoble, France.
| |
Collapse
|
40
|
Chen G, Ma L, Lo PK, Mak CK, Lau KC, Lau TC. Cooperative activating effects of metal ion and Brønsted acid on a metal oxo species. Chem Sci 2020; 12:632-638. [PMID: 34163794 PMCID: PMC8179018 DOI: 10.1039/d0sc04069j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Metal oxo (M
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O) complexes are common oxidants in chemical and biological systems. The use of Lewis acids to activate metal oxo species has attracted great interest in recent years, especially after the discovery of the CaMn4O5 cluster in the oxygen-evolving centre of photosystem II. Strong Lewis acids such as Sc3+ and BF3, as well as strong Brønsted acids such as H2SO4 and CF3SO3H, are commonly used to activate metal oxo species. In this work, we demonstrate that relatively weak Lewis acids such as Ca2+ and other group 2 metal ions, as well as weak Brønsted acids such as CH3CO2H, can readily activate the stable RuO4− complex towards the oxidation of alkanes. Notably, the use of Ca2+ and CH3CO2H together produces a remarkable cooperative effect on RuO4−, resulting in a much more efficient oxidant. DFT calculations show that Ca2+ and CH3CO2H can bind to two oxo ligands to form a chelate ring. This results in substantial lowering of the barrier for hydrogen atom abstraction from cyclohexane. Combining a weak Lewis acid and weak Brønsted acid produces strong cooperative effects for activating metal oxo species towards alkane oxidation.![]()
Collapse
Affiliation(s)
- Gui Chen
- Dongguan Cleaner Production Technology Center, School of Environment and Civil Engineering, Dongguan University of Technology Dongguan Guangdong 523808 China
| | - Li Ma
- Department of Chemistry, Jinan University Guangzhou 510632 China
| | - Po-Kam Lo
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Tong Hong Kong China
| | - Chi-Keung Mak
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Tong Hong Kong China
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Tong Hong Kong China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Tong Hong Kong China
| |
Collapse
|
41
|
Mayfield JR, Grotemeyer EN, Jackson TA. Concerted proton-electron transfer reactions of manganese-hydroxo and manganese-oxo complexes. Chem Commun (Camb) 2020; 56:9238-9255. [PMID: 32578605 PMCID: PMC7429365 DOI: 10.1039/d0cc01201g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The enzymes manganese superoxide dismutase and manganese lipoxygenase use MnIII-hydroxo centres to mediate proton-coupled electron transfer (PCET) reactions with substrate. As manganese is earth-abundant and inexpensive, manganese catalysts are of interest for synthetic applications. Recent years have seen exciting reports of enantioselective C-H bond oxidation by Mn catalysts supported by aminopyridyl ligands. Such catalysts offer economic and environmentally-friendly alternatives to conventional reagents and catalysts. Mechanistic studies of synthetic catalysts highlight the role of Mn-oxo motifs in attacking substrate C-H bonds, presumably by a concerted proton-electron transfer (CPET) step. (CPET is a sub-class of PCET, where the proton and electron are transferred in the same step.) Knowledge of geometric and electronic influences for CPET reactions of Mn-hydroxo and Mn-oxo adducts enhances our understanding of biological and synthetic manganese centers and informs the design of new catalysts. In this Feature article, we describe kinetic, spectroscopic, and computational studies of MnIII-hydroxo and MnIV-oxo complexes that provide insight into the basis for the CPET reactivity of these species. Systematic perturbations of the ligand environment around MnIII-hydroxo and MnIV-oxo motifs permit elucidation of structure-activity relationships. For MnIII-hydroxo centers, electron-deficient ligands enhance oxidative reactivity. However, ligand perturbations have competing consequences, as changes in the MnIII/II potential, which represents the electron-transfer component for CPET, is offset by compensating changes in the pKa of the MnII-aqua product, which represents the proton-transfer component for CPET. For MnIV-oxo systems, a multi-state reactivity model inspired the development of significantly more reactive complexes. Weakened equatorial donation to the MnIV-oxo unit results in large rate enhancements for C-H bond oxidation and oxygen-atom transfer reactions. These results demonstrate that the local coordination environment can be rationally changed to enhance reactivity of MnIII-hydroxo and MnIV-oxo adducts.
Collapse
Affiliation(s)
- Jaycee R Mayfield
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
42
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
43
|
Lu X, Lee YM, Seo MS, Nam W. Proton-promoted disproportionation of iron(v)-imido TAML to iron(v)-imido TAML cation radical and iron(iv) TAML. Chem Commun (Camb) 2020; 56:11207-11210. [DOI: 10.1039/d0cc05145d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An iron(v)-imido TAML complex is disproportionated to give an iron(v)-imido TAML cation radical and an iron(iv) TAML upon addition of acids.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| |
Collapse
|