1
|
Yang X, Fang D, Chen L, Liu Y, Wang S, Xu L, Zhang A, Su J, Xu C, Xiao C. Computation-Aided Development of Next-Generation Extractants for Trivalent Actinide and Lanthanide Separation. JACS AU 2024; 4:4744-4756. [PMID: 39735915 PMCID: PMC11672149 DOI: 10.1021/jacsau.4c00684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 12/31/2024]
Abstract
The chemical similarities between trivalent actinides [An(III)] and lanthanides [Ln(III)] present a significant challenge in differentiating and separating them, which is a key step toward closing the nuclear fuel cycle. However, the existing separation approaches commonly suffer from demerits such as inadequate separation factors, limited stripping efficiency, and undesired coextraction. In this study, a novel unsymmetrical phenanthroline-derived amide-triazine (Et-Tol-CyMe4-ATPhen) extractant was first designed and then screened with theoretical computation. Meanwhile, they were successfully synthesized by using a de novo construction method. As expected, Et-Tol-CyMe4-ATPhen exhibited a favorable extraction ability for Am(III) and minimal extraction for Ln(III), thereby achieving an extremely selective An(III)/Ln(III) separation with a separation factor of over 280. Furthermore, Am(III) could be easily and effectively stripped from the loaded phases using dilute nitric acid. The underlying coordination mechanisms were thoroughly elucidated by using 1H NMR, ESI-MS, UV-vis absorption spectrometry, photoluminescence spectrometry, and single-crystal X-ray diffraction. This work holds promise for addressing the current challenges in An(III)/Ln(III) separation and represents a pioneering endeavor in developing next-generation extractants from first-principles calculation.
Collapse
Affiliation(s)
- Xiaofan Yang
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Dong Fang
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Linjia Chen
- College
of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yaoyang Liu
- Institute
of Nuclear and New Energy Technology, Tsinghua
University, Beijing 100084, China
| | - Shihui Wang
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lei Xu
- Institute
of Nuclear-Agricultural Science, Key Laboratory of Nuclear Agricultural
Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Anyun Zhang
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jing Su
- College
of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chao Xu
- Institute
of Nuclear and New Energy Technology, Tsinghua
University, Beijing 100084, China
| | - Chengliang Xiao
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
2
|
Sulich A, Grodkowski J, Bobrowski K. Radiolytic degradation of selective actinide extractants from the bis-1,2,4-triazine family in cyclohexanone solutions. Phys Chem Chem Phys 2024; 26:28705-28714. [PMID: 39530134 DOI: 10.1039/d4cp02623c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Early stages of radiolysis of solutions with 2,6-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo-[1,2,4]triazin-3-yl)pyridine (CyMe4-BTP) and 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo-[1,2,4-]triazin-3-yl)-[2,2']bipyridine (CyMe4-BTBP) ligands in cyclohexanone, proposed as a solvent for selective actinide extraction, were studied by means of the pulse radiolysis technique with spectrophotometric detection. Transient UV-vis spectra of excited triplet states of ligands, formed by energy transfer from cyclohexanone excited triplet states to ligands, were recorded for the first time. The influence of typical extraction conditions (the presence of diluted acid and O2 from air) on the mechanisms of reactions in the system studied was assessed. It was shown that an addition of benzophenone in high concentrations to the system together with its continuous saturation by O2 could partially protect ligands from radiation damage, caused by the high-energy radiation emitted by the spent nuclear fuel.
Collapse
Affiliation(s)
- Adrian Sulich
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL 02 668, Warsaw, Poland.
- Institute of Nuclear Chemistry and Technology, Dorodna 16, Warsaw 03-195, Poland
| | - Jan Grodkowski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, Warsaw 03-195, Poland
| | - Krzysztof Bobrowski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, Warsaw 03-195, Poland
| |
Collapse
|
3
|
Yang X, Xu L, Fang D, Zhang A, Xiao C. Progress in phenanthroline-derived extractants for trivalent actinides and lanthanides separation: where to next? Chem Commun (Camb) 2024; 60:11415-11433. [PMID: 39235311 DOI: 10.1039/d4cc03810j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Spent nuclear fuel (SNF) released from reactors possesses significant radioactivity, heat release properties, and high-value radioactive nuclides. Therefore, using chemical methods for reprocessing can enhance economic efficiency and reduce the potential environmental risks of nuclear energy. Due to the presence of relatively diffuse f-electrons, the chemical properties of trivalent lanthanides (Ln(III)) and actinides (An(III)) in SNF solutions are quite similar. Separation methods have several limitations, including poor separation efficiency and the need for multiple stripping agents. The use of novel multi-dental phenanthroline-derived extractants with nitrogen donor atoms to effectively separate An(III) over Ln(III) has been widely accepted. This review first introduces the development history of phenanthroline-derived extractants for extraction and complexation with An(III) over Ln(III). Then, based on structural differences, these extractants are classified into four categories: nitrogen-coordinated, N,O-hybrid coordinated, highly preorganized structure, and unsymmetric structure. Each category's design principles, extraction, and separation performance as well as their advantages and disadvantages are discussed. Finally, we have summarized and compared the unique characteristics of the existing extractants and provided an outlook. This work may offer a reliable reference for the precise identification and selective separation between An(III) and Ln(III), and point the way for future development and exploration.
Collapse
Affiliation(s)
- Xiaofan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dong Fang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Anyun Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
4
|
Gray NAG, Emslie DJH. Thorium(IV) and Uranium(IV) Thioether and Selenoether Complexes: Synthesis and An-ER 2 (E = S, Se) Bonding Comparison. Inorg Chem 2024; 63:18884-18891. [PMID: 39324595 DOI: 10.1021/acs.inorgchem.4c03074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Reactions of the rigid thioether- and selenoether-containing ligand salts [{Li(AE2Ph2)}2] (E = S or Se; AE2Ph2 = 4,5-bis(phenylchalcogenido)-2,7,9,9-tetramethylacridanide) with ThCl4(dme)2 or UCl4 (for E = Se) afforded the actinide chalcogenoether complexes [(AE2Ph2)2ThCl2] (E = S (1), Se (2)), and [(ASe2Ph2)2UCl2] (3). X-ray crystal structures of 1-3 revealed tetravalent actinide cations complexed to two κ3-coordinated AE2Ph2 ligands, with Th-ER2 and U-ER2 distances below the sum of the covalent radii. Complexes 1-3 provide extremely rare examples of thorium-thioether, thorium-selenoether, and uranium-selenoether bonds, and 1 and 2 contain the shortest known Th-SR2 and Th-SeR2 distances. DFT and QTAIM calculations confirm the presence of significant An(IV)-ER2 interactions in 1-3 and provide insight into the extent of covalency in the An-ER2 bonds.
Collapse
Affiliation(s)
- Novan A G Gray
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - David J H Emslie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
5
|
Zgrabik J, Lussier DJ, Bhowmick R, Nguyen N, Zacher PA, Elkin T, Gaunt AJ, Goff GS, Mason HE, Murillo J, Scott BL, Vlaisavljevich B, Daly SR. Structural and Theoretical Assessment of Covalency in a Pu(III) Borohydride Complex. J Am Chem Soc 2024; 146:25943-25948. [PMID: 39283691 PMCID: PMC11440501 DOI: 10.1021/jacs.4c09888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Despite the discovery of actinide borohydride complexes over 80 years ago, no plutonium borohydride complexes have been structurally validated using single-crystal X-ray diffraction (XRD). Here we describe Pu2(H3BPtBu2BH3)6, the first example of a Pu(III) borohydride complex authenticated by XRD and NMR spectroscopy. Theoretical calculations (DFT, EDA, and QTAIM) and experimental comparisons of metal-boron distances suggest that metal-borohydride covalency in M2(H3BPtBu2BH3)6 complexes generally decreases in the order M = U(III) > Pu(III) > Ln(III).
Collapse
Affiliation(s)
- Joshua
C. Zgrabik
- Department
of Chemistry, University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Daniel J. Lussier
- Los
Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Rina Bhowmick
- University
of South Dakota, 414
E. Clark St, Vermillion South
Dakota 57069, United States
| | - Ngan Nguyen
- University
of South Dakota, 414
E. Clark St, Vermillion South
Dakota 57069, United States
| | - Peter A. Zacher
- Department
of Chemistry, University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Tatyana Elkin
- Los
Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Andrew J. Gaunt
- Los
Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - George S. Goff
- Los
Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Harris E. Mason
- Los
Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Jesse Murillo
- Los
Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Brian L. Scott
- Los
Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Bess Vlaisavljevich
- Department
of Chemistry, University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
- University
of South Dakota, 414
E. Clark St, Vermillion South
Dakota 57069, United States
| | - Scott R. Daly
- Department
of Chemistry, University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| |
Collapse
|
6
|
Shimojo K, Fujiwara I, Saito T, Oshima T. Comprehensive extraction study using N,N-dioctylthiodiglycolamic acid: effect of S donor on metal extraction. ANAL SCI 2024; 40:1429-1436. [PMID: 38753116 DOI: 10.1007/s44211-024-00577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 07/26/2024]
Abstract
Extraction ability of N,N-dioctylthiodiglycolamic acid (T-DODGAA), a soft-base sulfur donor ligand with an amide group and a carboxylic acid connected by a thioether chain, for 56 metal ions have been comprehensively investigated and compared with that of N,N-dioctyldiglycolamic acid (DODGAA) with an etheric oxygen atom, a hard-base donor. The acid dissociation constant (pKa) of the thiodiglycolamic acid framework was determined to be 3.71 ± 0.06 in water (0.1 M LiCl, 25 °C) by potentiometric titration, indicating that T-DODGAA is a slightly weaker acid than DODGAA (pKa = 3.54 ± 0.03). T-DODGAA can quantitatively extract various metal ions from the 56 metal ions into the organic phase (isooctane) through a proton-exchange reaction. T-DODGAA provided higher extraction performance than DODGAA for Hf(IV), Cr(III), Fe(III), Ni(II), Cu(II), Pd(II), Ag(I), Au(III), Hg(II), Al(III), and Ga(III), especially for soft metal ions. Furthermore, to demonstrate the practical feasibility of T-DODGAA for hydrometallurgy and metal recycling, we performed selective separation tests of rare metal ions such as Sc(III), Ni(II), Co(II), Pd(II), Au(III), In(III), and Ga(III) in metal-mixed extraction systems.
Collapse
Affiliation(s)
- Kojiro Shimojo
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Iori Fujiwara
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192, Japan
| | - Takumi Saito
- Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata Shirane, Tokai-mura, Ibaraki, 319-1188, Japan
| | - Tatsuya Oshima
- Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192, Japan
| |
Collapse
|
7
|
Zgrabik J, Bhowmick R, Eckstrom FD, Harrison AR, Fetrow TV, Blake AV, Vlaisavljevich B, Daly SR. The Influence of Phosphorus Substituents on the Structures and Solution Speciation of Trivalent Uranium and Lanthanide Phosphinodiboranates. Inorg Chem 2024; 63:9451-9463. [PMID: 38011639 PMCID: PMC11134491 DOI: 10.1021/acs.inorgchem.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
Here, we report the mechanochemical synthesis and characterization of homoleptic uranium and lanthanide phosphinodiboranates with isopropyl and ethyl substituents attached to phosphorus. M(H3BPiPr2BH3)3 complexes with M = U, Nd, Sm, Tb, and Er were prepared by ball milling UI3(THF)4, SmBr3, or MI3 with three equivalents of K(H3BPiPr2BH3). M(H3BPEt2BH3)3 with M = U and Nd were prepared similarly using K(H3BPEt2BH3), and the complexes were purified by extraction and crystallization from Et2O or CH2Cl2. Single-crystal XRD studies revealed that all five M(H3BPiPr2BH3)3 crystallize as dimers, despite the significant differences in metal radii across the series. In contrast, Nd(H3BPEt2BH3)3 with smaller ethyl substituents crystallized as a coordination polymer. Crystals of U(H3BPEt2BH3)3 were not suitable for structural analysis, but crystals of U(H3BPMe2BH3)3 isolated in low yield by solution methods were isostructural with Nd(H3BPEt2BH3)3. 1H and 11B NMR studies in C6D6 revealed that all of the complexes form mixtures of monomer and oligomers when dissolved, and the extent of oligomerization was highly dependent on metal radius and phosphorus substituent size. A comprehensive analysis of all structurally characterized uranium and lanthanide phosphinodiboranate complexes reported to date, including those with larger Ph and tBu substituents, revealed that the degree of oligomerization in solution can be correlated to differences in B-P-B angles obtained from single-crystal XRD studies. Density functional theory calculations, which included structural optimizations in combination with conformational searches using tight binding methods, replicated the general experimental trends and revealed free energy differences that account for the different solution and solid-state structures. Collectively, these results reveal how steric changes to phosphorus substituents significantly removed from metal coordination sites can have a significant influence on solution speciation, deoligomerization energies, and the solid-state structure of homoleptic phosphinodiboranate complexes containing trivalent f-metals.
Collapse
Affiliation(s)
- Joshua
C. Zgrabik
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Rina Bhowmick
- Department
of Chemistry, The University of South Dakota, 414 E Clark St., Vermillion, South Dakota 57069, United States
| | - Francesca D. Eckstrom
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - A. Rayford Harrison
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Taylor V. Fetrow
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Anastasia V. Blake
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Bess Vlaisavljevich
- Department
of Chemistry, The University of South Dakota, 414 E Clark St., Vermillion, South Dakota 57069, United States
| | - Scott R. Daly
- Department
of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States
| |
Collapse
|
8
|
Su LL, Wu QY, Wang CZ, Lan JH, Shi WQ. Heterocyclic Ligands with Different N/O Donor Modes for Am(III)/Eu(III) Separation: A Theoretical Perspective. Inorg Chem 2024; 63:9478-9486. [PMID: 38055977 DOI: 10.1021/acs.inorgchem.3c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Excellent "CHON" compatible ligands based on a heterocyclic skeleton for the separation of trivalent actinides [An(III)] from lanthanides [Ln(III)] have been widely explored, the aim being spent nuclear fuel reprocessing. The combination mode of a soft/hard (N/O) donor upon the coordination chemistry of An(III) and Ln(III) should play a vital role with respect to the performance of ligands. As such, in this work, two typical experimentally available phenanthroline-derived tetradentate ligands, CyMe4-BTPhen (L1) and Et-Tol-DAPhen (L4), and two theoretically designed asymmetric tetradentate heterocyclic ligands, L2 and L3, with various N/O donors were investigated using scalar relativistic density functional theory. We have evaluated the electronic structures of L1-L4 and their coordination modes, bonding properties, and extraction reactions with Am(III) and Eu(III). We found that the Am/Eu-N interactions play a more important role in the orbital interactions between the ligand and Am(III)/Eu(III) ions. Compared with those of L1, the coordinated O atoms of L2 and L4 weaken the metal-N bonds. The Am(III)/Eu(III) selectivity follows the order L1 > L2 > L4 based on the change in Gibbs free energy, reflecting the fact that the Am(III)/Eu(III) selectivity of the ligand is affected by the number of coordinated N atoms. In addition, L3 displays the strongest binding ability for Am(III)/Eu(III) ions and the smallest Am(III)/Eu(III) selectivity among the four ligands, due to its structural preorganization. This work clarifies the influence of the number of coordinated N and O atoms of ligands on Am(III)/Eu(III) selectivity, which provides valuable fundamental information for the design of efficient ligands with N and O donors for An(III)/Ln(III) separation.
Collapse
Affiliation(s)
- Ling-Ling Su
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Chen YM, Wang CZ, Zhang L, Wu QY, Lan JH, Chai ZF, Shi WQ. Theoretical insights into selective extraction of Am(III) from Cm(III) and Eu(III) with asymmetric N-heterocyclic ligands. Dalton Trans 2024; 53:7406-7413. [PMID: 38587851 DOI: 10.1039/d3dt03965j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Separation of lanthanide (Ln) and minor actinide (MA) elements and mutual separation between minor actinide elements (e.g. Am(III) and Cm(III)) represent a crucial undertaking. However, separating these elements poses a significant challenge owing to their highly similar physicochemical properties. Asymmetric N-heterocyclic ligands such as N-ethyl-6-(1H-pyrazol-3-yl)-N-(p-tolyl)picolinamide (Et-p-Tol-A-PzPy) and N-ethyl-N-(p-tolyl)-1,10-phenanthroline-2-carboxamide (ETPhenAm) have recently received considerable attention in the separation of MAs over Ln from acid solutions. By changing the central skeleton structures of these ligands and introducing substituents with different properties on the side chains, their complexation behavior with Am(III), Cm(III), and Eu(III) may be affected. In this work, we explore four different asymmetric N-containing heterocyclic ligands, namely Et-p-Tol-A-PzPy (L1), N-ethyl-6'-(1H-pyrazol-3-yl)-N-(p-tolyl)-[2,2'-bipyridine]-6-carboxamide (L2), N-ethyl-9-(1H-pyrazol-3-yl)-N-(p-tolyl)-1,10-phenanthroline-2-carboxamide (L3), and ETPhenAm (L4) using density functional theory (DFT). The calculated results demonstrate the potential of ligands L1-L4 for the extraction and separation of Am(III), Cm(III), and Eu(III). Ligand analysis shows that ligand L3 binds more easily to the central metal atom, in line with the stronger extraction capacity of L3. In spite of the higher covalence between the side chain and the central metal atom for complexes with L1-L3, the main chain seems to control the stability of the extraction complexes. The preorganized 1,10-phenanthroline backbone also further enhances the extraction performance of L3 and L4. The difference in coordination ability between the side chain donors of these ligands and metal ions may affect their separation efficiency. This work presents theoretical insights into synthesizing novel ligands for separating trivalent actinides by adjusting N-heterocyclic ligands.
Collapse
Affiliation(s)
- Yan-Mei Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Zhang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Fang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Kongasseri A, Madhesan T, Krishna Kumar S, Pedugu Sivaraman S, Mitra S, Kancharlapalli Chinaraga P, Rao CVSB, Nagarajan S, Deivasigamani P, Mohan AM. Amide-decorated reusable C 18 silica-packed columns for the rapid, efficient and sequential separation of lanthanoids using reversed phase-high performance liquid chromatography. J Chromatogr A 2024; 1713:464509. [PMID: 37980811 DOI: 10.1016/j.chroma.2023.464509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The current work focuses on the sequential separation of trivalent lanthanides (except Pm3+) using modified C18 silica-packed supports through the reversed-phase high-performance liquid chromatography (RP-HPLC) technique. In the current research, four indigenously synthesized amphiphilic aromatic triamide derivatives, namely N1, N1, N3, N3, N5, N5-hexa(alkyl) benzene-1,3,5-tri carboxamide (alkyl = butyl, hexyl, octyl, and decyl), were employed as column modifiers. The results show that the separation of Ln3+ can be achieved systematically (< 12 min) by tuning the modifiers' functional group and hydrophobic chain and fine-tuning the column modification procedure and separation parameters. The chromatographic studies revealed that the use of 0.168 mmol of N1, N1, N3, N3,N5, N5-hexa(hexyl)benzene-1,3,5-tricarboxamide (HHBTA) coated column and 0.419 mmol of N1, N1, N3, N3, N5, N5-hexa(octyl) benzene-1,3,5-tricarboxamide (HOBTA) modified columns offered excellent separation for the lanthanoids, using 0.1 M α-hydroxyisobutyric acid (HIBA), as mobile phase. The separated lanthanoids were quantified by post-column derivatization reaction (after the separation process) using Arsenazo (III) as the post-column reagent by integrating with a UV-Visible detector fixed at 655 nm (λmax). A systematic study on the influence of various analytical features, such as the effect of the modifier's chain length and its concentration, mobile phase composition and pH, was performed and optimized for achieving the best separation protocols.
Collapse
Affiliation(s)
- Aswanidevi Kongasseri
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Thirumalai Madhesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sangeetha Krishna Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sushmitha Pedugu Sivaraman
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Suchashrita Mitra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | | | - C V S Brahmmananda Rao
- Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute (HBNI), Kalpakkam, Tamil Nadu 603102, India
| | - Sivaraman Nagarajan
- Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute (HBNI), Kalpakkam, Tamil Nadu 603102, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
11
|
Du J, Cobb PJ, Ding J, Mills DP, Liddle ST. f-Element heavy pnictogen chemistry. Chem Sci 2023; 15:13-45. [PMID: 38131077 PMCID: PMC10732230 DOI: 10.1039/d3sc05056d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The coordination and organometallic chemistry of the f-elements, that is group 3, lanthanide, and actinide ions, supported by nitrogen ligands, e.g. amides, imides, and nitrides, has become well developed over many decades. In contrast, the corresponding f-element chemisty with the heavier pnictogen analogues phosphorus, arsenic, antimony, and bismuth has remained significantly underdeveloped, due largely to a lack of suitable synthetic methodologies and also the inherent hard(f-element)-soft(heavier pnictogen) acid-base mismatch, but has begun to flourish in recent years. Here, we review complexes containing chemical bonds between the f-elements and heavy pnictogens from phosphorus to bismuth that spans five decades of endeavour. We focus on complexes whose identity has been unambiguously established by structural authentication by single-crystal X-ray diffraction with respect to their synthesis, characterisation, bonding, and reactivity, in order to provide a representative overview of this burgeoning area. By highlighting that much has been achieved but that there is still much to do this review aims to inspire, focus and guide future efforts in this area.
Collapse
Affiliation(s)
- Jingzhen Du
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Philip J Cobb
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Junru Ding
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - David P Mills
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
12
|
Bishimbayeva GK, Gusarova NK, Nalibayeva AM, Verkhoturova SI, Bold A, Chernysheva NA, Zhangabayeva AK, Arbuzova SN, Abdikalykov YN, Zhumabayeva DS. Synthesis and Properties of Sulfur-Containing Organophosphorus Extractants Based on Red Phosphorus, Alkyl Bromides, and Elemental Sulfur. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093394. [PMID: 37176286 PMCID: PMC10180263 DOI: 10.3390/ma16093394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
In order to obtain sulfur-containing organophosphorus compounds that are promising as extractants of heavy metals, the interaction of elemental phosphorus and sulfur with alkyl bromides catalyzed using strong bases was studied. According to the task, the reaction of non-toxic and non-flammable red phosphorus with alkyl bromides under conditions of phase transfer catalysts (PTC), followed by the introduction of elemental sulfur into the reaction medium, were studied. It is shown that alkyl bromides interact with red phosphorus when heated (95-105 °C, 5-8 h) under conditions of phase transfer catalysts (PTC) in a two-phase system: a 60% aqueous solution of KOH-toluene-benzyltriethylammonium chloride (BTEAC) forming a mixture of organophosphorus compounds along with alkylphosphines (57-60%), are the main reaction products; alkylphosphine oxides are also formed (40-43%). The introduction of elemental sulfur (solution in toluene) at the final stage of the process into the reaction mass cooled to 40-60 °C leads to the expected alkylphosphine sulfides, which are the result of the interaction of alkylphosphines with sulfur. The formation of complex mixtures of products prevents the release of target alkylphosphine sulfides in individual form. However, the synthesized mixture of alkylphosphine sulfides and alkylphosphine oxides without separation into individual components is promising for studying its extraction properties in relation to heavy metals. Testing of the extraction properties of synthesized mixtures of alkylphosphine sulfides and alkylphosphine oxides in relation to heavy metals (Ni, Co, Zn, Pb) and noble metals (Ag) showed that the resulting mixtures of tertiary phosphine oxides and phosphine sulfides are highly effective extractants. The degree of extraction in relation to Ni, Co, Zn, and Pb varies from 99.90 to 99.99%, and for Ag from 99.56 to 99.59%.
Collapse
Affiliation(s)
- Gaukhar K Bishimbayeva
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| | - Nina K Gusarova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences, St. Favorskogo, 1, 664033 Irkutsk, Russia
| | - Arailym M Nalibayeva
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| | - Svetlana I Verkhoturova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences, St. Favorskogo, 1, 664033 Irkutsk, Russia
| | - Amangul Bold
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| | - Natalya A Chernysheva
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences, St. Favorskogo, 1, 664033 Irkutsk, Russia
| | - Assem K Zhangabayeva
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| | - Svetlana N Arbuzova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences, St. Favorskogo, 1, 664033 Irkutsk, Russia
| | - Yerlan N Abdikalykov
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| | - Dinara S Zhumabayeva
- D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Kunayev, 142, Almaty 050010, Kazakhstan
| |
Collapse
|
13
|
Relativistic effects on the chemical bonding properties of the heavier elements and their compounds. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Dong X, Yan Q, Wang Z, Feng X, Chen J, Xu C. Group Separation of Hexavalent Actinides from Lanthanides through Selective Extraction by Sterically Hindered 2-Ethylhexyl Phosphonic Acid Mono-2-ethylhexyl Ester. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xue Dong
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Qiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaogui Feng
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
15
|
Fetrow TV, Zgrabik J, Bhowmick R, Eckstrom FD, Crull G, Vlaisavljevich B, Daly SR. Quantifying the Influence of Covalent Metal-Ligand Bonding on Differing Reactivity of Trivalent Uranium and Lanthanide Complexes. Angew Chem Int Ed Engl 2022; 61:e202211145. [PMID: 36097137 PMCID: PMC9828012 DOI: 10.1002/anie.202211145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/12/2023]
Abstract
Qualitative differences in the reactivity of trivalent lanthanide and actinide complexes have long been attributed to differences in covalent metal-ligand bonding, but there are few examples where thermodynamic aspects of this relationship have been quantified, especially with U3+ and in the absence of competing variables. Here we report a series of dimeric phosphinodiboranate complexes with trivalent f-metals that show how shorter-than-expected U-B distances indicative of increased covalency give rise to measurable differences in solution deoligomerization reactivity when compared to isostructural complexes with similarly sized lanthanides. These results, which are in excellent agreement with supporting DFT and QTAIM calculations, afford rare experimental evidence concerning the measured effect of variations in metal-ligand covalency on the reactivity of trivalent uranium and lanthanide complexes.
Collapse
Affiliation(s)
- Taylor V. Fetrow
- Department of ChemistryThe University of IowaE331 Chemistry BuildingIowa CityIA 52242USA
| | - Joshua Zgrabik
- Department of ChemistryThe University of IowaE331 Chemistry BuildingIowa CityIA 52242USA
| | - Rina Bhowmick
- Department of ChemistryThe University of South Dakota414 East Clark StreetVermillionSouth Dakota57069USA
| | - Francesca D. Eckstrom
- Department of ChemistryThe University of IowaE331 Chemistry BuildingIowa CityIA 52242USA
| | - George Crull
- Department of ChemistryThe University of IowaE331 Chemistry BuildingIowa CityIA 52242USA
| | - Bess Vlaisavljevich
- Department of ChemistryThe University of South Dakota414 East Clark StreetVermillionSouth Dakota57069USA
| | - Scott R. Daly
- Department of ChemistryThe University of IowaE331 Chemistry BuildingIowa CityIA 52242USA
| |
Collapse
|
16
|
Yan Q, Cai Y, Wang Z, Dong X, Yuan L, Feng W, Chen J, Xu C. Separation of americium from lanthanide by a Task-Specific ionic liquid decorated with 2,6-Bis-Triazolyl-Pyridine moiety. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Mattocks JA, Cotruvo JA, Deblonde GJP. Engineering lanmodulin's selectivity for actinides over lanthanides by controlling solvent coordination and second-sphere interactions. Chem Sci 2022; 13:6054-6066. [PMID: 35685815 PMCID: PMC9132084 DOI: 10.1039/d2sc01261h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Developing chelators that combine high affinity and selectivity for lanthanides and/or actinides is paramount for numerous industries, including rare earths mining, nuclear waste management, and cancer medicine. In particular, achieving selectivity between actinides and lanthanides is notoriously difficult. The protein lanmodulin (LanM) is one of Nature's most selective chelators for trivalent actinides and lanthanides. However, mechanistic understanding of LanM's affinity and selectivity for f-elements remains limited. In order to decipher, and possibly improve, the features of LanM's metal-binding sites that contribute to this actinide/lanthanide selectivity, we characterized five LanM variants, substituting the aspartate residue at the 9th position of each metal-binding site with asparagine, histidine, alanine, methionine, and selenomethionine. Spectroscopic measurements with lanthanides (Nd3+ and Eu3+) and actinides (243Am3+ and 248Cm3+) reveal that, contrary to the behavior of small chelator complexes, metal-coordinated water molecules enhance LanM's affinity for f-elements and pH-stability of its complexes. Furthermore, the results show that the native aspartate does not coordinate the metal directly but rather hydrogen bonds to coordinated solvent. By tuning this first-sphere/second-sphere interaction, the asparagine variant nearly doubles LanM's selectivity for actinides versus lanthanides. This study not only clarifies the essential role of coordinated solvent for LanM's physiological function and separation applications, but it also demonstrates that LanM's preference for actinides over lanthanides can be further improved. More broadly, it demonstrates how biomolecular scaffolds possess an expanded repertoire of tunable interactions compared to most small-molecule ligands - providing an avenue for high-performance LanM-based actinide/lanthanide separation methods and bio-engineered chelators optimized for specific medical isotopes.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore California 94550 USA
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory Livermore California 94550 USA
| |
Collapse
|
18
|
Shimojo K, Fujiwara I, Oshima T, Yokoyama K, Yaita T. Lanthanide extraction using a thiodiglycolamic acid extractant: effect of S-donor on lanthanide separation. ANAL SCI 2022; 38:1003-1006. [PMID: 35597878 DOI: 10.1007/s44211-022-00123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/27/2022] [Indexed: 11/01/2022]
Abstract
Liquid-liquid extraction of lanthanide (Ln) ions was investigated using N,N-dioctylthiodiglycolamic acid (DOTDGAA), which is a sulfur donor ligand with an amide group and a carboxyl group connected by a thioether chain. The extraction performance and selectivity of DOTDGAA for Ln ions were compared with those of N,N-dioctyldiglycolamic acid (DODGAA), which is also an oxygen donor ligand with a similar chemical structure, to assess the effect of the soft/hard donor atom on Ln separation. DOTDGAA quantitatively extracted all Ln ions while being selective toward the light and middle Ln ions, in contrast to the selectivity of DODGAA for heavier Ln ions. Slope analysis demonstrated that the Ln3+ transfer using DOTDGAA proceeded through a proton-exchange reaction, forming a 1:3 complex, Ln(DOTDGAA)3. The back-extraction of Ln ions from the extracting phase was successfully achieved under acidic conditions.
Collapse
Affiliation(s)
- Kojiro Shimojo
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Iori Fujiwara
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192, Japan
| | - Tatsuya Oshima
- Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192, Japan
| | - Keiichi Yokoyama
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Tsuyoshi Yaita
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| |
Collapse
|
19
|
Guo Q, Fang T, Liu Q, Zhu L, Yang S, Tian G. Identification of complexes of Nd(III) with dithiophosphinic acids verifying the difference in complexation between Ln(III) and An(III). Dalton Trans 2022; 51:7416-7419. [PMID: 35420104 DOI: 10.1039/d2dt00625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five complex species of Nd(III) with HA have been spectroscopically and compositionally identified as NdA3, NdA3(HA), NdA3(HA)H2O, NdA3(H2O)3, and Nd(H2O)23·3A (HA, bis(2,4,4-trimethylpentyl)dithiophosphinic acid) with the help of X-ray diffraction analysis on single crystals of Nd(H2O)9·H2O·3B (HB = bis(iso-butyl)dithiophosphinic acid.
Collapse
Affiliation(s)
- Qiling Guo
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China.
| | - Tuo Fang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China.
| | - Qian Liu
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China.
| | - Liyang Zhu
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China.
| | - Suliang Yang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China.
| | - Guoxin Tian
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China. .,Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Wang Z, Lu JB, Dong X, Yan Q, Feng X, Hu HS, Wang S, Chen J, Li J, Xu C. Ultra-Efficient Americium/Lanthanide Separation through Oxidation State Control. J Am Chem Soc 2022; 144:6383-6389. [PMID: 35353513 DOI: 10.1021/jacs.2c00594] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lanthanide/actinide separation is a worldwide challenge for atomic energy and nuclear waste treatment. Separation of americium (Am), a critical actinide element in the nuclear fuel cycle, from lanthanides (Ln) is highly desirable for minimizing the long-term radiotoxicity of nuclear waste, yet it is extremely challenging given the chemical similarity between trivalent Am(III) and Ln(III). Selective oxidation of Am(III) to a higher oxidation state (OS) could facilitate this separation, but so far, it is far from satisfactory for practical application as a result of the unstable nature of Am in a high OS. Herein, we find a novel strategy to generate stable pentavalent Am (Am(V)) through coordination of Am(III) with a diglycolamide ligand and oxidation with Bi(V) species in the presence of an organic solvent. This strategy leads to efficient stabilization of Am(V) and an extraordinarily high separation factor (>104) of Am from Ln through one single contact in solvent extraction, thereby opening a new avenue to study the high-OS chemistry of Am and fulfill the crucial task of Ln/Am separation in the nuclear fuel cycle. The synergistic coordination and oxidation process is found to occur in the organic solvent, and the mechanism has been well elucidated by quantum-theoretical modeling.
Collapse
Affiliation(s)
- Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jun-Bo Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Dong
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Qiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xiaogui Feng
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Zhang Y, Duan W, Wang Q, Zheng L, Wang J, Chen J, Sun T. Covalency between the uranyl ion and dithiophosphinate by sulfur K-edge X-ray absorption spectroscopy and density functional theory. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:11-20. [PMID: 34985418 PMCID: PMC8733989 DOI: 10.1107/s160057752101198x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The dithiophosphinic acids (HS2PR2) have been used for the selective separation of trivalent actinides (AnIII) from lanthanides (LnIII) over the past decades. The substituents on the dithiophosphinic acids dramatically impact the separation performance, but the mechanism is still open for debate. In this work, two dithiophosphinic acids with significantly different AnIII/LnIII separation performance, i.e. diphenyl dithiophosphinic acid (HS2PPh2) and bis(ortho-trifluoromethylphenyl) dithiophosphinic acid [HS2P(o-CF3C6H4)2], are employed to understand the substituent effect on the bonding covalency between the S2PR2- anions (R = Ph and o-CF3C6H4) and the uranyl ion by sulfur K-edge X-ray absorption spectroscopy (XAS) in combination with density functional theory calculations. The two UO2(S2PR2)(EtOH) complexes display similar XAS spectra, in which the first pre-edge feature with an intensity of 0.16 is entirely attributed to the transitions from S 1s orbitals to the unoccupied molecular orbitals due to the mixing between U 5f and S 3p orbitals. The Mulliken population analysis indicates that the amount of \% S 3p character in these orbitals is essentially identical for the UO2(S2PPh2)2(EtOH) and UO2[S2P(o-CF3C6H4)2]2(EtOH) complexes, which is lower than that in the U 6d-based orbitals. The essentially identical covalency in U-S bonds for the two UO2(S2PR2)2(EtOH) complexes are contradictory to the significantly different AnIII/LnIII separation performance of the two dithiophosphinic acids, thus the covalency seems to be unable to account for substituent effects in the AnIII/LnIII separation by the dithiophosphinic acids. The results in this work provide valuable insight into the understanding of the mechanism in the AnIII/LnIII separation by the dithiophosphinic acids.
Collapse
Affiliation(s)
- Yusheng Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Wuhua Duan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Qiang Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lei Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jianchen Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Taoxiang Sun
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
22
|
Yang X, Wang S, Xu L, Yan Q, Xu C, Matveev P, Lei L, Xiao C. New tetradentate N, O-hybrid phenanthroline-derived organophosphorus extractants for the separation and complexation of trivalent actinides and lanthanides. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01153k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparison of the extraction and separation properties between two novel phenanthroline-derived organophosphorus ligands, Et-Ph-BPPhen and Et-Ph-PIPhen.
Collapse
Affiliation(s)
- Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Zhejiang University, Hangzhou 310058, China
| | - Qiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Petr Matveev
- Radiochemistry Division, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Yang X, Tan LX, Sun JK. Encapsulation of Metal Clusters within Porous Organic Materials: From Synthesis to Catalysis Applications. Chem Asian J 2021; 17:e202101289. [PMID: 34964281 DOI: 10.1002/asia.202101289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/27/2021] [Indexed: 11/05/2022]
Abstract
Metal clusters (MCs) with dimensions between a single metal atom and nanoparticles of >2 nm usually possess distinct geometric and electronic structures, their outstanding performance in catalysis applications have underpinned a broad research interest. However, smaller-sized MCs are easily deactivated by migration coalescence during the catalysis process because of their high surface energy. Therefore, the search of an appropriate stabilizer for MCs is urgently demanded. In recent years, porous organic polymers (POPs) and organic molecular cages (OMCs), as emerging functional materials, have attracted significant attention. Benefiting from the spatial confinement, encapsulating MCs into these porous organic materials is a promising approach to guarantee the uniform size distribution and stability. In this review, we aim to provide a comprehensive summary of the recent progress in the synthetic strategies and catalysis applications of the encapsulated MCs, and seek to uncover promising ideas that can stimulate future developments at both the fundamental and applied levels.
Collapse
Affiliation(s)
- Xiaodong Yang
- Beijing Institute of Technology, chemistry and chemical engineering, CHINA
| | - Liang-Xiao Tan
- Beijing Institute of Technology, chemistry and chemical engineering, CHINA
| | - Jian-Ke Sun
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, 8 East Liangxiang Street, Fangshan District, Beijing, 102488, Beijing, CHINA
| |
Collapse
|
24
|
Singer H, Drobot B, Zeymer C, Steudtner R, Daumann LJ. Americium preferred: lanmodulin, a natural lanthanide-binding protein favors an actinide over lanthanides. Chem Sci 2021; 12:15581-15587. [PMID: 35003587 PMCID: PMC8654097 DOI: 10.1039/d1sc04827a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
The separation and recycling of lanthanides is an active area of research with a growing demand that calls for more environmentally friendly lanthanide sources. Likewise, the efficient and industrial separation of lanthanides from the minor actinides (Np, Am–Fm) is one of the key questions for closing the nuclear fuel cycle; reducing costs and increasing safety. With the advent of the field of lanthanide-dependent bacterial metabolism, bio-inspired applications are in reach. Here, we utilize the natural lanthanide chelator lanmodulin and the luminescent probes Eu3+ and Cm3+ to investigate the inter-metal competition behavior of all lanthanides (except Pm) and the major actinide plutonium as well as three minor actinides neptunium, americium and curium to lanmodulin. Using time-resolved laser-induced fluorescence spectroscopy we show that lanmodulin has the highest relative binding affinity to Nd3+ and Eu3+ among the lanthanide series. When equimolar mixtures of Cm3+ and Am3+ are added to lanmodulin, lanmodulin preferentially binds to Am3+ over Cm3+ whilst Nd3+ and Cm3+ bind with similar relative affinity. The results presented show that a natural lanthanide-binding protein can bind a major and various minor actinides with high relative affinity, paving the way to bio-inspired separation applications. In addition, an easy and versatile method was developed, using the fluorescence properties of only two elements, Eu and Cm, for inter-metal competition studies regarding lanthanides and selected actinides and their binding to biological molecules. In need of environmentally friendly methods for the separation and recycling of lanthanides and actinides, the binding of the protein lanmodulin to lanthanides and actinides was studied using time resolved laser induced fluorescence spectroscopy.![]()
Collapse
Affiliation(s)
- Helena Singer
- Department of Chemistry, Ludwig-Maximilians-University Munich Butenandtstraße 5 - 13 81377 München Germany
| | - Björn Drobot
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400 01328 Dresden Germany
| | - Cathleen Zeymer
- Department of Chemistry, Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400 01328 Dresden Germany
| | - Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-University Munich Butenandtstraße 5 - 13 81377 München Germany
| |
Collapse
|
25
|
Gray NAG, Price JS, Emslie DJH. Uranium(IV) Thio- and Selenoether Complexes: Syntheses, Structures, and Computational Investigation of U-ER 2 Interactions. Chemistry 2021; 28:e202103580. [PMID: 34875126 DOI: 10.1002/chem.202103580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 11/07/2022]
Abstract
Rigid thioether- and selenoether-containing pincer proligands H[AS2 Ph 2 ] (1) and H[ASe2 Ph 2 ] (2) were synthesized, and deprotonation provided the potassium salts [K(AS2 Ph 2 )(dme)] (3) and [K(ASe2 Ph 2 )(dme)2 ] (4). Reaction of two equivalents of 3 or 4 with [UI4 (dioxane)2 ] afforded the uranium thioether complex [(AS2 Ph 2 )2 UI2 ] (5) and the first example of a uranium-selenoether complex, [(ASe2 Ph 2 )2 UI2 ] (6). X-ray structures revealed distorted square antiprismatic geometries in which the AE2 Ph 2 ligands are κ3 -coordinated. The nature of the U-ER2 bonding in 5 and 6, as well as methyl-free analogues of 5 and 6 and a hypothetical ether analogue, was investigated computationally (including NBO, AIM, and ELF calculations) illustrating increasing covalency from O to S to Se.
Collapse
Affiliation(s)
- Novan A G Gray
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Jeffrey S Price
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - David J H Emslie
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
26
|
Highly efficient and selective extraction of Pu(IV) using two alkyl-substituted amides of nitrilo triacetic acid from nitric acid solutions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Liu J, Chen B, Liu Y, Ma J, Li X, Yang Y. Selective extraction of Am(III) from Cm(III) and Eu(III) using a novel phenanthrolinamide ligand: Thermodynamics, species, and structure. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Kaneko M, Sasaki Y, Wada E, Nakase M, Takeshita K. Prediction of Stability Constants for Novel Chelates Design in Minor Actinides Partitioning over Lanthanides Using Density Functional Theory Calculation. CHEM LETT 2021. [DOI: 10.1246/cl.210402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masashi Kaneko
- Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 315-1195, Japan
| | - Yuji Sasaki
- Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 315-1195, Japan
| | - Eriko Wada
- Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masahiko Nakase
- Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kenji Takeshita
- Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
29
|
Chapleski RC, Ivanov AS, Peterson KA, Bryantsev VS. Improving the theoretical description of Ln(III)/An(III) separation with phosphinic acid ligands: a benchmarking study of structure and selectivity. Phys Chem Chem Phys 2021; 23:19558-19570. [PMID: 34524309 DOI: 10.1039/d1cp02466c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient separation of trivalent lanthanides from minor actinides with soft-donor ligands, while showing experimental promise, has theorists continuing to search for suitable approaches for describing and interpreting selectivity. To remedy this, we employ several computational methods in describing the structure of model M(H2PX2)3 complexes, with M = Eu and Am, and X = O, S, Se, and Te, and predicting the selectivity of model phosphinic acid ligands in Eu(III)/Am(III) separation. After first establishing a set of MP2 and CCSD(T)-DKH3 results as benchmarks, we evaluate several density functionals and descriptions of valence shells for their accuracy with respect to metal-ligand bonding and selectivity. We find that commonly employed functionals with a 0-27% range of exact exchange used with small-core effective core potentials or with an explicit treatment of the relativistic effects (DKH2) incorrectly predict a decrease in the metal-ligand bond distance in going from Eu(III) to Am(III) and completely fail to track a selectivity trend, even giving a wrong sign for some or all ligands. Surprisingly, when these functionals are used in conjunction with an f-in-core description of metal ions, the correct trend in selectivity is recovered, though Am-X distances are overestimated in relation to Eu-X. Functionals with high components of exact exchange (50%) and double-hybrid functionals are reasonably aligned with benchmark results, pointing to the problems of DFT with small exact exchange fractions to handle f-electrons. Natural bond orbital analyses reveal that these poorly performing functionals disproportionately overpopulate outer f orbitals in the model complexes. We anticipate that recommendations resulting from this work will lead to more accurate theoretical descriptions of lanthanide/actinide selectivity with soft-donor chalcogen-based ligands in the future.
Collapse
Affiliation(s)
- Robert C Chapleski
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA.
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA.
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 27831, USA.
| |
Collapse
|
30
|
De Jesus K, Rodriguez R, Baek D, Fox R, Pashikanti S, Sharma K. Extraction of lanthanides and actinides present in spent nuclear fuel and in electronic waste. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
de Diego Almeida RH, Monroy-Guzmán F, Arganis Juárez CR, Manríquez Rocha J, Bustos Bustos E. Electrochemical detector based on a modified graphite electrode with phthalocyanine for the elemental analysis of actinides. CHEMOSPHERE 2021; 276:130114. [PMID: 33706180 DOI: 10.1016/j.chemosphere.2021.130114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The quantification of actinides in aqueous solutions involves complex and expensive separation processes. Electrochemical methods have been widely used for the quick and accurate identification and quantification of organic and inorganic compounds directly or indirectly. Therefore, this work proposes the use of modified graphite with phthalocyanine for electrochemical detection and quantification of Th, U, Pu, Am, and Cm, in aqueous media by cyclic voltammetry. The electrodes were characterized by Raman and infrared spectroscopy, and the cyclic voltammetry data were modeled with Aoki's model. The detection limits (DL) and the quantification limits (QL) reached by the electrochemical detection of these actinides were of the order of ppt. Aoki's model fitted perfectly with the experimental data. The functionalization of graphite electrodes promotes the formation of phthalic anhydride, and the phthalocyanine is anchored on the epoxy groups of the graphite. The electrochemical detection process of these actinides is indirect. This electrochemical detector is cheap and disposable and can be an alternative for an initial characterization of actinides in liquid waste.
Collapse
Affiliation(s)
- Ruslán Heriberto de Diego Almeida
- National Institute of Nuclear Research (ININ), Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. De México, C.P. 52750, Mexico; Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C. (CIDETEQ), Parque Tecnológico Sanfandila, Sanfandila, Pedro Escobedo, 76703, Querétaro, Mexico.
| | - Fabiola Monroy-Guzmán
- National Institute of Nuclear Research (ININ), Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. De México, C.P. 52750, Mexico.
| | - Carlos Rosendo Arganis Juárez
- National Institute of Nuclear Research (ININ), Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. De México, C.P. 52750, Mexico.
| | - Juan Manríquez Rocha
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C. (CIDETEQ), Parque Tecnológico Sanfandila, Sanfandila, Pedro Escobedo, 76703, Querétaro, Mexico.
| | - Erika Bustos Bustos
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C. (CIDETEQ), Parque Tecnológico Sanfandila, Sanfandila, Pedro Escobedo, 76703, Querétaro, Mexico.
| |
Collapse
|
32
|
Xu L, Hao Y, Yang X, Wang Z, Xu C, Borisova NE, Sun M, Zhang X, Lei L, Xiao C. Comparative Investigation into the Complexation and Extraction Properties of Tridentate and Tetradentate Phosphine Oxide-Functionalized 1,10-Phenanthroline Ligands toward Lanthanides and Actinides. Chemistry 2021; 27:10717-10730. [PMID: 34002918 DOI: 10.1002/chem.202101224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/06/2022]
Abstract
Two new phosphine oxide-functionalized 1,10-phenanthroline ligands, tetradentate 2,9-bis(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-BPPhen, L1 ) and tridentate 2-(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-MPPhen, L2 ), were synthesized and studied comparatively for their coordination with trivalent actinides and lanthanides. The complexation mechanisms of these two ligands toward trivalent f-block elements were thoroughly elucidated by NMR spectroscopy, UV/vis spectrophotometry, fluorescence spectrometry, single-crystal X-ray diffraction, solvent extraction, and theoretical calculation methods. NMR titration results demonstrated that 1 : 1 and 1 : 2 (metal to ligand) lanthanides complexes formed for L1 , whereas 1 : 1, 1 : 2 and 1 : 3 lanthanide complexes formed for L2 in methanol. The formation of these species was validated by fluorescence spectrometry, and the corresponding stability constants for the complexes of NdIII with L1 and L2 were determined by using UV/vis spectrophotometry. Structures of the 10-coordinated 1 : 1-type complexes of EuL1 (NO3 )3 and [EuL2 (NO3 )3 (H2 O)] Et2 O in the solid state were characterized by X-ray crystallography. In solvent-extraction experiments, L1 exhibited extremely strong extraction ability for both AmIII and EuIII , whereas L2 showed nearly no extraction toward AmIII or EuIII due to its high hydrophilicity. Finally, the structures and bonding natures of the complex species formed between AmIII /EuIII and L1 /L2 were analyzed in DFT calculations.
Collapse
Affiliation(s)
- Lei Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuxun Hao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, GSP-1, 119991, Moscow, Russian Federation
| | - Mingze Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
33
|
Yang XF, Ren P, Yang Q, Geng JS, Zhang JY, Yuan LY, Tang HB, Chai ZF, Shi WQ. Strong Periodic Tendency of Trivalent Lanthanides Coordinated with a Phenanthroline-Based Ligand: Cascade Countercurrent Extraction, Spectroscopy, and Crystallography. Inorg Chem 2021; 60:9745-9756. [PMID: 34115461 DOI: 10.1021/acs.inorgchem.1c01035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenanthroline-diamide ligands have been reported in the selective separation of actinides over Eu(III); on the contrary, relevant basic coordination chemistry studies are still limited, and extraction under actual application conditions is rarely involved. In this work, N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline [Et-Tol-DAPhen (L)] was applied to explore the coordination performance of lanthanides in simulative high-level liquid waste. For the first time, cascade countercurrent extraction was conducted with Et-Tol-DAPhen as the extractant, which reveals the periodic tendency of the extraction efficiency of lanthanides to decrease gradually as the atomic number increases. Comparison of elements with similar radii verifies the hypothesis that the increase in the atomic number leads to a decrease in the ionic radius, thus reducing the coordination and extraction capacity of ligands. Slope analysis, electrospray ionization mass spectrometry, and ultraviolet-visible titration results show that the ligand forms 1:1 and 1:2 complexes with lanthanides and the coordination ability follows the tendency of extraction efficiency, and the first crystal structures of Lns(III) with a phenanthroline-diamide ligand, i.e., [LaL(NO3)3(H2O)] and [LaL2(NO3)2][(NO3)], were obtained, which confirms the conclusions described above. This work promises to enhance our comprehension of the chemical properties of Lns(III) and offer new clues for the design and synthesis of novel separation ligands.
Collapse
Affiliation(s)
- Xiao-Fan Yang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Peng Ren
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Qi Yang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Yu Zhang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Bin Tang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineer Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Tarlton ML, Fajen OJ, Kelley SP, Kerridge A, Malcomson T, Morrison TL, Shores MP, Xhani X, Walensky JR. Systematic Investigation of the Molecular and Electronic Structure of Thorium and Uranium Phosphorus and Arsenic Complexes. Inorg Chem 2021; 60:10614-10630. [DOI: 10.1021/acs.inorgchem.1c01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - O. Jonathan Fajen
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas Malcomson
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas L. Morrison
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Xhensila Xhani
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| |
Collapse
|
35
|
Meng R, Xu L, Yang X, Sun M, Xu C, Borisova NE, Zhang X, Lei L, Xiao C. Influence of a N-Heterocyclic Core on the Binding Capability of N,O-Hybrid Diamide Ligands toward Trivalent Lanthanides and Actinides. Inorg Chem 2021; 60:8754-8764. [PMID: 34077191 DOI: 10.1021/acs.inorgchem.1c00715] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N,O-hybrid diamide ligands with N-heterocyclic skeletons are one of the promising extractants for the selective separation of actinides over lanthanides in a highly acidic HNO3 solution. In this work, three hard-soft donor mixed diamide ligands, pyridine-2,6-diylbis(pyrrolidin-1-ylmethanone) (Pyr-PyDA), 2,2'-bipyridine-6,6'-diylbis(pyr-rolidine-1-ylmethanone) (Pyr-BPyDA), and (1,10-phenanthroline-2,9-diyl)bis(pyrrolidin-1-ylmethanone) (Pyr-DAPhen), were synthesized and used to probe the influence of N-heterocyclic cores on the complexation and extraction behaviors with trivalent lanthanides and actinides. 1H NMR titration experiments demonstrated that 1:1 metal-to-ligand complexes were mainly formed between the three ligands and lanthanides, but 1:2 type complexes were also formed between tridentate Pyr-PyDA and Lu(III). The stability constants (log β) of these three ligands with two typical lanthanides, Nd(III) and Eu(III), were determined through spectrophotometric titration. It is found that Pyr-DAPhen formed the most stable complexes, while Pyr-PyDA formed the most unstable complexes with lanthanides, which coincided well with the following solvent extraction results. The solid-state structures of 1:1 type complexes of these three ligands with La(III), Nd(III), and Er(III) in nitrate media were identified by a single-crystal X-ray diffraction technique. Nd(III) and Er(III) were 10-coordinated with Pyr-PyDA, Pyr-BPyDA, and Pyr-DAPhen via one ligand molecule and three nitrate ions. La(III), because of its larger ionic radius, was 11-coordinated with Pyr-DAPhen through one ligand molecule, three nitrate ions, and one methanol molecule. Solvent extraction experiments showed that the preorganized phenanthroline-derived Pyr-DAPhen had the best extraction performance for trivalent actinide among the three ligands tested. This work provides some experimental insights into the design of more efficient ligands for trivalent actinide separation by adjusting the N-heterocyclic cores.
Collapse
Affiliation(s)
- Ruixue Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Lei Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingze Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
36
|
Bessen NP, Popov IA, Heathman CR, Grimes TS, Zalupski PR, Moreau LM, Smith KF, Booth CH, Abergel RJ, Batista ER, Yang P, Shafer JC. Complexation of Lanthanides and Heavy Actinides with Aqueous Sulfur-Donating Ligands. Inorg Chem 2021; 60:6125-6134. [PMID: 33866779 DOI: 10.1021/acs.inorgchem.1c00257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The separation of trivalent lanthanides and actinides is challenging because of their similar sizes and charge densities. S-donating extractants have shown significant selectivity for trivalent actinides over lanthanides, with single-stage americium/lanthanide separation efficiencies for some thiol-based extractants reported at >99.999%. While such separations could transform the nuclear waste management landscape, these systems are often limited by the hydrolytic and radiolytic stability of the extractant. Progress away from thiol-based systems is limited by the poorly understood and complex interactions of these extractants in organic phases, where molecular aggregation and micelle formation obfuscates assessment of the metal-extractant coordination environment. Because S-donating thioethers are generally more resistant to hydrolysis and oxidation and the aqueous phase coordination chemistry is anticipated to lack complications brought on by micelle formation, we have considered three thioethers, 2,2'-thiodiacetic acid (TDA), (2R,5S)-tetrahydrothiophene-2,5-dicarboxylic acid, and 2,5-thiophenedicarboxylic acid (TPA), as possible trivalent actinide selective reagents. Formation constants, extended X-ray absorption fine structure spectroscopy, and computational studies were completed for thioether complexes with a variety of trivalent lanthanides and actinides including Nd, Eu, Tb, Am, Cm, Bk, and Cf. TPA was found to have moderately higher selectivity for the actinides because of its ability to bind actinides in a different manner than lanthanides, but the utility of TPA is limited by poor water solubility and high rigidity. While significant competition with water for the metal center limits the efficacy of aqueous-based thioethers for separations, the characterization of these solution-phase, S-containing lanthanide and actinide complexes is the most comprehensively available in the literature to date. This is due to the breadth of lanthanides and actinides considered as well as the techniques deployed and serves as a platform for the further development of S-containing reagents for actinide separations. Additionally, this paper reports on the first bond lengths for Cf and Bk with a neutral S donor.
Collapse
Affiliation(s)
- Nathan P Bessen
- Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Ivan A Popov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Colt R Heathman
- Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, Idaho 83402, United States
| | - Travis S Grimes
- Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, Idaho 83402, United States
| | - Peter R Zalupski
- Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, Idaho 83402, United States
| | - Liane M Moreau
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Kurt F Smith
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Corwin H Booth
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jenifer C Shafer
- Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
37
|
Salviulo G, Lavagnolo MC, Dabalà M, Bernardo E, Polimeno A, Sambi M, Bonollo F, Gross S. Enabling Circular Economy: The Overlooked Role of Inorganic Materials Chemistry. Chemistry 2021; 27:6676-6695. [PMID: 33749911 DOI: 10.1002/chem.202002844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Circular economy is considered a new chance to build a more sustainable world from both the social and the economic point of view. In this Essay, the possible contribution of inorganic chemistry towards a smooth transition to circularity in inorganic materials design and production is discussed by adopting an interdisciplinary approach.
Collapse
Affiliation(s)
- Gabriella Salviulo
- Dipartimento di Geoscienze, Università degli Studi di Padova, Via Gradenigo, 6, 35131, Padova, Italy.,Centro di Ateneo per i Diritti Umani "Antonio Papisca", Università di Padova, Via Martiri della Libertà 2, 35131, Padova, Italy
| | - Maria Cristina Lavagnolo
- Dipartimento di Ingegneria Civile, Edile e Ambientale, Università degli Studi di Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Manuele Dabalà
- Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Enrico Bernardo
- Dipartimento di Ingegneria Industriale, Università degli Studi di Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Antonino Polimeno
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Mauro Sambi
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Franco Bonollo
- Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università degli Studi di Padova, Str. S. Nicola, 3, 36100, Vicenza, Italy
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
38
|
Bessen N, Bertelsen ER, Shafer JC. Permanganometric Titration for the Quantification of Purified Bis(2,4,4-trimethylpentyl)dithiophosphinic Acid in n-Dodecane. ACS OMEGA 2021; 6:8463-8468. [PMID: 33817507 PMCID: PMC8015081 DOI: 10.1021/acsomega.1c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The organic soluble extractant bis(2,4,4-trimethylpentyl)dithiophosphinic acid, often called Cyanex 301 (HC301), has shown selectivity for preferentially extracting trivalent actinides over the lanthanides in the treatment of used nuclear fuel. To maintain control and efficiency of a separation process using this extractant, it is necessary to accurately know specific parameters of the system, including the concentration of HC301 in the organic phase, at any given time. Here, the ability to quickly determine the concentration of HC301 in n-dodecane was tested by a one-step permanganometric titration in an organic solution using a double-beam UV-vis spectrophotometer. The addition of HC301 in n-dodecane to solutions of KMnO4 was found to decolorize the KMnO4 solutions, but the HC301 was best quantified in terms of decolorization in acetone. This decolorization allowed for the creation of a linear analytical curve relating the amount of KMnO4 consumed to the amount of HC301 added. Cross-validation of this analytical curve reproduced the known amount of HC301 with an average difference of 1.73% and a maximum of 4.03%.
Collapse
Affiliation(s)
- Nathan
P. Bessen
- Colorado
School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United
States
| | - Erin R. Bertelsen
- University
of Massachusetts Lowell, 220 Pawtucket Street, Lowell, Massachusetts 01854, United States
| | - Jenifer C. Shafer
- Colorado
School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United
States
| |
Collapse
|
39
|
Xu L, Yang X, Wang Z, Wang S, Sun M, Xu C, Zhang X, Lei L, Xiao C. Unfolding the Extraction and Complexation Behaviors of Trivalent f-Block Elements by a Tetradentate N,O-Hybrid Phenanthroline Derived Phosphine Oxide Ligand. Inorg Chem 2021; 60:2805-2815. [PMID: 33502197 DOI: 10.1021/acs.inorgchem.0c03727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, a tetradentate N,O-hybrid 2,9-bis(diphenylphosphine oxide)-1,10-phenanthroline (Ph2-BPPhen) ligand was studied for the coextraction of trivalent f-block elements from nitric acid media. The extraction as well as the complexation behaviors of Ph2-BPPhen with f-block elements were thoroughly investigated using 31P and 1H NMR spectrometry, UV-vis spectrophotometry, single crystal X-ray diffraction, and density functional theoretical (DFT) calculation. Ph2-BPPhen exhibits remarkably extraction ability for both Am(III) and Eu(III) and more than 99.5% of Am(III) and Eu(III) were extracted from 1.0 M HNO3 solution. Slope analysis suggests that both 2:1 and 1:1 ligand/metal complexes were probably formed during the extraction. The 1:1 and 2:1 Ln(III) complexes with Ph2-BPPhen were also identified in CH3OH solution by NMR spectrometry, and the stability constants were determined via UV-vis spectrophotometry. Structures of the 1:1 Eu(Ph2-BPPhen)(NO3)3 and Am(Ph2-BPPhen)(NO3)3 complexes were further elucidated by single X-ray crystallography and DFT calculations. The higher extractability of Ph2-BPPhen toward trivalent Am(III) and Eu(III) compared with the previously reported phenanthroline-derived amide and phosphonate ligands was attributed to the stronger affinity of the -P═O(R)2 group to metal ions. The results from this work indicate that the N,O-hybrid 1,10-phenanthroline derived phosphine oxide ligand can serve as a new and promising candidate for coextraction of trivalent f-block elements in the treatment of nuclear waste.
Collapse
Affiliation(s)
- Lei Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Mingze Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
40
|
Bessen N, Yan Q, Pu N, Chen J, Xu C, Shafer J. Extraction of the trivalent transplutonium actinides americium through einsteinium by the sulfur donor Cyanex 301. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00076d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
When extracting metals with the sulfur donor ligand, Cyanex 301 (bis(2,4,4-trimethylpentyl)dithiophosphinic acid), a transition in the coordination mode of extracted complexes has been observed between Eu and Gd, but not within the actinide series.
Collapse
Affiliation(s)
- Nathan Bessen
- Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA
| | - Qiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Ning Pu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jenifer Shafer
- Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA
| |
Collapse
|
41
|
Yang X, Xu L, Hao Y, Meng R, Zhang X, Lei L, Xiao C. Effect of Counteranions on the Extraction and Complexation of Trivalent Lanthanides with Tetradentate Phenanthroline-Derived Phosphonate Ligands. Inorg Chem 2020; 59:17453-17463. [DOI: 10.1021/acs.inorgchem.0c02728] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiao Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxun Hao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruixue Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xingwang Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|