1
|
Cabrosi D, Mecchia Ortiz JH, Cruz C, Paredes-García V, Alborés P. A {Cr 4Ln 2} Complex with Exchange Coupled {Cr 2} Units: Structural Description and Magnetic Study. Chemistry 2024:e202403118. [PMID: 39625177 DOI: 10.1002/chem.202403118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
We have prepared and structurally characterized pivalate based {CrIII 4LnIII 2} complexes with Ln = Dy and Gd as well as the Y analogue, with the overall formula [CrIII 4LnIII 2(mdea)2(piv)10(OH)4], Ln = Gd, Dy and Y. We are reporting a detailed experimental magnetic properties study, including magnetization relaxation dynamics and calorimetric data, supported with quantum chemical calculations. The synthesis of the Y derivative, allowed to precisely identify the Cr(III)-Cr(III) exchange interaction magnitude which proved moderately strong and in agreement with known magneto-structural correlations. This result agrees with the observed double bridged {Cr2-μOH-μOR} units within the {Cr4Ln2} complexes. The Gd(III) complex magnetic properties can be properly described with the already established exchange coupled {Cr2} units, and a unique Gd(III)-Cr(III) exchange coupling parameter which proved anti-ferromagnetic in nature. The MCE characterization of this complex based on magnetization and calorimetric data down to 2 K affords a moderate entropy change value, mainly affected by the strong Cr-Cr exchange interaction. The complex with Ln = Dy, showed SMM behaviour below 10 K under 0 DC applied field with negligible field dependence up to 3000 Oe and 10 kHz of AC field frequency. Two relaxation processes are clearly distinguished, with thermal barriers for an Orbach mechanism of ca. 20 cm-1 and 40 cm-1.
Collapse
Affiliation(s)
- Daiana Cabrosi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Juan H Mecchia Ortiz
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Carlos Cruz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, 8370146, Santiago de Chile, Chile
- Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile
| | - Verónica Paredes-García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, 8370146, Santiago de Chile, Chile
- Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile
| | - Pablo Alborés
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Bazhina ES, Shmelev MA, Gogoleva NV, Babeshkin KA, Kurganskii IV, Efimov NN, Fedin MV, Kiskin MA, Eremenko IL. Investigation of slow magnetic relaxation in a series of 1D polymeric cyclobutane-1,1-dicarboxylates based on Ln IIIVIV2 units (Ln III = Tb, Dy, Ho, Er, Tm, Yb): rare examples of V IV-4f single-molecule magnets. Dalton Trans 2024; 53:18161-18174. [PMID: 39446052 DOI: 10.1039/d4dt01779j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The reactions of VOSO4·3H2O with Na2(cbdc) (cbdc2- - dianion of cyclobutane-1,1-dicarboxylic acid) and lanthanide(III) nitrates taken in a molar ratio of 1 : 2 : 1 were found to yield a series of isostructural heterometallic compounds [NaLn(VO)2(cbdc)4(H2O)10]n (1Ln, Ln = Tb, Dy, Ho, Er, Tm, Yb). These compounds are constructed from trinuclear anionic units [Ln(VO)2(cbdc)4(H2O)8]- ({LnV2}-) linked by Na+ ions into 1D polymeric chains. The crystal structures of 1Dy and 1Er were determined by single-crystal X-ray diffraction (XRD), and their isostructurality with 1Tb, 1Ho, 1Tm, and 1Yb was proved by powder X-ray diffraction (PXRD). According to alternating current (ac) magnetic susceptibility measurements, 1Dy, 1Er, and 1Yb exhibited field-induced slow relaxation of magnetization. Compound 1Er is the first representative of ErIII-VIV single-molecule magnets. Measuring the temperature dependences of the phase memory time (Tm) for 1Dy and 1Yb using pulsed EPR spectroscopy allowed us to observe the phenomenon of phase relaxation enhancement (PRE) at temperatures below 30 K. In future, this phenomenon may contribute to the evaluation of relaxation times of the lanthanide ions.
Collapse
Affiliation(s)
- Evgeniya S Bazhina
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Maxim A Shmelev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Natalia V Gogoleva
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Konstantin A Babeshkin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Ivan V Kurganskii
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya St. 3a, Novosibirsk 630090, Russian Federation
| | - Nikolay N Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Matvey V Fedin
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya St. 3a, Novosibirsk 630090, Russian Federation
| | - Mikhail A Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| | - Igor L Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation.
| |
Collapse
|
3
|
Anastassiades A, Alexandropoulos DI, Buch CD, Piligkos S, Tasiopoulos AJ. A new family of heterometallic [Cu 6M 4] (M = Gd, Tb, Dy and Y) clusters derived from the combined use of selected pyridyl poly-alcohol ligands. Dalton Trans 2024; 53:16202-16211. [PMID: 39297567 DOI: 10.1039/d4dt02054e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The combined use of 2-(2-pyridyl)-1,3-propane-diol (pypdH2) and 2-hydroxymethyl-2-(2-pyridyl)-1,3-propane-diol (pyptH3) in Cu2+/4f chemistry has afforded a new family of isostructural [Cu6M4(pypt)4(pypdH)4(NO3)8] [M = Gd (1), Tb (2), Dy (3), and Y (4)] complexes. These compounds are based on an unprecedented three-layered symmetric [Cu6M4(μ-OR)16]8+ structural core, formed from the connection of the metal ions by bridging alkoxide arms of the organic ligands. Direct current magnetic susceptibility studies for complexes 1-3 revealed the presence of dominant ferromagnetic exchange interactions, suggesting the existence of large spin ground state values. Alternating current magnetic studies indicate the presence of slow-magnetic relaxation in 1-3.
Collapse
Affiliation(s)
| | | | - Christian D Buch
- Department of Chemistry, University of Copenhagen, DK-2100, Denmark
| | | | | |
Collapse
|
4
|
Grechi C, Carlotto S, Guelfi M, Samaritani S, Armelao L, Labella L. Sandwich d/f Heterometallic Complexes [(Ln(hfac) 3) 2M(acac) 3] (Ln = La, Pr, Sm, Dy and M = Co; Ln = La and M = Ru). Molecules 2024; 29:3927. [PMID: 39203003 PMCID: PMC11356967 DOI: 10.3390/molecules29163927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Sandwich d/f heterometallic complexes [(Ln(hfac)3)2M(acac)3] (Ln = La, Pr, Sm, Dy and M = Co; Ln = La and M = Ru) were prepared in strictly anhydrous conditions reacting the formally unsaturated fragment [Ln(hfac)3] and [M(acac)3] in a 2-to-1 molar ratio. These heterometallic complexes are highly sensitive to moisture. Spectroscopic observation revealed that on hydrolysis, these compounds yield dinuclear heterometallic compounds [Ln(hfac)3M(acac)3], prepared here for comparison purposes only. Quantum mechanical calculations supported, on the one hand, the hypothesis on the geometrical arrangement obtained from ATR-IR and NMR spectra and, on the other hand, helped to rationalize the spontaneous hydrolysis reaction.
Collapse
Affiliation(s)
- Cristian Grechi
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (C.G.); (M.G.); (S.S.)
| | - Silvia Carlotto
- Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR) e INSTM, Presso Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy;
- Dipartimento di Scienze Chimiche e INSTM, Università di Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Massimo Guelfi
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (C.G.); (M.G.); (S.S.)
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (C.I.S.U.P.), Università di Pisa, 56126 Pisa, Italy
| | - Simona Samaritani
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (C.G.); (M.G.); (S.S.)
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (C.I.S.U.P.), Università di Pisa, 56126 Pisa, Italy
| | - Lidia Armelao
- Dipartimento di Scienze Chimiche e INSTM, Università di Padova, Via Marzolo 1, 35131 Padova, Italy;
- Dipartimento di Scienze Chimiche e Tecnologie dei Materiali (DSCTM), Consiglio Nazionale delle Ricerche (CNR), Piazzale A. Moro 7, 00185 Roma, Italy
| | - Luca Labella
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (C.G.); (M.G.); (S.S.)
- Centro per l’Integrazione della Strumentazione Scientifica dell’Università di Pisa (C.I.S.U.P.), Università di Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Nandy R, Jagličić Z, Jana NC, Brandão P, Bustamante F, Aravena D, Panja A. The effect of co-ligands on the performance of single-molecule magnet behaviours in a family of linear trinuclear Zn-Dy-Zn complexes with a compartmental Schiff base. Dalton Trans 2024; 53:13968-13981. [PMID: 39101745 DOI: 10.1039/d4dt01582g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
We present herein magneto-structural studies of three heterometallic Zn2Dy complexes: [Zn2Dy(L)2Cl2(H2O)](ClO4)·4H2O (1), [Zn2Dy(L)2Br2(H2O)](ClO4)·4H2O (2) and [Zn2Dy(L)2(OAc)I(H2O)]I3·4H2O (3), utilizing a new Schiff base ligand, N,N'-bis(3-methoxy-5-methylsalicylidene)-1,2-diaminocyclohexane (H2L). Complexes 1 and 2 exhibit remarkable magnetic relaxation behaviour with relatively high energy barriers in zero field (Ueff: 244 K for 1 and 211 K for 2) and notable hysteresis temperatures, despite the low local geometric symmetry around the central DyIII ions. The SMM performance of these complexes is further enhanced under an applied magnetic field, with Ueff increasing to 309 K for 1 and 269 K for 2, positioning them as elite members within the Zn-Dy SMM family. These findings emphasize the substantial influence of remote modulation on ZnII beyond the first coordination sphere of DyIII ions on their dynamic magnetic relaxation properties. Ab initio studies demonstrate that the relative orientation of the phenoxo-oxygen donor atoms around the DyIII ion is critical for determining the magnetic anisotropy and relaxation dynamics in these systems. Additionally, experimental and theoretical investigations reveal that the coordination of the bridging acetate towards the hard plane, combined with significant distortion from the ideal ZnO2Dy diamond core arrangement caused by the acetate ion, results in low magnetic anisotropy in complex 3, thereby leading to field-induced SMM behaviour. Overall, this study unveils the effects of co-ligands on the SMM performance in a series of linear trinuclear Zn-Dy-Zn complexes, which exhibit low local geometric symmetry around the DyIII centres.
Collapse
Affiliation(s)
- Rakhi Nandy
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fabián Bustamante
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Daniel Aravena
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
6
|
Bhunia P, Maity S, Ghosh TK, Mondal A, Mayans J, Ghosh A. Cu(II)-Ln(III) (Ln = Gd, Tb and Dy) complexes of an unsymmetrical N 2O 3 donor ligand: field induced SMM behaviour of Cu(II)-Tb(III) complexes. Dalton Trans 2024; 53:9171-9182. [PMID: 38742576 DOI: 10.1039/d4dt00304g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Three new hetero-metallic CuII-LnIII complexes [(CuL)Gd(NO3)3(CH3OH)]n (1), [(CuL)Tb(NO3)3(H2O)]·[CuL] (2) and [(CuL)Dy(NO3)3(H2O)]·[CuL] (3) have been synthesized using a mono-nuclear Cu(II) complex, [CuL], of an unsymmetrically di-condensed N2O3 donor Schiff base ligand, N-(3-methoxysalicylidene)-N-(salicylidene)-1,2-ethylenediamine (H2L). Single crystal X-ray crystallography revealed that complex 1 is a nitrate bridged 1D chain of dinuclear Cu(II)-Gd(III) units whereas in 2 and 3, the dinuclear Cu(II)-Ln(III) units are co-crystallized with a [CuL] unit. The Ln(III) centers are nine coordinated with the geometry of a spherical capped square antiprism for Gd and spherical tricapped trigonal prism for Tb and Dy. The geometry of the Cu(II) center is distorted octahedral for complex 1 and distorted square planar for complexes 2 and 3. Temperature-dependent molar magnetic susceptibility measurements in 1-3 revealed the presence of overall ferromagnetic coupling between the Cu(II) and Ln(III) centers. Notably, field induced single-molecule magnet behavior was witnessed in the Tb(III) derivative (2). The ab initio calculations indicated that upon application of an external magnetic field, the tunneling in the ground state of complex 2 gets reduced and thereby field-induced SMM behaviour is observed. Besides, in the case of complex 1, BS-DFT calculations were carried out to gain further insights into the magnetic exchange coupling interactions between the Cu(II) and Gd(III) centers.
Collapse
Affiliation(s)
- Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
| | - Souvik Maity
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
| | - Tanmoy Kumar Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal by-pass road, Bhauri, Bhopal 462066, MP, India
| | - Júlia Mayans
- Departament de Química Inorgànica I Orgànica, SeccióInorgànica and Institut de Nanosciència and Nanotecnologia (IN2UB), MartíiFranqués 1-11, 08028 Barcelona, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
| |
Collapse
|
7
|
Manohar EM, Dhandapani HN, Roy S, Pełka R, Rams M, Konieczny P, Tothadi S, Kundu S, Dey A, Das S. Tetranuclear Co II4O 4 Cubane Complex: Effective Catalyst Toward Electrochemical Water Oxidation. Inorg Chem 2024; 63:4883-4897. [PMID: 38494956 DOI: 10.1021/acs.inorgchem.3c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The reaction of Co(OAc)2·6H2O with 2,2'-[{(1E,1'E)-pyridine-2,6-diyl-bis(methaneylylidene)bis(azaneylylidene)}diphenol](LH2) a multisite coordination ligand and Et3N in a 1:2:3 stoichiometric ratio forms a tetranuclear complex Co4(L)2(μ-η1:η1-OAc)2(η2-OAc)2]· 1.5 CH3OH· 1.5 CHCl3 (1). Based on X-ray diffraction investigations, complex 1 comprises a distorted Co4O4 cubane core consisting of two completely deprotonated ligands [L]2- and four acetate ligands. Two distinct types of CoII centers exist in the complex, where the Co(2) center has a distorted octahedral geometry; alternatively, Co(1) has a distorted pentagonal-bipyramidal geometry. Analysis of magnetic data in 1 shows predominant antiferromagnetic coupling (J = -2.1 cm-1), while the magnetic anisotropy is the easy-plane type (D1 = 8.8, D2 = 0.76 cm-1). Furthermore, complex 1 demonstrates an electrochemical oxygen evolution reaction (OER) with an overpotential of 325 mV and Tafel slope of 85 mV dec-1, required to attain a current density of 10 mA cm-2 and moderate stability under alkaline conditions (pH = 14). Electrochemical impedance spectroscopy studies reveal that compound 1 has a charge transfer resistance (Rct) of 2.927 Ω, which is comparatively lower than standard Co3O4 (5.242 Ω), indicating rapid charge transfer kinetics between electrode and electrolyte solution that enhances higher catalytic activity toward OER kinetics.
Collapse
Affiliation(s)
- Ezhava Manu Manohar
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| | - Hariharan N Dhandapani
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Soumalya Roy
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| | - Robert Pełka
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Krakow PL-31342, Poland
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30348, Poland
| | - Piotr Konieczny
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Krakow PL-31342, Poland
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru, Karnataka 561203, India
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| |
Collapse
|
8
|
Panja A, Paul S, Moreno-Pineda E, Herchel R, Jana NC, Brandão P, Novitchi G, Wernsdorfer W. Insight into ferromagnetic interactions in Cu II-Ln III dimers with a compartmental ligand. Dalton Trans 2024; 53:2501-2511. [PMID: 38205580 PMCID: PMC10845014 DOI: 10.1039/d3dt03557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
In the last two decades, efforts have been devoted to obtaining insight into the magnetic interactions between CuII and LnIII utilizing experimental and theoretical means. Experimentally, it has been observed that the exchange coupling (J) in CuII-LnIII systems is often found to be ferromagnetic for ≥4f7 metal ions. However, exchange interactions at sub-Kelvin temperatures between CuII and the anisotropic/isotropic LnIII ions are not often explored. In this report, we have synthesized a series of heterobimetallic [CuLn(HL)(μ-piv)(piv)2] complexes (LnIII = Gd (1), Tb (2), Dy (3) and Er (4)) from a new compartmental Schiff base ligand, N,N'-bis(3-methoxy-5-methylsalicylidene)-1,3-diamino-2-propanol (H3L). X-ray crystallographic analysis reveals that all four complexes are isostructural and isomorphous. Magnetic susceptibility measurements reveal a ferromagnetic coupling between the CuII ion and its respective LnIII ion for all the complexes, as often observed. Moreover, μ-SQUID studies, at sub-Kelvin temperatures, show S-shaped hysteresis loops indicating the presence of antiferromagnetic coupling in complexes 1-3. The antiferromagnetic interaction is explained by considering the shortest Cu⋯Cu distance in the crystal structure. The nearly closed loops for 1-3 highlight their fast relaxation characteristics, while the opened loops for 4 might arise from intermolecular ordering. CASSCF calculations allow the quantitative assessment of the interactions, which are further supported by BS-DFT calculations.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| | - Sagar Paul
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany.
| | - Eufemio Moreno-Pineda
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, 0824 Panamá, Panama
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, 0824 Panamá, Panama
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes, B.P. 166, 38042 Grenoble Cedex 9, France
| | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany.
- Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen D-76344, Germany
| |
Collapse
|
9
|
Kuang X, Li Y, Yang M, Dong W, Leng J. Ln III/Mn II-Ln III complexes derived from a salicylic azo dye ligand: synthesis, structures, magnetic and fluorescence properties. Dalton Trans 2023; 52:16791-16801. [PMID: 37902968 DOI: 10.1039/d3dt02876c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Two LnIII complexes Ln(HTMSA)3(H2O)2·5.5H2O (Ln = Dy (1) and Tb (2), H2TMSA = 5-azotriazolyl-3-methoxysalicylaldehyde) and two MnII-LnIII clusters [Mn(H2O)6][MnLn2(TTMSA)4(HTTMSA)2(H2O)6]·4H2O (Ln = Dy (3) and Tb (4), H2TTMSA = 5-azotetrazolyl-3-methoxysalicylaldehyde) have been synthesized and structurally characterized. Single-crystal X-ray diffraction reveals that 1 and 2 are isostructural complexes in which the LnIII ions are surrounded by six oxygen atoms from three chelate HTMSA ligands and two oxygen atoms from two coordinated water molecules forming a distorted square-anti-prismatic geometry. In complexes 3 and 4, the MnII ions adjust two LnIII mononuclear anion clusters into tri-nuclear LnIII-MnII-LnIII anion clusters, with an additional [Mn(H2O)6]2+ as a counter ion to maintain the electroneutrality of the compound. Magnetic studies reveal that all the complexes 1-4 show nonzero out-of-phase signals, indicating single-molecule magnet behavior. The photoluminescence spectra of all the complexes were investigated and are discussed in detail.
Collapse
Affiliation(s)
- Xiaoman Kuang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Youhong Li
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Meng Yang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Wen Dong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| | - Jidong Leng
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China.
| |
Collapse
|
10
|
Dey A, Ali J, Moorthy S, Gonzalez JF, Pointillart F, Singh SK, Chandrasekhar V. Field induced single ion magnet behavior in Co II complexes in a distorted square pyramidal geometry. Dalton Trans 2023; 52:14807-14821. [PMID: 37791680 DOI: 10.1039/d3dt01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report three CoII-based complexes with the general formula [CoII(L)(X)2] by changing the halide/pseudo-halide ions [X = NCSe (1SeCN); Cl (2Cl) and Br (3Br)]. The obtained τ5 and CShM values confirm a distorted square pyramidal geometry around the CoII ion in all these complexes. In these three complexes, the central CoII ion is situated above the basal plane of the square pyramidal geometry. The extent of distortion from the ideal SPY-5 geometry differs upon changing the coordinating halide/pseudo-halide ion in these complexes. This essentially results in the alteration of the anisotropic parameter D and hence impacts the magnetic properties in these complexes. This phenomenon has been corroborated with the aid of theoretical investigations. All these complexes display field-induced SIM behaviour with magnetic relaxation occurring through a combination of processes depending on the applied dc magnetic field values and dilution.
Collapse
Affiliation(s)
- Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru 561203, India.
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Junaid Ali
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
11
|
Bazhina ES, Shmelev MA, Babeshkin KA, Efimov NN, Kiskin MA, Eremenko IL. Two families of Ln(III)-V(IV) compounds (Ln(III) = Eu, Tb, Dy, Ho) of different structural types mediated by Rb+ and Cs+ cations: Slow magnetic relaxation of Eu(III)- and Ho(III)-containing members. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Heras Ojea MJ, Wilson C, Cirera J, Oshio H, Ruiz E, Murrie M. Elucidating the exchange interactions in a {Gd IIICu II4} propellor. Dalton Trans 2023; 52:3203-3209. [PMID: 36799208 DOI: 10.1039/d2dt03901j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The multinucleating ligand 2,2'-(propane-1,3-diyldiimino)bis[2-(hydroxymethyl)-propane-1,3-diol] (bis-tris propane, H6L) is used in the design of a new family of 3d-4f complexes that display an unusual {LnCu4} four-blade propeller topology. We report the synthesis, structure and magnetic characterisation of [LnCu4(H4L)4](Cl)2(ClO4)·6CH3OH, where Ln = Gd (1), Tb (2), Dy (3), La (4). Previously we have used CH3COO- and NO3- as co-ligands with bis-tris propane, but here the use of Cl- and ClO4- leads to coordination of four {Cu(H4L)} units around the central Ln ion. A magneto-structural analysis reveals that the geometrical arrangement of the Cu(II) centres defined by the H4L2- ligands controls the magnetic communication between the different metal centres. DFT calculations performed on the isotropic (Gd) and diamagnetic (La) systems 1 and 4 help to unravel the intriguing exchange interactions.
Collapse
Affiliation(s)
| | - Claire Wilson
- School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | - Jordi Cirera
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Hiroki Oshio
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., 116024 Dalian, China
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Mark Murrie
- School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| |
Collapse
|
13
|
Meskaldji S, Belkhiri L, Maurice R, Costuas K, Le Guennic B, Boucekkine A, Ephritikhine M. Electronic Structure and Magneto-Structural Correlations Study of Cu 2UL Trinuclear Schiff Base Complexes: A 3d-5f-3d Case. J Phys Chem A 2023; 127:1475-1490. [PMID: 36749943 DOI: 10.1021/acs.jpca.2c08755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The magnetic properties of trinuclear Schiff base complexes M2AnLi (MII = Zn, Cu; AnIV = Th, U; Li = Schiff base; i = 1-4, 6, 7, 9), exhibiting the [M(μ-O)2]2U core structure with adjacent M1···U and M2···U and next-adjacent M1···M2 interactions, featuring 3d-5f-3d subsystems, have been investigated theoretically using relativistic ZORA/B3LYP computations combined with the broken symmetry (BS) approach. Bond order and natural population analyses reveal that the covalent contribution to the bonding within the Cu-O-U coordination is important thus favoring superexchange coupling between the transition metal and the uranium magnetic centers. The calculated coupling constants JCuU between the Cu and U atoms, agree with the observed shift from the antiferromagnetic (AF) character of the L1,2,3,4 complexes to the ferromagnetic (ferro) of the L6,7,9 ones. The structural parameters, i.e., the Cu···U distances and the Cu-O-U angles, as well as the electronic factors driving the magnetic couplings are discussed. The analyses are supported by the study of the mixed ZnCuULi and Cu2ThLi systems, where in the first complex the CuII (3d9) ion is replaced by the diamagnetic ZnII (3d10) one, whereas in the second complex the UIV (5f2) paramagnetic center is replaced by the diamagnetic ThIV (5f0) one.
Collapse
Affiliation(s)
- Samir Meskaldji
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri, 25017 Constantine, Algeria.,Ecole Normale Supérieure de l'Enseignement Technologique ENSET, 21000 Skikda, Algeria
| | - Lotfi Belkhiri
- Laboratoire de Physique Mathématique et Subatomique LPMS, Département de Chimie, Université des Frères Mentouri, 25017 Constantine, Algeria.,Centre de Recherche en Sciences Pharmaceutiques CRSP, Ali Mendjeli, 25000 Constantine, Algeria
| | - Rémi Maurice
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Karine Costuas
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Boris Le Guennic
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Abdou Boucekkine
- Univ Rennes, ISCR UMR 6226 CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Michel Ephritikhine
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Shiga T, Miyamoto H, Okamoto Y, Oshio H, Mihara N, Nihei M. Tetranuclear [Cu 3Ln] complexes derived from a tetraketone-type ligand. Dalton Trans 2023; 52:3947-3953. [PMID: 36779535 DOI: 10.1039/d2dt03892g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
A series of tetranuclear [Cu3Ln] complexes, [Cu3Gd(L)3(NO3)2(H2O)3](NO3)·H2O (1), [Cu3Tb(L)3(NO3)2(H2O)3](NO3) (2) and [Cu3Dy(L)3(NO3)3(H2O)2]·1.5(H2O) (3), were synthesized by a one-pot reaction using a simple tetraketone-type ligand (H2L = (3Z,5Z)-4,5-dihydroxy-3,5-octadiene-2,7-dione). X-ray structural analyses revealed that each complex has a planar tetranuclear core of [Cu3Ln] (Ln = Gd, Tb, and Dy), in which the Ln ion is accommodated in the centre of a Cu3O6 metallocycle. A cryomagnetic study revealed that all complexes show intramolecular ferromagnetic interactions between Cu(II) and Ln(III) ions. The [Cu3Gd] complex (1) has an ST = 5 spin ground state and shows a magneto-caloric effect with a maximum magnetic entropy change (-ΔSm) of 16.4 J kg-1 K-1 (5 T, 2.4 K). On the other hand, the [Cu3Tb] complex (2) shows a slow magnetic relaxation behavior under a zero magnetic field. The analysis of an Arrhenius plot reveals that the effective energy barrier of spin reversal is 13.1 K. The [Cu3Dy] complex (3) also shows a slow magnetic relaxation under 1300 Oe dc magnetic field with an effective energy barrier of 6.82 K.
Collapse
Affiliation(s)
- Takuya Shiga
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Haruka Miyamoto
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Yukiko Okamoto
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Hiroki Oshio
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Nozomi Mihara
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Masayuki Nihei
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
15
|
Interplay of Anisotropic Exchange Interactions and Single-Ion Anisotropy in Single-Chain Magnets Built from Ru/Os Cyanidometallates(III) and Mn(III) Complex. Molecules 2023; 28:molecules28031516. [PMID: 36771182 PMCID: PMC9921754 DOI: 10.3390/molecules28031516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Two novel 1D heterobimetallic compounds {[MnIII(SB2+)MIII(CN)6]·4H2O}n (SB2+ = N,N'-ethylenebis(5-trimethylammoniomethylsalicylideneiminate) based on orbitally degenerate cyanidometallates [OsIII(CN)6]3- (1) and [RuIII(CN)6]3- (2) and MnIII Schiff base complex were synthesized and characterized structurally and magnetically. Their crystal structures consist of electrically neutral, well-isolated chains composed of alternating [MIII(CN)6]3- anions and square planar [MnIII(SB2+)]3+ cations bridged by cyanide groups. These -ion magnetic anisotropy of MnIII centers. These results indicate that the presence of compounds exhibit single-chain magnet (SCM) behavior with the energy barriers of Δτ1/kB = 73 K, Δτ2/kB = 41.5 K (1) and Δτ1/kB = 51 K, Δτ2 = 27 K (2). Blocking temperatures of TB = 2.8, 2.1 K and magnetic hysteresis with coercive fields (at 1.8 K) of 8000, 1600 Oe were found for 1 and 2, respectively. Theoretical analysis of the magnetic data reveals that their single-chain magnet behavior is a product of a complicated interplay of extremely anisotropic triaxial exchange interactions in MIII(4d/5d)-CN-MnIII fragments: -JxSMxSMnx-JySMySMny-JzSMzSMnz, with opposite sign of exchange parameters Jx = -22, Jy = +28, Jz = -26 cm-1 and Jx = -18, Jy = +20, Jz = -18 cm-1 in 1 and 2, respectively) and single orbitally degenerate [OsIII(CN)6]3- and [RuIII(CN)6]3- spin units with unquenched orbital angular momentum in the chain compounds 1 and 2 leads to a peculiar regime of slow magnetic relaxation, which is beyond the scope of the conventional Glaubers's 1D Ising model and anisotropic Heisenberg model.
Collapse
|
16
|
Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev 2023; 52:383-444. [PMID: 36533405 DOI: 10.1039/d2cs00582d] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Saloutin VI, Edilova YO, Kudyakova YS, Burgart YV, Bazhin DN. Heterometallic Molecular Architectures Based on Fluorinated β-Diketone Ligands. Molecules 2022; 27:7894. [PMID: 36431999 PMCID: PMC9695714 DOI: 10.3390/molecules27227894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
This review summarizes the data on the synthesis of coordination compounds containing two or more different metal ions based on fluorinated β-diketonates. Heterometallic systems are of high interest in terms of their potential use in catalysis, medicine and diagnostics, as well as in the development of effective sensor devices and functional materials. Having a rich history in coordination chemistry, fluorinated β-diketones are well-known ligands generating a wide variety of heterometallic complexes. In this context, we focused on both the synthetic approaches to β-dicarbonyl ligands with additional coordination centers and their possible transformations in complexation reactions. The review describes bi- and polynuclear structures in which β-diketones are the key building blocks in the formation of a heterometallic framework, including the examples of both homo- and heteroleptic complexes.
Collapse
Affiliation(s)
- Viktor I. Saloutin
- Postovsky Institute of Organic Synthesis, The Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620108, Russia
| | - Yulia O. Edilova
- Postovsky Institute of Organic Synthesis, The Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620108, Russia
| | - Yulia S. Kudyakova
- Postovsky Institute of Organic Synthesis, The Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620108, Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, The Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620108, Russia
| | - Denis N. Bazhin
- Postovsky Institute of Organic Synthesis, The Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620108, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg 620002, Russia
| |
Collapse
|
18
|
Dhingra A, Hu X, Borunda MF, Johnson JF, Binek C, Bird J, N'Diaye AT, Sutter JP, Delahaye E, Switzer ED, Barco ED, Rahman TS, Dowben PA. Molecular transistors as substitutes for quantum information applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:441501. [PMID: 35998608 DOI: 10.1088/1361-648x/ac8c11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Applications of quantum information science (QIS) generally rely on the generation and manipulation of qubits. Still, there are ways to envision a device with a continuous readout, but without the entangled states. This concise perspective includes a discussion on an alternative to the qubit, namely the solid-state version of the Mach-Zehnder interferometer, in which the local moments and spin polarization replace light polarization. In this context, we provide some insights into the mathematics that dictates the fundamental working principles of quantum information processes that involve molecular systems with large magnetic anisotropy. Transistors based on such systems lead to the possibility of fabricating logic gates that do not require entangled states. Furthermore, some novel approaches, worthy of some consideration, exist to address the issues pertaining to the scalability of quantum devices, but face the challenge of finding the suitable materials for desired functionality that resemble what is sought from QIS devices.
Collapse
Affiliation(s)
- Archit Dhingra
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| | - Xuedong Hu
- Department of Physics, University at Buffalo, Buffalo, NY, 14260-1500, United States of America
| | - Mario F Borunda
- Department of Physics, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Joseph F Johnson
- Department of Mathematics & Statistics, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America
| | - Christian Binek
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| | - Jonathan Bird
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260-1900, United States of America
| | - Alpha T N'Diaye
- Advanced Light Source (ALS, BL631), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, F-31000 Toulouse, France
| | - Emilie Delahaye
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, F-31000 Toulouse, France
| | - Eric D Switzer
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America
| | - Enrique Del Barco
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States of America
| | - Peter A Dowben
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| |
Collapse
|
19
|
Akhtar MN, Mereacre V, Novitchi G, AlDamen MA, Anson CE, Powell AK. Synthesis, structures, and magnetic properties of Fe4-Ln2 (Ln = Tb, Ho, and Er) clusters with N, N, N′, N′-tetrakis-(2-hydroxyethyl)ethylenediamine. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
New Heterotrinuclear Cu IILn IIICu II (Ln = Ho, Er) Compounds with the Schiff Base: Syntheses, Structural Characterization, Thermal and Magnetic Properties. MATERIALS 2022; 15:ma15124299. [PMID: 35744355 PMCID: PMC9231215 DOI: 10.3390/ma15124299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
New heterotrinuclear complexes with the general formula [Cu2Ln(H2L)(HL)(NO3)2]·MeOH (Ln = Ho (1), Er (2), H4L = N,N′-bis(2,3-dihydroxybenzylidene)-1,3-diaminopropane) were synthesized using compartmental Schiff base ligand in conjugation with auxiliary ligands. The compounds were characterized by elemental analysis, ATR-FTIR spectroscopy, X-ray diffraction, TG, DSC, TG-FTIR and XRD analysis. The N2O4 salen-type ligand coordinates 3d and 4f metal centers via azomethine nitrogen and phenoxo oxygen atoms, respectively, to form heteropolynuclear complexes having CuO2Ln cores. In the crystals 1 and 2, two terminal Cu(II) ions are penta-coordinated with a distorted square-pyramidal geometry and a LnIII ion with trigonal dodecahedral geometry is coordinated by eight oxygen atoms from [CuII(H2L)(NO3)]− and [CuII(HL)(NO3)]2− units. Compounds 1 and 2 are stable at room temperature. During heating, they decompose in a similar way. In the first decomposition step, they lose solvent molecules. The exothermic decomposition of ligands is connected with emission large amounts of gaseous products e.g., water, nitric oxides, carbon dioxide, carbon monoxide. The final solid products of decomposition 1 and 2 in air are mixtures of CuO and Ho2O3/Er2O3. The measurements of magnetic susceptibilities and field dependent magnetization indicate the ferromagnetic interaction between CuII and HoIII ions 1.
Collapse
|
21
|
An intermetallic molecular nanomagnet with the lanthanide coordinated only by transition metals. Nat Commun 2022; 13:2014. [PMID: 35440596 PMCID: PMC9018761 DOI: 10.1038/s41467-022-29624-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetic molecules known as molecular nanomagnets (MNMs) may be the key to ultra-high density data storage. Thus, novel strategies on how to design MNMs are desirable. Here, inspired by the hexagonal structure of the hardest intermetallic magnet SmCo5, we have synthesized a nanomagnetic molecule where the central lanthanide (Ln) ErIII is coordinated solely by three transition metal ions (TM) in a perfectly trigonal planar fashion. This intermetallic molecule [ErIII(ReICp2)3] (ErRe3) starts a family of molecular nanomagnets (MNM) with unsupported Ln-TM bonds and paves the way towards molecular intermetallics with strong direct magnetic exchange interactions-a promising route towards high-performance single-molecule magnets.
Collapse
|
22
|
Ahmed N, Sharma T, Spillecke L, Koo C, Ansari KU, Tripathi S, Caneschi A, Klingeler R, Rajaraman G, Shanmugam M. Probing the Origin of Ferro-/Antiferromagnetic Exchange Interactions in Cu(II)–4f Complexes. Inorg Chem 2022; 61:5572-5587. [DOI: 10.1021/acs.inorgchem.2c00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Tanu Sharma
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Lena Spillecke
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Changhyun Koo
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Shalini Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Andrea Caneschi
- Department of Industrial Engineering, “DIEF” and INSTM RU, University of Florence, Via di S. Marta 3, 50131 Florence, Italy
| | - Rüdiger Klingeler
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
23
|
Ahmed N, Uddin Ansari K. Experimental and theoretical insights into Co-Ln magnetic exchange and the rare slow-magnetic relaxation behavior of [CoII2Pr] 2+ in a series of linear [CoII2Ln] 2+ complexes. Dalton Trans 2022; 51:4122-4134. [PMID: 35188157 DOI: 10.1039/d1dt03573h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a series of near-linear trinuclear complexes [Co2Ln(HL)4(NO3)](NO3)2 (where HL = (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate) with Ln(III) = La (1), Ce (2), Pr (3)). For the comparative study, we have also included the recently reported analogous complexes of Gd(III), Tb(III), and Dy(III) (complexes 4-6) with the same H2L ligand. The experimental nature of the dc magnetic susceptibilities profile and an empirical approach revealed that the magnetic exchange interaction between Co(II) and Ln(III) having <4f7 (complexes 2 and 3) is antiferromagnetic while the dominant interaction between Co(II) and Ln(III) having ≥4f7 (complexes 4-6) is ferromagnetic. Dynamic magnetic relaxation studies on complexes 1-3 revealed the field induced single-molecule magnetic (SMM) behavior of 1 and 3 with effective energy barriers of 10.65 K and 15.03 K respectively, for magnetic relaxation. To the best of our knowledge, 3d-Pr(III) based zero or field induced SMMs have not been reported to date. CASSCF/SO-RASSI/SINGLE_ANISO based ab initio calculations on the X-ray structures of complexes 1-6, followed by POLY_ANISO simulations, estimated the magnetic exchange coupling constants JCo-Ln and JCo-Co and also rationalized our experimental findings for the dynamic magnetic properties.
Collapse
Affiliation(s)
- Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| |
Collapse
|
24
|
Dais T, Takano R, Yamaguchi Y, Ishida T, Plieger PG. Metallocyclic Cu II-Ln III Single-Molecule Magnets from the Self-Assembly of 1,4-Diformylnaphthalene-2,3-diol. ACS OMEGA 2022; 7:5537-5546. [PMID: 35187368 PMCID: PMC8851650 DOI: 10.1021/acsomega.1c07001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
We report the synthesis and characterization of seven new tetranuclear 3d-4f complexes derived from the 3:3:1 reaction of 1,4-diformylnaphthalene-2,3-diol (H2 L) with copper(II) nitrate and a lanthanide salt, Ln = Tb [L 3Cu3TbCl2(NO3)2(H2O)2] (C1), Ho [L 3Cu3HoCl3(H2O)3(MeOH)](H2O) (C2), Er [L 3Cu3ErCl3(H2O)3.5(MeOH)0.5](H2O) (C3), Gd [L 3Cu3Gd(NO3)2(H2O)2(MeOH)](NO3) (C4), Dy [L 3Cu3Dy(NO3)2(H2O)2(MeOH)](NO3) (C5), Yb [L 3Cu3Yb(NO3)2(H2O)2(MeOH)](NO3) (C6), and La [L 3Cu3La(NO3)2(H2O)2(MeOH)](NO3) (C7). Structural elucidation showed that the self-assembly using the acyclic ligand system was successful for all seven complexes, which exhibit the same near-planar Cu3LnO12 core. Five complexes (C1, C2, and C4-C6) were magnetically characterized at 300 K and 1.8 K. Complexes C1, C4, and C5 were observed to have ferromagnetic ground states and showed appreciable frequency dependence in their AC magnetic measurements, which yielded effective barriers between 7.82(4) and 13.2(3) K, confirming the presence of single-molecule magnet properties.
Collapse
Affiliation(s)
- Tyson
N. Dais
- School
of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Rina Takano
- Department
of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Yoshiki Yamaguchi
- Department
of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Takayuki Ishida
- Department
of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Paul G. Plieger
- School
of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
25
|
Devi P, Singh K, Dabas P. Synthesis of Co+2, Ni+2, Cu+2, and Zn+2 complexes of Schiff base 5-methyl-3-((3,5-dichlorosalicylidene) amino)-pyrazole, spectral, and biological studies. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2035726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Priyanka Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Kiran Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Pooja Dabas
- Department of Microbiology, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
26
|
Moutzouris N, Moushi EE, Tziotzi TG, Tarlas GD, Tasiopoulos AJ, Escuer A, Papaefstathiou GS. Metallo‐ligand based 3d/4f coordination polymers: Synthesis, structure and magnetic properties. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nikolaos Moutzouris
- National and Kapodistrian University of Athens Department of Chemistry: Ethniko kai Kapodistriako Panepistemio Athenon Tmema Chemeias chemistry GREECE
| | | | - Thomais G. Tziotzi
- University of Crete Department of Chemistry: Panepistemio Kretes Tmema Chemeias chemistry GREECE
| | - Georgios D. Tarlas
- National and Kapodistrian University of Athens Department of Chemistry: Ethniko kai Kapodistriako Panepistemio Athenon Tmema Chemeias chemistry GREECE
| | | | - Albert Escuer
- University of Barcelona: Universitat de Barcelona chemistry SPAIN
| | - Giannis S Papaefstathiou
- National and Kapodistrian University of Athens Department of Chemistry: Ethniko kai Kapodistriako Panepistemio Athenon Tmema Chemeias Department of Chemistry Panepistimiopolis 157 71 Zografou GREECE
| |
Collapse
|
27
|
Roy S, Shukla P, Prakash Sahu P, Sun Y, Ahmed N, Chandra Sahoo S, Wang X, Kumar Singh S, Das S. Zero‐field Slow Magnetic Relaxation Behavior of Dy
2
in a Series of Dinuclear {Ln
2
} (Ln=Dy, Tb, Gd and Er) Complexes: A Combined Experimental and Theoretical Study. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Soumalya Roy
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| | - Pooja Shukla
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| | - Prem Prakash Sahu
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | - Yu‐Chen Sun
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Naushad Ahmed
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | | | - Xin‐Yi Wang
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Saurabh Kumar Singh
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| |
Collapse
|
28
|
Panja A, Jagličić Z, Herchel R, Brandão P, Pramanik K, Jana NC. Three angular Zn 2Dy complexes showing the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres. NEW J CHEM 2022. [DOI: 10.1039/d2nj01759h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three isostructural Zn2Dy complexes displaying the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
29
|
Kumar P, Flores Gonzalez J, Sahu PP, Ahmed N, Acharya J, Kumar V, Cador O, Pointillart F, Singh SK, Chandrasekhar V. Magnetocaloric effect and slow magnetic relaxation in peroxide-assisted tetranuclear lanthanide assemblies. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01260j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigation of a series of rare peroxide-assisted tetranuclear lanthanide assemblies revealed both significant magnetocaloric effect and slow magnetic relaxation.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Prem Prakash Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Naushad Ahmed
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India
| | - Joydev Acharya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Vierandra Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vadapalli Chandrasekhar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India
| |
Collapse
|
30
|
Panja A, Jagličić Z, Herchel R, Brandão P, Jana NC. Influence of bridging and chelating co-ligands on the distinct single-molecule magnetic behaviours in ZnDy complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four ZnDy complexes display an effect of bridging/chelating co-ligands on distinct single-molecule magnetic behaviours, relaxing through single to multi relaxation channels.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| |
Collapse
|
31
|
Panja A, Jagličić Z, Herchel R, Brandão P, Pramanik K, Jana NC. The first exploration of coordination chemistry using a methyl substituted o-vanillin based ligand: an example starting with Dy 4/Zn 2Dy 2 systems displaying slow relaxation of magnetization. NEW J CHEM 2022. [DOI: 10.1039/d1nj05717k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two butterfly-shaped Dy4 and Zn2Dy2 complexes displaying slow relaxation of magnetization have been synthesized from a new methyl substituted o-vanillin based ligand, enlarging the scope for finding better SMMs.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
32
|
Liu Y, Dong R, Wu K, Qiao S, Zhou H. Trinuclear, octanuclear, and one-dimensional chain of cyanido-bridged complexes based on Cu(II), Gd(III)/Pr(III) and Co(III): Synthesis, structures and magnetic properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Yang P, Hu H, Yu S, Liu D, Liang Y, Zou H, Liang F, Chen Z. Superb Alkali-Resistant Dy III2Ni II4 Single-Molecule Magnet. Inorg Chem 2021; 60:14752-14758. [PMID: 34530617 DOI: 10.1021/acs.inorgchem.1c01963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A superb alkali-resistant single-molecule-magnet (SMM) material with the molecular formula [Dy2Ni4(L)8(CH3COO)4(NO3)2] (1) (HL = 8-hydroxyquinoline) has been structurally and magnetically characterized. Single-crystal X-ray diffraction revealed that 1 possesses a hexanuclear [DyIII2NiII4] cluster, which is built by two triangular [DyIIINiII2] cores double-bridged through two CH3COO- ions. Interestingly, 1 can keep its original structure in dilute acid and common basic solutions (e.g., triethylamine and NaOH). More importantly, 1 is still stable after treatment with a 20 M NaOH aqueous solution for 1 month at room temperature. Magnetic measurements uncovered that 1 is an SMM under zero applied field with Ueff = 7.43 K. To the best of our knowledge, 1 is the first example of a 3d-4f SMM with such extreme alkali resistance. This work will broaden the vision of preparing SMM materials with excellent chemical stability.
Collapse
Affiliation(s)
- Panpan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huahong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
34
|
Hazra S, Karmakar A, da Silva MFCG, Pombeiro AJ. Alkoxo bridged heterobimetallic CoIIISnIV compounds with face shared coordination octahedra: Synthesis, crystal structure and cyanosilylation catalysis. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Synthesis, crystal structures and magnetism of CuIILnIII N2O4-donor coordination compounds involving dicyanamides. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|