1
|
Yao C, Zhao H, Liu Q, Xu Y, Ding X. Integrated Carbon Nanotube and Ketoenamine-Linked Covalent Organic Framework with Positive Charge Structure as High-Performance Capacitive Materials. Macromol Rapid Commun 2024:e2400829. [PMID: 39632493 DOI: 10.1002/marc.202400829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Indexed: 12/07/2024]
Abstract
A series of composite materials, ETB@CNT (ETB@CNT10, ETB@CNT20, ETB@CNT30, ETB@CNT40, ETB@CNT50) with different carbon nanotubes (CNTs) contents are successfully prepared by using one-pot method. Compared with the pure ET-B-COF, which is a ketoenamine-linked covalent organic framework (COF) with a positive charge structure, CNTs can effectively improve the electrochemical performance of ET-B-COF, and the specific capacitance increased with the increase of the mass of carbon nanotubes added during the preparation process. Among them, ETB@CNT40 exhibits the best electrochemical performance (37.6 F g-1) at a current density of 1 A g-1. This study indicates that the simultaneous introduction of CNTs into COFs can significantly improve the electrochemical performance of ketoenamine-linked COFs materials.
Collapse
Affiliation(s)
- Chan Yao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Haoyu Zhao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Qiushi Liu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
2
|
Xiao L, Yuan Y, Ding W, Wang Y, Lv LP. Activation of Carbonyl Groups in Polyimide-Based Covalent Organic Framework with Multiwalled Carbon Nanotubes toward Boosted Pseudocapacitance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25220-25228. [PMID: 39555854 DOI: 10.1021/acs.langmuir.4c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covalent organic frameworks (COFs) possessing a well-defined structure and abundant functional groups are prospective pseudocapacitive electrode materials. However, their intrinsic poor electrical conductivity and stacking problems usually impede the utilization of their active sites. Herein, we conduct an in situ growth of polyimide COFs (donated as NTDA COFs) enriched with carbonyl groups on multiwalled carbon nanotubes (MWCNTs). An impressive capacitance of 467 F g-1 at 1 A g-1 is achieved for the as-prepared NTDA/MWCNTs composite, significantly surpassing both the pure MWCNTs (60.3 F g-1) and NTDA COFs (284.4 F g-1). No decay of capacitance is observed after 10,000 cycles at 10 A g-1. The assembled device NTDA/MWCNTs//activated carbon reaches a high energy density of 17 Wh kg-1 at 750 W kg-1 while keeping superior charging/discharging stability of 89.5% after cycling for 19,000 times at 10 A g-1. In situ Fourier transform infrared (in situ FT-IR) tests together with the exploration of electrode kinetics show that the boosted capacitance of NTDA/MWCNTs is mainly donated by the redox reactions of carbonyl groups on NTDA COFs, which is largely activated by MWCNTs.
Collapse
Affiliation(s)
- Luyi Xiao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Yu Yuan
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Wei Ding
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Li-Ping Lv
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
3
|
Cheng X, Bae J. Recent Advancements in Fabrication, Separation, and Purification of Hierarchically Porous Polymer Membranes and Their Applications in Next-Generation Electrochemical Energy Storage Devices. Polymers (Basel) 2024; 16:3269. [PMID: 39684015 DOI: 10.3390/polym16233269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, hierarchically porous polymer membranes (HPPMs) have emerged as promising materials for a wide range of applications, including filtration, separation, and energy storage. These membranes are distinguished by their multiscale porous structures, comprising macro-, meso-, and micropores. The multiscale structure enables optimizing the fluid dynamics and maximizing the surface areas, thereby improving the membrane performance. Advances in fabrication techniques such as electrospinning, phase separation, and templating have contributed to achieving precise control over pore size and distribution, enabling the creation of membranes with properties tailored to specific uses. In filtration systems, these membranes offer high selectivity and permeability, making them highly effective for the removal of contaminants in environmental and industrial processes. In electrochemical energy storage systems, the porous membrane architecture enhances ion transport and charge storage capabilities, leading to improved performance in batteries and supercapacitors. This review highlights the recent advances in the preparation methods for hierarchically porous structures and their progress in electrochemical energy storage applications. It offers valuable insights and references for future research in this field.
Collapse
Affiliation(s)
- Xiong Cheng
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Joonho Bae
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Davletbaeva IM, Sazonov OO. Macromolecular Architecture in the Synthesis of Micro- and Mesoporous Polymers. Polymers (Basel) 2024; 16:3267. [PMID: 39684011 DOI: 10.3390/polym16233267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polymers with micro- and mesoporous structure are promising as materials for gas storage and separation, encapsulating agents for controlled drug release, carriers for catalysts and sensors, precursors of nanostructured carbon materials, carriers for biomolecular immobilization and cellular scaffolds, as materials with a low dielectric constant, filtering/separating membranes, proton exchange membranes, templates for replicating structures, and as electrode materials for energy storage. Sol-gel technologies, track etching, and template synthesis are used for their production, including in micelles of surfactants and microemulsions and sublimation drying. The listed methods make it possible to obtain pores with variable shapes and sizes of 5-50 nm and achieve a narrow pore size distribution. However, all these methods are technologically multi-stage and require the use of consumables. This paper presents a review of the use of macromolecular architecture in the synthesis of micro- and mesoporous polymers with extremely high surface area and hierarchical porous polymers. The synthesis of porous polymer frameworks with individual functional capabilities, the required chemical structure, and pore surface sizes is based on the unique possibilities of developing the architecture of the polymer matrix.
Collapse
Affiliation(s)
- Ilsiya M Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Oleg O Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| |
Collapse
|
5
|
Yang Y, Yao X, Xuan Z, Chen X, Zhang Y, Huang T, Shi M, Chen Y, Lan YQ. Porous crystalline conjugated macrocyclic materials and their energy storage applications. MATERIALS HORIZONS 2024; 11:3747-3763. [PMID: 38895771 DOI: 10.1039/d4mh00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Porous crystalline conjugated macrocyclic materials (CMMs) possess high porosity, tunable structure/function and efficient charge transport ability owing to their planar macrocyclic conjugated π-electron system, which make them promising candidates for applications in energy storage. In this review, we thoroughly summarize the timely development of porous crystalline CMMs in energy storage related fields. Specifically, we summarize and discuss their structures and properties. In addition, their energy storage applications, such as lithium ion batteries, lithium sulfur batteries, sodium ion batteries, potassium ion batteries, Li-CO2 batteries, Li-O2 batteries, Zn-air batteries, supercapacitors and triboelectric nanogenerators, are also discussed. Finally, we present the existing challenges and future prospects. We hope this review will inspire the development of advanced energy storage materials based on porous crystalline CMMs.
Collapse
Affiliation(s)
- Yiwen Yang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xiaoman Yao
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Zhe Xuan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xuanxu Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yuluan Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Taoping Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Mingjin Shi
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Liu X, Liu G, Fu T, Ding K, Guo J, Wang Z, Xia W, Shangguan H. Structural Design and Energy and Environmental Applications of Hydrogen-Bonded Organic Frameworks: A Systematic Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400101. [PMID: 38647267 PMCID: PMC11165539 DOI: 10.1002/advs.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are emerging porous materials that show high structural flexibility, mild synthetic conditions, good solution processability, easy healing and regeneration, and good recyclability. Although these properties give them many potential multifunctional applications, their frameworks are unstable due to the presence of only weak and reversible hydrogen bonds. In this work, the development history and synthesis methods of HOFs are reviewed, and categorize their structural design concepts and strategies to improve their stability. More importantly, due to the significant potential of the latest HOF-related research for addressing energy and environmental issues, this work discusses the latest advances in the methods of energy storage and conversion, energy substance generation and isolation, environmental detection and isolation, degradation and transformation, and biological applications. Furthermore, a discussion of the coupling orientation of HOF in the cross-cutting fields of energy and environment is presented for the first time. Finally, current challenges, opportunities, and strategies for the development of HOFs to advance their energy and environmental applications are discussed.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Guangli Liu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Tao Fu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Keren Ding
- AgResearchRuakura Research CentreHamilton3240New Zealand
| | - Jinrui Guo
- College of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Zhenran Wang
- School of Environmental Science and EngineeringSouthwest Jiaotong UniversityChengdu611756China
| | - Wei Xia
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
| |
Collapse
|
7
|
Liu Q, Yu Z, Zhang B. Tackling the Challenges of Aqueous Zn-Ion Batteries via Polymer-Derived Strategies. SMALL METHODS 2024; 8:e2300255. [PMID: 37417207 DOI: 10.1002/smtd.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Zn-ion batteries (ZIBs) have gathered unprecedented interest recently benefiting from their intrinsic safety, affordability, and environmental benignity. Nevertheless, their practical implementation is hampered by low rate performance, inferior Zn2+ diffusion kinetics, and undesired parasitic reactions. Innovative solutions are put forth to address these issues by optimizing the electrodes, separators, electrolytes, and interfaces. Remarkably, polymers with inherent properties of low-density, high processability, structural flexibility, and superior stability show great promising in tackling the challenges. Herein, the recent progress in the synthesis and customization of functional polymers in aqueous ZIBs is outlined. The recent implementations of polymers into each component are summarized, with a focus on the inherent mechanisms underlying their unique functions. The challenges of incorporating polymers into practical ZIBs are also discussed and possible solutions to circumvent them are proposed. It is hoped that such a deep analysis could accelerate the design of polymer-derived approaches to boost the performance of ZIBs and other aqueous battery systems as they share similarities in many aspects.
Collapse
Affiliation(s)
- Qun Liu
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Zhenlu Yu
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Biao Zhang
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| |
Collapse
|
8
|
Zakeri F, Javid A, Orooji Y, Fazli A, Khataee A, Khataee A. Al-Ce co-doped BaTiO 3 nanofibers as a high-performance bifunctional electrochemical supercapacitor and water-splitting electrocatalyst. Sci Rep 2024; 14:9833. [PMID: 38684695 PMCID: PMC11538466 DOI: 10.1038/s41598-024-54561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/14/2024] [Indexed: 05/02/2024] Open
Abstract
Supercapacitors and water splitting cells have recently played a key role in offering green energy through converting renewable sources into electricity. Perovskite-type electrocatalysts such as BaTiO3, have been well-known for their ability to efficiently split water and serve as supercapacitors due to their high electrocatalytic activity. In this study, BaTiO3, Al-doped BaTiO3, Ce-doped BaTiO3, and Al-Ce co-doped BaTiO3 nanofibers were fabricated via a two-step hydrothermal method, which were then characterized and compared for their electrocatalytic performance. Based on the obtained results, Al-Ce co-doped BaTiO3 electrode exhibited a high capacitance of 224.18 Fg-1 at a scan rate of 10 mVs-1, high durability during over the 1000 CV cycles and 2000 charge-discharge cycles, proving effective energy storage properties. Additionally, the onset potentials for OER and HER processes were 11 and - 174 mV vs. RHE, respectively, demonstrating the high activity of the Al-Ce co-doped BaTiO3 electrode. Moreover, in overall water splitting, the amount of the overpotential was 0.820 mV at 10 mAcm-2, which confirmed the excellent efficiency of the electrode. Hence, the remarkable electrocatalytic performance of the Al-Ce co-doped BaTiO3 electrode make it a promising candidate for renewable energy technologies owing to its high conductivity and fast charge transfer.
Collapse
Affiliation(s)
- Fatemeh Zakeri
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159, Longpan Road, Nanjing, 210037, Jiangsu, China
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Abbas Javid
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Arezou Fazli
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Amirreza Khataee
- Division of Applied Electrochemistry, Department of Chemical Engineering, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran.
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, 34469, Turkey.
| |
Collapse
|
9
|
Liang Z, Liang H. Synthesis of Nano-Structured Conjugated Polymers with Multiple Micro-/Meso-Pores by the Post-Crosslinking of End-Functionalized Hyperbranched Conjugated Polymers. Polymers (Basel) 2024; 16:1192. [PMID: 38732661 PMCID: PMC11085608 DOI: 10.3390/polym16091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
A nano-structured conjugated polymer with multiple micro-/meso-pores was synthesized by post-crosslinking of an end-functionalized hyperbranched conjugated prepolymer. Firstly, an AB2 monomer 3-((3,5-dibromo-4-(octyloxy)phenyl)ethynyl)-6-ethynyl-9-octyl-9H-carbazole (PECz) was synthesized and polymerized by Sonogashira reaction to give the -Br end-functionalized hyperbranched conjugated prepolymer hb-PPECz. The photophysical and electrochemical properties of hb-PPECz were investigated. The λmax of absorption and emission of hb-PPECz in tetrahydrofuran (THF) solution was 313 and 483 nm, respectively. The optical energy bandgap, highest occupied molecular orbital (HOMO), and lowest unoccupied molecular orbital (LUMO) energy levels of hb-PPECz were 2.98, -5.81, and -2.83 eV, respectively. Then, the prepolymer hb-PPECz was post-crosslinked by Heck reaction with divinylbenzene to give the porous conjugated polymer c-PPECz. The effects of hb-PPECz concentration and added dispersant polyvinylpyrrolidone (PVP K-30) on the morphology and porosity of c-PPECz were investigated. The resulting c-PPECzs showed multiple porous structures mainly constructed by micropores and mesopores. Under a higher hb-PPECz concentration (4 wt/v%), a bulky gel product was obtained. Under lower hb-PPECz concentrations (0.6 wt/v%~2 wt/v%), the resulting c-PPECzs were mainly composed of nano-sized particles. Nearly spheric nanoparticles (200~300 nm) (c-PPECz-5) were obtained under the concentration of 1 wt/v% in the presence of PVP (10 wt% of hb-PPECz). The Brunauer-Emmett-Teller (BET) surface area, pore volume, average pore size, and percentage of pore size below 10 nm of c-PPECz-5 were 10.7781 m2·g-1, 0.0108 cm3·g-1, 4.0081 nm, and 94.47%, respectively.
Collapse
Affiliation(s)
| | - Hui Liang
- Key Laboratory of Designed Synthesis and Application of Polymer Materials (DSAPM Lab), Key Laboratory for Polymer Composite and Functional Materials of Ministry of Education (PCFM Lab), School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China;
| |
Collapse
|
10
|
Wu X, Zhou W, Ye C, Zhang J, Liu Z, Yang C, Peng J, Liu J, Gao P. Porphyrin-Thiophene Based Conjugated Polymer Cathode with High Capacity for Lithium-Organic Batteries. Angew Chem Int Ed Engl 2024; 63:e202317135. [PMID: 38332748 DOI: 10.1002/anie.202317135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Organic electrode materials are promising for next-generation energy storage materials due to their environmental friendliness and sustainable renewability. However, problems such as their high solubility in electrolytes and low intrinsic conductivity have always plagued their further application. Polymerization to form conjugated organic polymers can not only inhibit the dissolution of organic electrodes in the electrolyte, but also enhance the intrinsic conductivity of organic molecules. Herein, we synthesized a new conjugated organic polymer (COPs) COP500-CuT2TP (poly [5,10,15,20-tetra(2,2'-bithiophen-5-yl) porphyrinato] copper (II)) by electrochemical polymerization method. Due to the self-exfoliation behavior, the porphyrin cathode exhibited a reversible discharge capacity of 420 mAh g-1, and a high specific energy of 900 Wh Kg-1 with a first coulombic efficiency of 96 % at 100 mA g-1. Excellent cycling stability up to 8000 cycles without capacity loss was achieved even at a high current density of 5 A g-1. This highly conjugated structure promotes COP500-CuT2TP combined high energy density, high power density, and good cycling stability, which would open new opportunity for the designable and versatile organic electrodes for electrochemical energy storage.
Collapse
Affiliation(s)
- Xing Wu
- Key laboratory of Enviromentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| | - Wang Zhou
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy., Hunan University, Changsha, 410082, China
| | - Chao Ye
- Key laboratory of Enviromentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| | - Jiahao Zhang
- Key laboratory of Enviromentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| | - Zheyuan Liu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Chengkai Yang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jinfeng Peng
- School of Mechanical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy., Hunan University, Changsha, 410082, China
| | - Ping Gao
- Key laboratory of Enviromentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| |
Collapse
|
11
|
Wu P, Sui P, Peng G, Sun Z, Liu F, Yao W, Jin H, Lin S. Designable Photo-Responsive Micron-Scale Ultrathin Peptoid Nanobelts for Enhanced Performance on Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312724. [PMID: 38197470 DOI: 10.1002/adma.202312724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Indexed: 01/11/2024]
Abstract
The development of high-reactive single-atom catalysts (SACs) based on long-range-ordered ultrathin organic nanomaterials (UTONMs) (i.e., below 3 nm) provides a significant tactic for the advancement in hydrogen evolution reactions (HER) but remains challenging. Herein, photo-responsive ultrathin peptoid nanobelts (UTPNBs) with a thickness of ≈2.2 nm and micron-scaled length are generated using the self-assembly of azobenzene-containing amphiphilic ternary alternating peptoids. The pendants hydrophobic conjugate stacking mechanism reveals the formation of 1D ultralong UTPNBs, whose thickness is dictated by the length of side groups that are linked to peptoid backbones. The photo-responsive feature is demonstrated by a reversible morphological transformation from UTPNBs to nanospheres (21.5 nm) upon alternative irradiation with UV and visible lights. Furthermore, the electrocatalyst performance of these aggregates co-decorated with nitrogen-rich ligand of terpyridine (TE) and uniformly-distributed atomic platinum (Pt) is evaluated toward HER, with a photo-controllable electrocatalyst activity that highly depended on both the presence of Pt element and structural characteristic of substrates. The Pt-based SACs using TE-modified UTPNBs as support exhibit a favorable electrocatalytic capacity with an overpotential of ≈28 mV at a current density of 10 mA cm-2. This work presents a promising strategy to fabricate stimuli-responsive UTONMs-based catalysts with controllable HER catalytic performance.
Collapse
Affiliation(s)
- Pengchao Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengliang Sui
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guiping Peng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zichao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenqian Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
12
|
Wang A, Yang X, Wang Q, Dou Y, Zhao L, Zhu W, Zhao W, Zhu G. Acenaphthenediimine complex-bridged porphyrin porous organic polymer with enriched active sites as a robust water splitting electrocatalyst. J Colloid Interface Sci 2024; 657:748-756. [PMID: 38071823 DOI: 10.1016/j.jcis.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
To realize efficient water splitting, a highly promising hydrogen evolution reaction (HER) electrocatalyst is needed for the generation of hydrogen. Herein, we demonstrate a novel acenaphthenediimine complex-bridged porphyrin porous organic polymer (NiTAPP-NiACQ) with enriched active metal sites and hierarchical pores. The as-prepared NiTAPP-NiACQ exhibits good long-term durability and remarkable HER performance in 1.0 M KOH with a low overpotential of 117 mV at 10 mA cm-2, which is comparable to many previously reported electrocatalytic HER systems. Furthermore, a simple water-alkali electrolyzer using NiTAPP-NiACQ as the cathode requires a small cell voltage of 1.59 V to deliver a current density of 10 mA cm-2 at room temperature, along with outstanding durability. NiTAPP-NiACQ features not only a metal ion as the catalytic active center in the porphyrin core but also metal ion coordination on the anthraquinone component to promote HER performance, enabling multiple metal ions as the electrocatalytic active sites for the HER reaction. The excellent HER activity of NiTAPP-NiACQ is ascribed to a combination of mechanisms. These findings highlight the viability of porphyrin-derived porous organic polymers in energy conversion processes.
Collapse
Affiliation(s)
- Aijian Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xin Yang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qi Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuqin Dou
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Long Zhao
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weihua Zhu
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Wei Zhao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Guisheng Zhu
- Institute of SOPO, Jiangsu SOPO Corporation (Group) LTD, Zhenjiang 212006, PR China
| |
Collapse
|
13
|
Dong C, Cao L, Xu X, Tao X, Zhu G. Atom-Economical Synthesis of Lewis Acidic Boron Containing Porous Organic Polymers via Hydroboration Polymerization for Basic Chemical Capture. SMALL METHODS 2023:e2301302. [PMID: 38050926 DOI: 10.1002/smtd.202301302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Atom economy is one of the main concerns for material synthesis. Here, the facile synthesis of Lewis acidic boron-containing porous organic polymers (B-POPs) via hydroboration polymerization reaction of commercially available borane dimethyl sulfide complex (BH3 ∙SMe2 ) with multi-alkynes under mild reaction conditions is presented. This new synthetic method for B-POPs has the advantage of high atom economy. The resulted porous alkenyl borane polymers (PABPs) have unique features such as high boron content, strong Lewis acidity, and high surface areas. Owing to the strong Lewis acid-base interactions, PABPs exhibit excellent adsorptive capacity toward triethylamine (up to 841 mg g-1 ) and pyridine (up to 1396 mg g-1 ) vapor.
Collapse
Affiliation(s)
- Chengcheng Dong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Linzhu Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xinmeng Xu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xin Tao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
14
|
Wang Y, Yang G, Wang G, Min Y, Zhou L, Yang C, Huang J, Dai G. Superlithiation Performance of Pyridinium Polymerized Ionic Liquids with Fast Li + Diffusion Kinetics as Anode Materials for Lithium-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302811. [PMID: 37194977 DOI: 10.1002/smll.202302811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 05/18/2023]
Abstract
Polymerized ionic liquids (PILs) with super ion diffusion kinetics have aroused considerable attention in rechargeable batteries, which are very promising to solve the problem of the slow ion diffusion kinetics in organic electrode materials. Theoretically, PILs incorporated redox groups are very suitable as anode materials to realize "superlithiation" performance, achieving high lithium storage capacity. In this study, redox pyridinium-based PILs (PILs-Py-400) have been synthesized through trimerization reactions by pyridinium ionic liquids with cyano groups under an appropriate temperature (400 °C). The positively charged skeleton, extended conjugated system, abundant micropores, and amorphous structure for PILs-Py-400 can boost the utilization efficiency of redox sites. A high capacity of 1643 mAh g-1 at 0.1 A g-1 (96.7% of the theoretical capacity) has been obtained, indicating intriguing 13 Li+ redox reactions in per repeating unit of one pyridinium ring, one triazine ring, and one methylene. Moreover, PILs-Py-400 exhibit excellent cycling stability with a capacity of around 1100 mAh g-1 at 1.0 A g-1 after 500 cycles, and the capacity retention is 92.2%.
Collapse
Affiliation(s)
- Yeji Wang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Gege Yang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Gaolei Wang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Yuxin Min
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Le Zhou
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Chaofan Yang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Junjie Huang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Guoliang Dai
- School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
15
|
Shan Z, Wu M, Liu T, Wang J, Chen C, Li S, Su J, Zhang G. Adjusting the Stacking Model of Two-Dimensional Covalent Organic Frameworks for Volatile Acid Sensing via Spatial Effects. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433068 DOI: 10.1021/acsami.3c05702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Covalent organic frameworks (COFs) are polymer networks with a precise structure and permanent porosity, making them an attractive platform for the detection of volatile analytes due to their chemical stability and accessible active sites. In this study, based on electron-rich N,N,N',N'-tetrakis(4-aminophenyl)-1,4-benzenediamine moiety, two 2D COFs with different topological structures and stacking models were designed by the strategy of spatial effect. The conductivity of the AB-stacked COF-NUST-20 was an order of magnitude higher than that of the AA-stacked COF-NUST-30. With the protonation of the imine bond, both COFs exhibited a strong, rapid, and reversible visible color change in response to corrosive HCl vapor. In addition, the AB-stacked COF-NUST-20, which facilitates both interlayer and intralayer charge transfer, shows better sensing performance. These findings demonstrate the usefulness of all-aromatic 2D COFs as real-time responsive chemosensors and provide insight into the design of sensing materials with high sensitivity.
Collapse
Affiliation(s)
- Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Tongtong Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Congjie Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Shufan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Wang Q, Chen Q, Zhao R, Wang H, Diao W, Cui F, Li SY, Wang H, Zhu G. Salen-based porous aromatic frameworks with multi-active sites as anode materials for lithium-ion batteries. J Colloid Interface Sci 2023; 648:616-622. [PMID: 37321080 DOI: 10.1016/j.jcis.2023.06.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Porous organic polymers are considered as excellent candidates for the electrode materials in rechargeable battery due to their desirable properties including porosity, customizable structure, and intrinsic chemical stability. Herein a Salen-based porous aromatic framework (Zn/Salen-PAF) is synthesized through a metal directed method and further used as efficient anode materialfor lithium-ion battery. Attributing to the stable functional skeleton, Zn/Salen-PAF delivers a reversible capacity of 631 mAh·g-1 at 50 mA·g-1, a high-rate capability of 157 mAh·g-1 at 20.0 A·g-1 and a long-term cycling capacity of 218 mAh·g-1 at 5.0 A·g-1 even after 2000 cycles. Compared to the Salen-PAF without metal ions, Zn/Salen-PAF possesses better electrical conductivity and more active sites. X-ray photoelectron spectroscopy (XPS) investigation indicates that the coordination of Zn2+ with N2O2 unit not only improves the conjugation of the framework but also contributes to the in situ cross-sectional oxidation of the ligand during reaction, which results in the electron redistribution of oxygen atom and the formation of CO bonds.
Collapse
Affiliation(s)
- Qimeng Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Qi Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Rui Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Haiyu Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Weijian Diao
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Shu-Ying Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| | - Hengguo Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| |
Collapse
|
17
|
Yang HC, Chen YY, Suen SY, Lee RH. Triazine-based covalent organic framework/carbon nanotube fiber nanocomposites for high-performance supercapacitor electrodes. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
18
|
Electrodeposition of binderless Ni,Zn-MOF on porous nickel substrate for high-efficiency supercapacitors. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Azhar U, Arif M, Bashir MS, Babar M, Sagir M, Yasin G. Functionalized Fe 3O 4-based methyl methacrylate Pickering PolyHIPE composites costabilized by fluorinated block copolymer for oil/water separation. CHEMOSPHERE 2022; 309:136526. [PMID: 36150494 DOI: 10.1016/j.chemosphere.2022.136526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
High internal phase emulsion (HIPE) technology has been emerged as a prodigious source to create tailor-made porous structures. This type of emulsion contains significantly higher amount of water in it, which is only possible with special type of stabilizers. Most specifically, the monomers with sufficiently high solubility in water such as methyl methacrylate (MMA) make it more cumbersome to stabilize in the form of HIPE. Here we have reported the combination of stabilizers including fluorinated block copolymer Poly (2-dimethylamino)ethyl methacrylate-b-Poly(trifluoroethyl methacrylate) (PDMAEMA-b-PTFEMA) and humic acid modified iron-oxide (HA-Fe3O4) nanoparticles (NPs) to stabilize HIPE, which resulted in highly porous and interconnected products. Fluorinated block copolymers with inherent hydrophobic nature along with iron oxide nanoparticles increased the water repellency of MMA based polymeric monoliths. Increasing the amount of stabilizer increased the porosity and BET specific surface area to 83.8% and 27 ± 0.8 μm, respectively. The prepared porous materials demonstrated hydrophobic characteristics while adsorbing oil from the surface of water up to 16 g/g. Moreover, the adsorbed oil from the prepared monolith was recovered by using simple centrifugation method without damaging the structure. This research opens new avenues to prepare more useful oil and water separation materials such as membranes, pollutant adsorbers, and so on.
Collapse
Affiliation(s)
- Umair Azhar
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Muhammad Arif
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan.
| | - Muhammad Sohail Bashir
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Muhammad Babar
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Muhammad Sagir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Ghulam Yasin
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
20
|
The emerging aqueous zinc-organic battery. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Lian L, Li K, Ren L, Han D, Lv X, Wang HG. Imine-Linked Triazine-Based Conjugated Microporous Polymers/carbon nanotube composites as Organic Anode Materials for Lithium-Ion Batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Covalent Organic Frameworks Composites Containing Bipyridine Metal Complex for Oxygen Evolution and Methane Conversion. Molecules 2022; 27:molecules27165193. [PMID: 36014434 PMCID: PMC9416349 DOI: 10.3390/molecules27165193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Novel covalent organic framework (COF) composites containing a bipyridine multimetal complex were designed and obtained via the coordination interaction between bipyridine groups and metal ions. The obtained Pt and polyoxometalate (POM)–loaded COF complex (POM–Pt@COF–TB) exhibited excellent oxidation of methane. In addition, the resultant Co/Fe–based COF composites achieved great performance in an electrocatalytic oxygen evolution reaction (OER). Compared with Co–modified COFs (Co@COF–TB), the optimized bimetallic modified COF composites (Co0.75Fe0.25@COF–TB) exhibited great performance for electrocatalytic OER activity, showing a lower overpotential of 331 mV at 10 mA cm−2. Meanwhile, Co0.75Fe0.25@COF–TB also possessed a great turnover frequency (TOF) value (0.119 s−1) at the overpotential of 330 mV, which exhibited high efficiency in the utilization of metal atoms and was better than that of many reported COF-based OER electrocatalysts. This work provides a new perspective for the future coordination of COFs with bimetallic or polymetallic ions, and broadens the application of COFs in methane conversion and electrocatalytic oxygen evolution.
Collapse
|
23
|
Zhang B, Chen L, Zhang Z, Li Q, Khangale P, Hildebrandt D, Liu X, Feng Q, Qiao S. Modulating the Band Structure of Metal Coordinated Salen COFs and an In Situ Constructed Charge Transfer Heterostructure for Electrocatalysis Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105912. [PMID: 35657033 PMCID: PMC9353467 DOI: 10.1002/advs.202105912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Indexed: 05/22/2023]
Abstract
A series of crystalline, stable Metal (Metal = Zn, Cu, Ni, Co, Fe, and Mn)-Salen covalent organic framework (COF)EDA complex are prepared to continuously tune the band structure of Metal-Salen COFEDA , with the purpose of optimizing the free energy intermediate species during the hydrogen evolution reaction (HER) process. The conductive macromolecular poly(3,4-ethylenedioxythiophene) (PEDOT) is subsequently integrated into the one-dimensional (1D) channel arrays of Metal-Salen COFEDA to form heterostructure PEDOT@Metal-Salen COFEDA via the in situ solid-state polymerization method. Among the Metal-Salen COFEDA and PEDOT@Metal-Salen COFEDA complexes, the optimized PEDOT@Mn-Salen COFEDA displays prominent electrochemical activity with an overpotential of 150 mV and a Tafel slope of 43 mV dec-1 . The experimental results and density of states data show that the continuous energy band structure modulation in Metal-Salen COFEDA has the ability to make the metal d-orbital interact better with the s-orbital of H, which is conducive to electron transport in the HER process. Moreover, the calculated charge density difference indicates that the heterostructures composed of PEDOT and Metal-Salen COFEDA induce an intramolecular charge transfer and construct highly active interfacial sites.
Collapse
Affiliation(s)
- Boying Zhang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
- Department of Chemical EngineeringFaculty of Engineering and the Built EnvironmentUniversity of JohannesburgDoornfontein2028South Africa
| | - Liling Chen
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Zhenni Zhang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
| | - Qing Li
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
| | - Phathutshedzo Khangale
- Department of Chemical EngineeringFaculty of Engineering and the Built EnvironmentUniversity of JohannesburgDoornfontein2028South Africa
| | - Diane Hildebrandt
- African Energy Leadership CentreWITS Business School and Molecular Science InstituteSchool of ChemistryUniversity of WitwatersrandJohannesburg2050South Africa
| | - Xinying Liu
- Institute for Development of Energy for African SustainabilityUniversity of South AfricaFlorida1709South Africa
| | - Qingliang Feng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
- Hebei Electronic Organic Chemicals Technology Innovation CenterShijiazhuang050018P. R. China
| |
Collapse
|
24
|
Wang Q, Wang A, Dou Y, Shen X, Sudi MS, Zhao L, Zhu W, Li L. A tin porphyrin axially-coordinated two-dimensional covalent organic polymer for efficient hydrogen evolution. Chem Commun (Camb) 2022; 58:7423-7426. [PMID: 35695858 DOI: 10.1039/d2cc02775e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we demonstrate a facile strategy for constructing an efficient and stable hydrogen evolution reaction (HER) catalyst, i.e. a tin porphyrin axially-coordinated 2D covalent organic polymer (SnTPPCOP). SnTPPCOP exhibits promising HER activity with a low overpotential of 147 mV at 10 mA cm-2 due to its unique structural properties, ranking among the best records reported recently.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Aijian Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Yuqin Dou
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaoliang Shen
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - M Shire Sudi
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Long Zhao
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Weihua Zhu
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Longhua Li
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
25
|
Liu X, Liu CF, Xu S, Cheng T, Wang S, Lai WY, Huang W. Porous organic polymers for high-performance supercapacitors. Chem Soc Rev 2022; 51:3181-3225. [PMID: 35348147 DOI: 10.1039/d2cs00065b] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the aim of addressing the global warming issue and fossil energy shortage, eco-friendly and sustainable renewable energy technologies are urgently needed. In comparison to energy conversion, studies on energy storage fall behind and remain largely to be explored. By storing energy from electrochemical processes at the electrode surface, supercapacitors (SCs) bridge the performance gap between electrostatic double-layer capacitors and batteries. Organic electrode materials have drawn extensive attention because of their special power density, good round trip efficiency and excellent cycle stability. Porous organic polymers (POPs) have drawn extensive attention as attractive electrode materials in SCs. In this review, we present and discuss recent advancements and design principles of POPs as efficient electrode materials for SCs from the perspectives of synthetic strategies and the structure-performance relationships of POPs. Finally, we put forward the outlook and prospects of POPs for SCs.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Cheng-Fang Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shihao Xu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Tao Cheng
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shi Wang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wen-Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. .,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. .,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
26
|
Mohamed MG, Mansoure TH, Samy MM, Takashi Y, Mohammed AAK, Ahamad T, Alshehri SM, Kim J, Matsagar BM, Wu KCW, Kuo SW. Ultrastable Conjugated Microporous Polymers Containing Benzobisthiadiazole and Pyrene Building Blocks for Energy Storage Applications. Molecules 2022; 27:2025. [PMID: 35335388 PMCID: PMC8952824 DOI: 10.3390/molecules27062025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, conjugated microporous polymers (CMPs) have become important precursors for environmental and energy applications, compared with inorganic electrode materials, due to their ease of preparation, facile charge storage process, π-conjugated structures, relatively high thermal and chemical stability, abundance in nature, and high surface areas. Therefore, in this study, we designed and prepared new benzobisthiadiazole (BBT)-linked CMPs (BBT-CMPs) using a simple Sonogashira couplings reaction by reaction of 4,8-dibromobenzo(1,2-c;4,5-c')bis(1,2,5)thiadiazole (BBT-Br2) with ethynyl derivatives of triphenylamine (TPA-T), pyrene (Py-T), and tetraphenylethene (TPE-T), respectively, to afford TPA-BBT-CMP, Py-BBT-CMP, and TPE-BBT-CMP. The chemical structure and properties of BBT-CMPs such as surface areas, pore size, surface morphologies, and thermal stability using different measurements were discussed in detail. Among the studied BBT-CMPs, we revealed that TPE-BBT-CMP displayed high degradation temperature, up to 340 °C, with high char yield and regular, aggregated sphere based on thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Furthermore, the Py-BBT-CMP as organic electrode showed an outstanding specific capacitance of 228 F g-1 and superior capacitance stability of 93.2% (over 2000 cycles). Based on theoretical results, an important role of BBT-CMPs, due to their electronic structure, was revealed to be enhancing the charge storage. Furthermore, all three CMP polymers featured a high conjugation system, leading to improved electron conduction and small bandgaps.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Tharwat Hassan Mansoure
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Maha Mohamed Samy
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Yasuno Takashi
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
| | - Ahmed A. K. Mohammed
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (T.A.); (S.M.A.)
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (T.A.); (S.M.A.)
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Babasaheb M. Matsagar
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Shiao-Wei Kuo
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
| |
Collapse
|
27
|
Zhang Z, Jia J, Zhi Y, Ma S, Liu X. Porous organic polymers for light-driven organic transformations. Chem Soc Rev 2022; 51:2444-2490. [PMID: 35133352 DOI: 10.1039/d1cs00808k] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a new generation of porous materials, porous organic polymers (POPs), have recently emerged as a powerful platform of heterogeneous photocatalysis. POPs are constructed using extensive organic synthesis methodologies, with various functional organic units being connected via high-energy covalent bonds. This review systematically presents the recent advances in POPs for visible-light driven organic transformations. Herein, we firstly summarize the common construction strategies for POP-based photocatalysts based on two major approaches: pre-design and post-modification; secondly, we categorize and summarize the synthesis methods and organic reaction types for constructing various types of POPs. We then classify and introduce the specific reactions of current light-driven POP-mediated organic transformations. Finally, we outline the current state of development and the problems faced in light-driven organic transformations by POPs, and we present some perspectives to motivate the reader to explore solutions to these problems and confront the present challenges in the development process.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ji Jia
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yongfeng Zhi
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China. .,Department of Materials Science & Engineering, National University of Singapore, Engineering Drive 1, Singapore 117575, Singapore
| | - Si Ma
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
28
|
Pan Z, Yang J, Kong J, Loh XJ, Wang J, Liu Z. "Porous and Yet Dense" Electrodes for High-Volumetric-Performance Electrochemical Capacitors: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103953. [PMID: 34796698 PMCID: PMC8811823 DOI: 10.1002/advs.202103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 06/13/2023]
Abstract
With the ever-rapid miniaturization of portable, wearable electronics and Internet of Things, the volumetric performance is becoming a much more pertinent figure-of-merit than the conventionally used gravimetric parameters to evaluate the charge-storage capacity of electrochemical capacitors (ECs). Thus, it is essential to design the ECs that can store as much energy as possible within a limited space. As the most critical component in ECs, "porous and yet dense" electrodes with large ion-accessible surface area and optimal packing density are crucial to realize desired high volumetric performance, which have demonstrated to be rather challenging. In this review, the principles and fundamentals of ECs are first observed, focusing on the key understandings of the different charge storage mechanisms in porous electrodes. The recent and latest advances in high-volumetric-performance ECs, developed by the rational design and fabrication of "porous and yet dense" electrodes are then examined. Particular emphasis of discussions then concentrates on the key factors impacting the volumetric performance of porous carbon-based electrodes. Finally, the currently faced challenges, further perspectives and opportunities on those purposely engineered porous electrodes for high-volumetric-performance EC are presented, aiming at providing a set of guidelines for further design of the next-generation energy storage devices.
Collapse
Affiliation(s)
- Zhenghui Pan
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Jie Yang
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE)A*STAR (Agency for Science, Technology and Research)2 Fusionopolis WaySingapore138634Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)A*STAR (Agency for Science, Technology and Research)2 Fusionopolis WaySingapore138634Singapore
| | - John Wang
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Zhaolin Liu
- Institute of Materials Research and Engineering (IMRE)A*STAR (Agency for Science, Technology and Research)2 Fusionopolis WaySingapore138634Singapore
| |
Collapse
|
29
|
Kim JH, Kang DW, Yun H, Kang M, Singh N, Kim JS, Hong CS. Post-synthetic modifications in porous organic polymers for biomedical and related applications. Chem Soc Rev 2021; 51:43-56. [PMID: 34859804 DOI: 10.1039/d1cs00804h] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Porous organic polymers (POPs) are prepared by crosslinked polymerization of multidimensional rigid aromatic building blocks. Generally, POPs can be classified into crystalline covalent organic frameworks (COFs) and other poorly crystalline or amorphous porous polymers. Due to their remarkable intrinsic properties, such as high porosity, stability, tunability, and presence of numerous building blocks, several new POPs are being developed for application across various scientific fields. The essential sensitive functional groups needed for specific applications are not sustained under harsh POP preparation conditions. The recently developed post-synthetic modification (PSM) strategies for POPs have enabled their advanced applications that are otherwise restricted. Owing to the advanced PSM strategies POPs have experienced a blossoming resurgence with diverse functions, particularly in biomedical applications, such as bioimaging tools, drugs, enzymes, gene or protein delivery systems, phototherapy, and cancer therapy. This tutorial review focuses on the recently developed PSM strategies for POPs, especially for biomedical applications, and their future perspectives as promising bioapplicable materials.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Hongyeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Nem Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
30
|
Luo B, Chen Y, Zhang Y, Huo J. Nitrogen-rich anthraquinone–triazine conjugated microporous polymer networks as high-performance supercapacitor. NEW J CHEM 2021. [DOI: 10.1039/d1nj03180e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conjugated microporous polymer (CMP) networks are an emerging class of porous organic material composed of pre-designed functional structures and tailored components.
Collapse
Affiliation(s)
- Bingcai Luo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ying Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yubao Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jianqiang Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|