1
|
Bilyachenko AN, Khrustalev VN, Huang Z, Shul'pina LS, Dorovatovskii PV, Shubina ES, Ikonnikov NS, Lobanov NN, Ragimov K, Sun D. An octanuclear 3-phenyl-5-(2-pyridyl)pyrazolate/phenylsilsesquioxane complex: synthesis, unique structure, and catalytic activity. Dalton Trans 2024; 53:19102-19106. [PMID: 39565104 DOI: 10.1039/d4dt02690j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The first metallasilsesquioxane bearing pyrazolylpyridine ligands, the Cu8-based complex 1, adopts a cage-like structure with two zigzag-type copper tetramers sandwiched by two cyclic Si5 silsesquioxane ligands. The four 3-phenyl-5-(2-pyridyl)pyrazolate ligands in 1 exhibit dual (chelating and bridging) modes of ligation. Compound 1 is very active in the oxidation of alkanes and alcohols.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov St. 28, 119991 Moscow, Russian Federation.
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russian Federation
| | - Victor N Khrustalev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov St. 28, 119991 Moscow, Russian Federation.
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Zhibin Huang
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russian Federation
| | - Lidia S Shul'pina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov St. 28, 119991 Moscow, Russian Federation.
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Pl., 123182 Moscow, Russian Federation
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov St. 28, 119991 Moscow, Russian Federation.
| | - Nikolay S Ikonnikov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov St. 28, 119991 Moscow, Russian Federation.
| | - Nikolai N Lobanov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russian Federation
| | - Karim Ragimov
- Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Di Sun
- Shandong University, Department of Chemistry and Chemical Engineering, Shanda South Road 27, 250100 Jinan, China
| |
Collapse
|
2
|
Bilyachenko AN, Khrustalev VN, Arteev IS, Shul'pina LS, Ikonnikov NS, Kirillova MV, Shubina ES, Kirillov AM, Kozlov YN, Lobanov NN, Ragimov KG, Sun D. Cu 12-Methylsilsesquioxane Cage Decorated with Cu(dppe) 2 Moieties for Mild Oxidative Functionalization of Alkanes. Inorg Chem 2024; 63:20404-20414. [PMID: 39402967 DOI: 10.1021/acs.inorgchem.4c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We report a high nuclear (Cu14) complex synthesized via the self-assembly of copper-methylsilsesquioxane induced by the complexation with 1,2-bis(diphenylphosphino)ethane (dppe). The structure includes two cationic CuI(dppe)2 moieties and an anionic silsesquioxane cage of an unprecedented CuII12 structural type. The Cu12 cage fragment exhibits a unique (i) combination of Si4-cyclic/Si2-acyclic silsesquioxane ligands and (ii) encapsulation of two different chloride and carbonate species. This complex acts as a promising precatalyst in the mild oxidation and carboxylation of light alkanes to produce alkyl hydroperoxides, alcohols, ketones, or carboxylic acids. The present study widens the family of copper-methylsilsesquioxane clusters with prospective use in oxidation catalysis.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Ivan S Arteev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
- Higher Chemical College, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Lidia S Shul'pina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Nikolay S Ikonnikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Marina V Kirillova
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Yuriy N Kozlov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina 4, Moscow 119991, Russia
- Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi Pereulok, Dom 36, Moscow 117997, Russia
| | - Nikolai N Lobanov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Karim G Ragimov
- Baku State University, Z. Xalilov Str. 23, AZ 1148 Baku, Azerbaijan
| | - Di Sun
- Shandong University, Department of Chemistry and Chemical Engineering, Shanda South Road 27, 250100 Jinan, China
| |
Collapse
|
3
|
Hota PK, Panda S, Phan H, Kim B, Siegler MA, Karlin KD. Dioxygenase Chemistry in Nucleophilic Aldehyde Deformylations Utilizing Dicopper O 2-Derived Peroxide Complexes. J Am Chem Soc 2024; 146:23854-23871. [PMID: 39141923 PMCID: PMC11472664 DOI: 10.1021/jacs.4c06243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The chemistry of copper-dioxygen complexes is relevant to copper enzymes in biology as well as in (ligand)Cu-O2 (or Cu2-O2) species utilized in oxidative transformations. For overall energy considerations, as applicable in chemical synthesis, it is beneficial to have an appropriate atom economy; both O-atoms of O2(g) are transferred to the product(s). However, examples of such dioxygenase-type chemistry are extremely rare or not well documented. Herein, we report on nucleophilic oxidative aldehyde deformylation reactivity by the peroxo-dicopper(II) species [Cu2II(BPMPO-)(O22-)]1+ {BPMPO-H = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} and [Cu2II(XYLO-)(O22-)]1+ (XYLO- = a BPMPO- analogue possessing bis(2-{2-pyridyl}ethyl)amine chelating arms). Their dicopper(I) precursors are dioxygenase catalysts. The O2(g)-derived peroxo-dicopper(II) intermediates react rapidly with aldehydes like 2-phenylpropionaldehyde (2-PPA) and cyclohexanecarboxaldehyde (CCA) in 2-methyltetrahydrofuran at -90 °C. Warming to room temperature (RT) followed by workup results in good yields of formate (HC(O)O-) along with ketones (acetophenone or cyclohexanone). Mechanistic investigation shows that [Cu2II(BPMPO-)(O22-)]1+ species initially reacts reversibly with the aldehydes to form detectable dicopper(II) peroxyhemiacetal intermediates, for which optical titrations provide the Keq (at -90 °C) of 73.6 × 102 M-1 (2-PPA) and 10.4 × 102 M-1 (CCA). In the reaction of [Cu2II(XYLO-)(O22-)]1+ with 2-PPA, product complexes characterized by single-crystal X-ray crystallography are the anticipated dicopper(I) complex, [Cu2I(XYLO-)]1+ plus a mixed-valent Cu(I)Cu(II)-formate species. Formate was further identified and confirmed by 1H NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) analysis. Using 18O2(g)-isotope labeling the reaction produced a high yield of 18-O incorporated acetophenone as well as formate. The overall results signify that true dioxygenase reactions have occurred, supported by a thorough mechanistic investigation.
Collapse
Affiliation(s)
- Pradip Kumar Hota
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Bohee Kim
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
De Tovar J, Leblay R, Wang Y, Wojcik L, Thibon-Pourret A, Réglier M, Simaan AJ, Le Poul N, Belle C. Copper-oxygen adducts: new trends in characterization and properties towards C-H activation. Chem Sci 2024; 15:10308-10349. [PMID: 38994420 PMCID: PMC11234856 DOI: 10.1039/d4sc01762e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).
Collapse
Affiliation(s)
- Jonathan De Tovar
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| | - Rébecca Leblay
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Yongxing Wang
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Laurianne Wojcik
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Nicolas Le Poul
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| |
Collapse
|
5
|
Hota PK, Jose A, Panda S, Dunietz EM, Herzog AE, Wojcik L, Le Poul N, Belle C, Solomon EI, Karlin KD. Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties. J Am Chem Soc 2024; 146:13066-13082. [PMID: 38688016 PMCID: PMC11161030 DOI: 10.1021/jacs.3c14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI2(BPMPO-)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII2(BPMPO-)(O22-)]1+, hydroperoxo [CuII2(BPMPO-)(-OOH)]2+, and superoxo [CuII2(BPMPO-)(O2•-)]2+ species, characterized by UV-vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII2(BPMPO-)(O2•-)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII2(BPMPO-)(O22-)]1+ ⇄ [CuII2(BPMPO-)(O2•-)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII2(BPMPO-)(O2•-)]2+/[CuII2(BPMPO-)(O22-)]1+ reduction potential calculation, E°' = -0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°' = -0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII2(BPMPO-)(O22-)]1+ produces [CuII2(BPMPO-)(-OOH)]2+; using a phosphazene base, an acid-base equilibrium was achieved, pKa = 22.3 ± 0.7 for [CuII2(BPMPO-)(-OOH)]2+. The BDFEOO-H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII2(BPMPO-)(-OOH)]2+; this is further substantiated by H atom abstraction from O-H substrates by [CuII2(BPMPO-)(O2•-)]2+ forming [CuII2(BPMPO-)(-OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII2(BPMPO-)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO- framework and the resulting enhanced CuII-ion Lewis acidity.
Collapse
Affiliation(s)
- Pradip Kumar Hota
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anex Jose
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eleanor M Dunietz
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Austin E Herzog
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Laurianne Wojcik
- UMR CNRS 6521, Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, CS 93837, Brest Cedex 3 29238, France
| | - Nicolas Le Poul
- UMR CNRS 6521, Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, CS 93837, Brest Cedex 3 29238, France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, DCM, UMR 5250, Grenoble 38058, France
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Siebe L, Butenuth C, Stammler A, Bögge H, Walleck S, Glaser T. Generation and Reactivity of μ-1,2-Peroxo Cu IICu II and Bis-μ-oxo Cu IIICu III Species and Catalytic Hydroxylation of Benzene to Phenol with Hydrogen Peroxide. Inorg Chem 2024; 63:2627-2639. [PMID: 38243916 DOI: 10.1021/acs.inorgchem.3c03914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Tetradentate-N4 ligands stabilize dinuclear {CuII(μ-1,2-peroxo)CuII} and {CuIII(μ-O)2CuIII} species, and CuII complexes of these ligands were reported to catalyze the oxidation of benzene with H2O2. Here, we report {CuII(μ-1,2-peroxo)CuII} and {CuIII(μ-O)2CuIII} intermediates of dinucleating bis(tetradentate-N4) ligands depending on the absence or presence of 6-methyl substituents on the terminal pyridine donors, respectively, generated either from {CuICuI} precursors with O2 or from {CuIICuII} precursors with H2O2 and NEt3. Both intermediates are not stable even at low temperatures, but they show no electrophilic HAT reactivity with DHA. Catalytic investigations on the hydroxylation of benzene with excess H2O2 between 30 and 50 °C indicate that both radical-based and {Cu2On}-based mechanisms depend strongly on the catalytic conditions. In the presence of a radical scavenger, TONs of ∼920/∼720 have been achieved without/with the 6-methyl group of the ligand. Although {CuII(μ-OH)CuII} reacts with excess H2O2 at -40 °C to {CuII(OOH)}2 species, these are only stable for seconds at 20 °C and cannot account for catalytic oxidations over a period of 24 h at 30-50 °C.
Collapse
Affiliation(s)
- Lena Siebe
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Christoph Butenuth
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Stephan Walleck
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
7
|
Sherafati A, Moradi S, Mahdavi M. Efficient synthesis of 3-alkyl-2-(-1H-1,2,3-triazolyl)methyl)thio)-2,3-dihydroquinazolin-4(1H)-one derivative via multistep synthesis approach by novel Cu@Py-Oxa@SPION catalyst. BMC Chem 2023; 17:154. [PMID: 37964295 PMCID: PMC10647046 DOI: 10.1186/s13065-023-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
In this pared, an efficient method is introduced for the synthesis of 3-alkyl-2-(((4-(2-oxopropyl)-1H-1,2,3-triazol-1-yl)alkyl)thio)-2,3-dihydroquinazolin-4(1H)-one derivatives. These novel products have both 1,2,3-triazole and quinazolinone in their structures. For the synthesis of these products, a novel catalyst is designed, synthesized, and characterized by the immobilization of copper onto modified magnetic iron oxide. The catalyst (denoted: Cu@Py-Oxa@SPION) was characterized by several characterization techniques. In this regard, 16 3-alkyl-2-(((4-(2-oxopropyl)-1H-1,2,3-triazol-1-yl)alkyl)thio)-2,3-dihydroquinazolin-4(1H)-one derivatives were synthesized in high isolated yields (77-86%). As an advantage, the catalyst is highly recoverable and its activity has not decreased after 7 sequential runs. The method is very efficient for the synthesis of the products in high isolated yields under mild reaction conditions in a green solvent. The scope of the method is broad and several examples were successfully synthesized using starting materials with different functional groups.
Collapse
Affiliation(s)
- Alireza Sherafati
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Moradi
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Centre, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Koch A, Engesser TA, Tuczek F. Copper Complexes Supported by Iminotriazole Ligands: Effective Catalysts for the Monooxygenation of Phenols. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Alexander Koch
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
| | - Tobias A. Engesser
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
| | - Felix Tuczek
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
| |
Collapse
|
9
|
Adam MSS, Elsawy H, Sedky A, Makhlouf MM, Taha A. Catalytic potential of sustainable dinuclear (Cu2+ and ZrO2+) metal organic incorporated frameworks with comprehensive biological studies. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
10
|
Guo H, Sun N, Guo J, Zhou TP, Tang L, Zhang W, Deng Y, Liao RZ, Wu Y, Wu G, Zhong F. Expanding the Promiscuity of a Copper-Dependent Oxidase for Enantioselective Cross-Coupling of Indoles. Angew Chem Int Ed Engl 2023; 62:e202219034. [PMID: 36789864 DOI: 10.1002/anie.202219034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Herein, we disclose the highly enantioselective oxidative cross-coupling of 3-hydroxyindole esters with various nucleophilic partners as catalyzed by copper efflux oxidase. The biocatalytic transformation delivers functionalized 2,2-disubstituted indolin-3-ones with excellent optical purity (90-99 % ee), which exhibited anticancer activity against MCF-7 cell lines, as shown by preliminary biological evaluation. Mechanistic studies and molecular docking results suggest the formation of a phenoxyl radical and enantiocontrol facilitated by a suited enzyme chiral pocket. This study is significant with regard to expanding the catalytic repertoire of natural multicopper oxidases as well as enlarging the synthetic toolbox for sustainable asymmetric oxidative coupling.
Collapse
Affiliation(s)
- Huan Guo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Ningning Sun
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Juan Guo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Langyu Tang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Wentao Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yaming Deng
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
11
|
Monika, Sarkar A, Karmodak N, Dhar BB, Adhikari S. Bio-inspired Cu(II) amido-quinoline complexes as catalysts for aromatic C-H bond hydroxylation. Dalton Trans 2023; 52:540-545. [PMID: 36537082 DOI: 10.1039/d2dt03242b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cu(II) complexes supported by tetradentate amido-quinoline acyclic ligands (L1 & L2) have been synthesized, characterized, and employed as catalysts for aromatic C-H hydroxylation using H2O2 as an oxidant in the absence of an external base with a high selectivity of around 90% for phenols via the non-radical pathway (TON ≥720). The KIE value, various spectroscopic studies and DFT calculation supported the involvement of Cu(II)-OOH species.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, Shiv Nadar IoE, U.P. 201314, India.
| | - Aniruddha Sarkar
- Department of Chemical Sciences, IISER Kolkata, Mohanpur 741246, India
| | | | | | - Sanjay Adhikari
- Faculty of Basic and Applied Sciences, Madhav University, Rajasthan 307026, India
| |
Collapse
|
12
|
Zhang Y, Wang Y, Dong Y, Zhang Z, Hasebe Y, Zhu J, Liu Z, Gao E. Effect of Acridine Orange on Improving the Electrochemical Performance of Tyrosinase Adsorbed Sulfide Minerals Based Catechol Biosensor. ChemistrySelect 2023. [DOI: 10.1002/slct.202202444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yan Zhang
- School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Middle Road, High-tech Zone Anshan Liaoning 114051 China
| | - Yue Wang
- School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Middle Road, High-tech Zone Anshan Liaoning 114051 China
| | - Yan Dong
- School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Middle Road, High-tech Zone Anshan Liaoning 114051 China
| | - Zhiqiang Zhang
- School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Middle Road, High-tech Zone Anshan Liaoning 114051 China
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry Faculty of Engineering Saitama Institute of Technology 1690 Fusaiji Fukaya Saitama 369-0293 Japan
| | - Jianmin Zhu
- Oxiranchem Holding Group Inc. No. 29 Donghuan Road, Hongwei District Liaoyang Liaoning China
| | - Zhaobin Liu
- Oxiranchem Holding Group Inc. No. 29 Donghuan Road, Hongwei District Liaoyang Liaoning China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Middle Road, High-tech Zone Anshan Liaoning 114051 China
| |
Collapse
|
13
|
Tabe H, Seki Y, Yamane M, Nakazono T, Yamada Y. Synergistic Effect of Fe II and Mn II Ions in Cyano-Bridged Heterometallic Coordination Polymers on Catalytic Selectivity of Benzene Oxygenation to Phenol. J Phys Chem Lett 2023; 14:158-163. [PMID: 36579843 DOI: 10.1021/acs.jpclett.2c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A cyano-bridged heterometallic coordination polymer with partial deficiencies of CN- ligands, [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)], forms open metal sites both on MnII and FeII ions by liberation of monodentate ligands such as NH3 and H2O. [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)] exhibits high catalytic activity and selectivity of benzene oxygenation to phenol in the presence of m-chloroperoxybenzoic acid as an oxidant. The postcatalytic spectroscopy of [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)] and catalysis comparison with a physical mixture of [MnII(H2O)3]2[FeII(CN)6] and [Fe(H2O)3/2]4/3[Fe(CN)6], which has open metal sites on both MnII and Fe ions separately, indicated that the high activity resulted from high oxidation ability and phenol adsorption ability of FeII and MnII ions, respectively.
Collapse
Affiliation(s)
- Hiroyasu Tabe
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study (IAS), Kyoto University, Yoshida-Hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Seki
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Mari Yamane
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Yusuke Yamada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
14
|
Dinitro Anacardic Acid Copper(II) Complex—A Bio‐based Catalyst for Room Temperature Synthesis of Indolizine. ChemistrySelect 2022. [DOI: 10.1002/slct.202202420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Tripathy RR, Singha S, Sarkar S. A review on bio-functional models of catechol oxidase probed by less explored first row transition metals. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2122053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Shuvendu Singha
- Department of Chemistry, SAS, KIIT University, Bhubaneswar, Odisha, India
| | - Sohini Sarkar
- Department of Chemistry, SAS, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
16
|
Liu XH, Yu HY, Huang JY, Su JH, Xue C, Zhou XT, He YR, He Q, Xu DJ, Xiong C, Ji HB. Biomimetic catalytic aerobic oxidation of C-sp(3)-H bonds under mild conditions using galactose oxidase model compound Cu IIL. Chem Sci 2022; 13:9560-9568. [PMID: 36091900 PMCID: PMC9400635 DOI: 10.1039/d2sc02606f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Developing highly efficient catalytic protocols for C-sp(3)-H bond aerobic oxidation under mild conditions is a long-desired goal of chemists. Inspired by nature, a biomimetic approach for the aerobic oxidation of C-sp(3)-H by galactose oxidase model compound CuIIL and NHPI (N-hydroxyphthalimide) was developed. The CuIIL-NHPI system exhibited excellent performance in the oxidation of C-sp(3)-H bonds to ketones, especially for light alkanes. The biomimetic catalytic protocol had a broad substrate scope. Mechanistic studies revealed that the CuI-radical intermediate species generated from the intramolecular redox process of CuIILH2 was critical for O2 activation. Kinetic experiments showed that the activation of NHPI was the rate-determining step. Furthermore, activation of NHPI in the CuIIL-NHPI system was demonstrated by time-resolved EPR results. The persistent PINO (phthalimide-N-oxyl) radical mechanism for the aerobic oxidation of C-sp(3)-H bond was demonstrated.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Jia-Ying Huang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China Hefei 230026 China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Yao-Rong He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Qian He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - De-Jing Xu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
17
|
Cheng Y, Song W, Chen X, Gao C, Liu J, Guo L, Zhu M, Liu L, Wu J. Efficient synthesis 1,4-cyclohexanedicarboxaldehyde by an engineered alcohol oxidase. BIORESOUR BIOPROCESS 2022; 9:80. [PMID: 38647772 PMCID: PMC10991250 DOI: 10.1186/s40643-022-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, we selected and engineered a flavin adenine dinucleotide (FAD)-dependent alcohol oxidase (AOX) to produce 1,4-cyclohexanedicarboxaldehyde (CHDA), an initial raw material for spiral compounds, from 1,4-cyclohexanedimethanol (CHDM). First, the structure of alcohol oxidase from Arthrobacter cholorphenolicus (AcCO) was analyzed, and the mechanism of AcCO-catalyzed primary alcohol oxidation was elucidated, demonstrating that the energy barrier of the hydride (H-) transfer (13.4 kcal·mol-1 and 20.4 kcal·mol-1) decreases the catalytic efficiency of the primary alcohol oxidation reaction. Therefore, we designed a protein engineering strategy to adjust the catalytically active conformation to shorten the distance of hydride (H-) transfer and further decreased the core energy barrier. Following this strategy, variant W4 (S101A/H351V/N378S/Q329N) was obtained with 112.5-fold increased catalytic efficiency to produce CHDA compared to that of the wild-type strain. The 3 L scale preparation of CHDA reached a titer up to 29.6 g·L-1 with a 42.2% yield by an Escherichia coli whole-cell catalyst, which demonstrates the potential of this system for industrial application.
Collapse
Affiliation(s)
- Yaqi Cheng
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Meng Zhu
- Wuxi Acryl Technology Co., Ltd, Wuxi, 214122, China
| | - Liming Liu
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
18
|
Centrella B, Deplano G, Damin A, Signorile M, Tortora M, Barolo C, Bonomo M, Bordiga S. A multi-technique approach to unveil the redox behaviour and potentiality of homoleptic Cu I complexes based on substituted bipyridine ligands in oxygenation reactions. Dalton Trans 2022; 51:14439-14451. [PMID: 35904361 DOI: 10.1039/d2dt01234k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of differently substituted 2,2'-bipyridine ligands (i.e. 6,6'-dimethyl-2,2'-bipyridine, 5,5'-dimethyl-2,2'-bipyridine, 6,6'-dimethoxy-2,2'-bipyridine and 2,2'-bipyridine) on the reversible oxidation of the resulting CuI homoleptic complexes is investigated by means of a multi-technique approach (electronic and vibrational spectroscopies, DFT, electrochemistry). Among the four tested complexes, [CuI(6,6'-dimethyl-2,2'-bipyridine)2] (PF6) shows a peculiar behavior when oxidized with an organic peroxide (i.e. tert-butyl hydroperoxide, tBuOOH). The simultaneous use of UV-Vis-NIR and Raman spectroscopy methods and cyclovoltammetry, supported by DFT based calculations, allowed identifying (i) the change in the oxidation state of the copper ion and (ii) some peculiar modification in the local structure of the metal leading to the formation of a [CuIIOH]+ species. The latter, being able to oxidize a model molecule (i.e. cyclohexene) and showing the restoration of the original CuI complex and the formation of cyclohexanone, confirms the potential of these simple homoleptic CuI complexes as model catalysts for partial oxygenation reactions.
Collapse
Affiliation(s)
- Barbara Centrella
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| | - Gabriele Deplano
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| | - Alessandro Damin
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| | - Matteo Signorile
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| | - Mariagrazia Tortora
- AREA SCIENCE PARK, Padriciano, 99, 34149 Trieste, Italy.,Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149, Trieste, Italy
| | - Claudia Barolo
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy. .,ICxT Interdepartmental Centre, Università degli Studi di Torino, Lungo Dora Siena 100, 10153 Torino, Italy
| | - Matteo Bonomo
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| | - Silvia Bordiga
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| |
Collapse
|
19
|
Schneider R, Engesser TA, Näther C, Krossing I, Tuczek F. Copper-Catalyzed Monooxygenation of Phenols: Evidence for a Mononuclear Reaction Mechanism. Angew Chem Int Ed Engl 2022; 61:e202202562. [PMID: 35344617 PMCID: PMC9323449 DOI: 10.1002/anie.202202562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/17/2022]
Abstract
The CuI salts [Cu(CH3 CN)4 ]PF and [Cu(oDFB)2 ]PF with the very weakly coordinating anion Al(OC(CF3 )3 )4- (PF) as well as [Cu(NEt3 )2 ]PF comprising the unique, linear bis-triethylamine complex [Cu(NEt3 )2 ]+ were synthesized and examined as catalysts for the conversion of monophenols to o-quinones. The activities of these CuI salts towards monooxygenation of 2,4-di-tert-butylphenol (DTBP-H) were compared to those of [Cu(CH3 CN)4 ]X salts with "classic" anions (BF4- , OTf- , PF6- ), revealing an anion effect on the activity of the catalyst and a ligand effect on the reaction rate. The reaction is drastically accelerated by employing CuII -semiquinone complexes as catalysts, indicating that formation of a CuII complex precedes the actual catalytic cycle. This result and other experimental observations show that with these systems the oxygenation of monophenols does not follow a dinuclear, but a mononuclear pathway analogous to that of topaquinone cofactor biosynthesis in amine oxidase.
Collapse
Affiliation(s)
- Rebecca Schneider
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu KielMax-Eyth-Straße 224118KielGermany
| | - Tobias A. Engesser
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu KielMax-Eyth-Straße 224118KielGermany
| | - Christian Näther
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu KielMax-Eyth-Straße 224118KielGermany
| | - Ingo Krossing
- Institut für Anorganische und Analytische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104FreiburgGermany
| | - Felix Tuczek
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu KielMax-Eyth-Straße 224118KielGermany
| |
Collapse
|
20
|
Abstract
The oxidation of hydrocarbons of different structures under the same conditions is an important stage in the study of the chemical properties of both the hydrocarbons themselves and the oxidation catalysts. In a 50% H2O2/Cu2Cl4·2DMG/CH3CN system, where DMG is dimethylglyoxime (Butane-2,3-dione dioxime), at 50 °C under the same or similar conditions, we oxidized eleven RH hydrocarbons of different structures: mono-, bi- and tri-cyclic, framework and aromatic. To compare the composition of the oxidation products of these hydrocarbons, we introduced a new quantitative characteristic, “distributive oxidation depth D(O), %” and showed the effectiveness of its application. The adiabatic ionization potentials (AIP) and the vertical ionization potentials (VIP) of the molecules of eleven oxidized and related hydrocarbons were calculated using the DFT method in the B3LYP/TZVPP level of theory for comparison with experimental values and correlation with D(O). The same calculations of AIP were made for the molecules of the oxidant, solvent, DMG, related compounds and products. It is shown that component X, which determines the mechanism of oxidation of hydrocarbons RH with AIP(Exp) ≥ AIP(X) = 8.55 ± 0.03 eV, is a trans-DMG molecule. Firstly theoretically estimated experimental values of AIP(trans-DMG) = 8.53 eV and AIP(cis-DMG) = 8.27 eV.
Collapse
|
21
|
Schneider R, Engesser TA, Näther C, Krossing I, Tuczek F. Copper‐Catalyzed Monooxygenation of Phenols: Evidence for a Mononuclear Reaction Mechanism. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rebecca Schneider
- Christian-Albrechts-Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Institute for Inorganic Chemistry Max-Eyth-Straße 2 24118 Kiel GERMANY
| | - Tobias A. Engesser
- Christian-Albrechts-Universitat zu Kiel Institut für Anorganische Chemie Otto-Hahn-Platz 10 24118 Kiel GERMANY
| | - Christian Näther
- Christian-Albrechts-Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Institute for Inorganic Chemistry Max-Eyth-Straße 2 24118 Kiel GERMANY
| | - Ingo Krossing
- University of Freiburg: Albert-Ludwigs-Universitat Freiburg Institute for Inorganic and Analytical Chemistry Albertstr. 21 79104 Freiburg i. Br. GERMANY
| | - Felix Tuczek
- Christian-Albrechts-Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Institute for Inorganic Chemistry Max-Eyth-Straße 2 24118 Kiel GERMANY
| |
Collapse
|
22
|
Liu SL, Chen QW, Zhang ZW, Chen Q, Wei LQ, Lin N. Efficient heterogeneous catalyst of Fe(II)-based coordination complexes for Friedel-Crafts alkylation reaction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Huang Z, Zhang L, Hou J, Xu T, Song B, Bai X, Fu H, Guo P. A high-efficient electrochemical synthesis of a low-nuclearity copper-cluster-based metal–organic framework for the size-selective oxidation of alcohols. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00853j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-cluster-based micropore MOF, namely H-1e, possessing excellent oxidation activity for alcohols (mini-size) to aldehydes with over 99% selectivity and 99% yield, has been obtained by a highly efficient electrochemical synthesis.
Collapse
Affiliation(s)
- Zixuan Huang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Lin Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Jiayou Hou
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Tengjiao Xu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Bowen Song
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Xi Bai
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Hai Fu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| | - Peipei Guo
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P.R. China
| |
Collapse
|
24
|
Li JZ, Mei L, Yu XC, Wang LT, Cai XE, Li T, Wei WT. C-centered radical-initiated cyclization by directed C(sp 3)–H oxidative functionalization. Org Chem Front 2022. [DOI: 10.1039/d2qo01128j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C(sp3)–H functionalization is attracting constant attention. This review emphasizes C-centered radicals initiated cyclization strategies by directed C(sp3)–H oxidative functionalization since 2012.
Collapse
Affiliation(s)
- Jiao-Zhe Li
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lan Mei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xuan-Chi Yu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue-Er Cai
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
25
|
Yang G, Shi J, Sun H, Tong X. A product-controllable aerobic oxidative cleavage of vicinal diols using vanadium-based photocatalyst. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00566a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photocatalytic controllable oxidative cleavage of C-C bond is developed with molecular oxygen as the oxidant. Herein, a series of vanadium oxide-based photocatalysts were synthesized and characterized by XPS, PL,...
Collapse
|
26
|
Costa IFM, Kirillova MV, André V, Fernandes TA, Kirillov AM. Time-Dependent Self-Assembly of Copper(II) Coordination Polymers and Tetranuclear Rings: Catalysts for Oxidative Functionalization of Saturated Hydrocarbons. Inorg Chem 2021; 60:14491-14503. [PMID: 34128647 DOI: 10.1021/acs.inorgchem.1c01268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study describes a time-dependent self-assembly generation of new copper(II) coordination compounds from an aqueous-medium reaction mixture composed of copper(II) nitrate, H3bes biobuffer (N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid), ammonium hydroxide, and benzenecarboxylic acid, namely, 4-methoxybenzoic (Hfmba) or 4-chlorobenzoic (Hfcba) acid. Two products were isolated from each reaction, namely, 1D coordination polymers [Cu3(μ3-OH)2(μ-fmba)2(fmba)2(H2O)2]n (1) or [Cu2(μ-OH)2(μ-fcba)2]n (2) and discrete tetracopper(II) rings [Cu4(μ-Hbes)3(μ-H2bes)(μ-fmba)]·2H2O (3) or [Cu4(μ-Hbes)3(μ-H2bes)(μ-fcba)]·4H2O (4), respectively. These four compounds were obtained as microcrystalline air-stable solids and characterized by standard methods, including the single-crystal X-ray diffraction. The structures of 1 and 2 feature distinct types of metal-organic chains driven by the μ3- or μ-OH- ligands along with the μ-benzenecarboxylate linkers. The structures of 3 and 4 disclose the chairlike Cu4 rings assembled from four μ-bridging and chelating aminoalcoholate ligands along with μ-benzenecarboxylate moieties playing a core-stabilizing role. Catalytic activity of 1-4 was investigated in two model reactions, namely, (a) the mild oxidation of saturated hydrocarbons with hydrogen peroxide to form alcohols and ketones and (b) the mild carboxylation of alkanes with carbon monoxide, water, and peroxodisulfate to generate carboxylic acids. Cyclohexane and propane were used as model cyclic and gaseous alkanes, while the substrate scope also included cyclopentane, cycloheptane, and cyclooctane. Different reaction parameters were investigated, including an effect of the acid cocatalyst and various selectivity parameters. The obtained total product yields (up to 34% based on C3H8 or up to 47% based on C6H12) in the carboxylation of propane and cyclohexane are remarkable taking into account an inertness of these saturated hydrocarbons and low reaction temperatures (50-60 °C). Apart from notable catalytic activity, this study showcases a novel time-dependent synthetic strategy for the self-assembly of two different Cu(II) compounds from the same reaction mixture.
Collapse
Affiliation(s)
- Ines F M Costa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Marina V Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Vânia André
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Tiago A Fernandes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
| |
Collapse
|
27
|
Feng C, Cheng L, Ma H, Ma L, Wu Q, Yang J. Unraveling the Mechanism of Aerobic Alcohol Oxidation by a Cu/pytl-β-Cyclodextrin/TEMPO Catalytic System under Air in Neat Water. Inorg Chem 2021; 60:14132-14141. [PMID: 34459198 DOI: 10.1021/acs.inorgchem.1c01504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism for the oxidation of p-tolylmethanol to p-tolualdehyde catalyzed by a Cu/pytl-β-cyclodextrin/TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-1-oxy) catalytic system under air in neat water is fully investigated by density functional theory (DFT). Four possible pathways (paths A → D) are presented. The calculated TOF = 0.67 h-1 for path A is consistent with the experimental TOF = 1.9 h-1 but much lower than that for path D (TOF = 1.1 × 105 h-1). The results demonstrate that path A is the dominant pathway under the optimal experimental conditions, even though path D is more kinetically favorable. This is because the concentration of precatalyst 11 [(pytl-β-CD)CuII(OH)] in path D is too low to start path D, so p-tolylmethanol oxidation can only proceed via path A. This finding implies that the relative concentration of precatalysts in a one-pot synthesis experiment plays a vital role in the aerobic alcohol oxidation reaction. Based on this finding, we speculate that the direct use of the presynthesized precatalyst 11 or addition of an appropriate amount of NaOH to the reaction solution, but with the total amount of the base added unchanged, is a good way to improve its catalytic activity. Meanwhile, the solvent water was not found to directly participate in the catalytic active sites for the oxidation of alcohols but rather inhibited it by forming the hydrogen-bonded network.
Collapse
Affiliation(s)
- Chunmei Feng
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Lin Cheng
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Huiyan Ma
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Lisha Ma
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Qi Wu
- High Performance Computing Center of Jilin University, Changchun 130022, China
| | - Jucai Yang
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| |
Collapse
|
28
|
Śliwa EI, Nesterov DS, Kirillova MV, Kłak J, Kirillov AM, Smoleński P. A 3D MOF based on Adamantoid Tetracopper(II) and Aminophosphine Oxide Cages: Structural Features and Magnetic and Catalytic Properties. Inorg Chem 2021; 60:9631-9644. [PMID: 34121384 PMCID: PMC8277165 DOI: 10.1021/acs.inorgchem.1c00868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work describes an unexpected generation of a new 3D metal-organic framework (MOF), [Cu4(μ-Cl)6(μ4-O)Cu(OH)2(μ-PTA═O)4]n·2nCl-EtOH·2.5nH2O, from copper(II) chloride and 1,3,5-triaza-7-phosphaadamantane 7-oxide (PTA═O). The obtained product is composed of diamandoid tetracopper(II) [Cu4(μ-Cl)6(μ4-O)] cages and monocopper(II) [Cu(OH)2] units that are assembled, via the diamandoid μ-PTA═O linkers, into an intricate 3D net with an nbo topology. Magnetic susceptibility measurements on this MOF in the temperature range of 1.8-300 K reveal a ferromagnetic interaction (J = +20 cm-1) between the neighboring copper(II) ions. Single-point DFT calculations disclose a strong delocalization of the spin density over the tetranuclear unit. The magnitude of exchange coupling, predicted from the broken-symmetry DFT studies, is in good agreement with the experimental data. This copper(II) compound also acts as an active catalyst for the mild oxidation and carboxylation of alkanes. The present study provides a unique example of an MOF that is assembled from two different types of adamantoid Cu4 and PTA═O cages, thus contributing to widening a diversity of functional metal-organic frameworks.
Collapse
Affiliation(s)
- Ewelina I Śliwa
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Dmytro S Nesterov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Marina V Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Julia Kłak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow 117198, Russian Federation
| | - Piotr Smoleński
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|