1
|
Xi Y, Guo X, Han W, Yan H, Zha F, Tang X, Tian H, Zuo Z. BiOBr/FeMoO 4 composite achieves oxygen vacancy concentration adjustment to promote persulfate activation degradation of organic pollutants in saline water. J Colloid Interface Sci 2025; 678:1073-1087. [PMID: 39276516 DOI: 10.1016/j.jcis.2024.09.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The investigation about the mechanism of crystal plane regulation on the generation of oxygen vacancies remains a challenge. In this paper, BiOBr/FeMoO4 composites were synthesized by precise control of crystal plane growth, and it exhibited the enhanced concentration of oxygen vacancies due to lower formation energy of oxygen vacancies. The composite performs higher photo-Fenton-like ability for degrading oxytetracycline hydrochloride (OTC). Structural analyses and theoretical calculations reveal that crystal plane regulation induces significant changes in oxygen vacancy concentration. The BiOBr/FeMoO4/peroxydisulphate (PDS) /light system, which dominated by the non-radical pathway, degraded 96.8 % ± 1.0 % of OTC within 30 min. The activation mechanism of the system and the degradation pathway of OTC were elucidated. The intermediates in the degradation process of OTC were evaluated using liquid chromatograph-mass spectrometer (LC-MS), toxicity evaluation software tool (T.E.S.T) and soybean germination experiments. This work offers novel insights into the pivotal role of crystal plane directional regulation in the quantitative generation of oxygen vacancies.
Collapse
Affiliation(s)
- Yuxi Xi
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaojun Guo
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, China.
| | - Wei Han
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hudong Yan
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Fei Zha
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiaohua Tang
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haifeng Tian
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhijun Zuo
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
2
|
Hong C, Liu Z, Mao Q, Zheng J, Sun Y, Lv Y, Wang P, Wu M, Lin J, Gao C, Ma X, Pan Y, Zhang J, Chen T, Yang X, Wu A. Oxygen-defect bismuth oxychloride nanosheets for ultrasonic cavitation effect enhanced sonodynamic and second near-infrared photo-induced therapy of breast cancer. Biomaterials 2025; 312:122709. [PMID: 39094521 DOI: 10.1016/j.biomaterials.2024.122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Sonodynamic therapy (SDT) relies heavily on the presence of oxygen to induce cell death. Its effectiveness is thus diminished in the hypoxic regions of tumor tissue. To address this issue, the exploration of ultrasound-based synergistic treatment modalities has become a significant research focus. Here, we report an ultrasonic cavitation effect enhanced sonodynamic and 1208 nm photo-induced cancer treatment strategy based on thermoelectric/piezoelectric oxygen-defect bismuth oxychloride nanosheets (BNs) to realize the high-performance eradication of tumors. Upon ultrasonic irradiation, the local high temperature and high pressure generated by the ultrasonic cavitation effect combined with the thermoelectric and piezoelectric effects of BNs create a built-in electric field. This facilitates the separation of carriers, increasing their mobility and extending their lifetimes, thereby greatly improving the effectiveness of SDT and NIR-Ⅱ phototherapy on hypoxia. The Tween-20 modified BNs (TBNs) demonstrate ∼88.6 % elimination rate against deep-seated tumor cells under hypoxic conditions. In vivo experiments confirm the excellent antitumor efficacy of TBNs, achieving complete tumor elimination within 10 days with no recurrences. Furthermore, due to the high X-ray attenuation of Bi and excellent NIR-Ⅱ absorption, TBNs enable precise cancer diagnosis through photoacoustic (PA) imaging and computed tomography (CT).
Collapse
Affiliation(s)
- Chengyuan Hong
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Zhusheng Liu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China; Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, China
| | - Quanliang Mao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China; Department of Radiology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, China
| | - Jianjun Zheng
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, China
| | - Yanzi Sun
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China; Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, China
| | - Yagui Lv
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China; Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, China
| | - Pengyu Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Manxiang Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Yuning Pan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, China; Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, China
| | - Jingfeng Zhang
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China; Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, China.
| | - Xiaogang Yang
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China.
| |
Collapse
|
3
|
Shi H, Shi Q, Gu X, Wang B, Lumbers B, Li G. Integrating the 2D/2D heterostructure of the MXene monolayer and BiOBr nano-sheets for superior photo-catalysis. J Colloid Interface Sci 2024; 673:527-536. [PMID: 38885538 DOI: 10.1016/j.jcis.2024.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The highly efficient photo-oxidation of alcohols has sparked significant potential to cope with environmental pollution and the ever-increasing energy crisis. This study reports a unique Ti3C2/BiOBr (TB) heterojunction with a rich inter-face based on in situ exfoliation of MXene and subsequently anchored onto BiOBr sheets. The TB nano-composites exhibited substantially improved photo-catalytic activity towards the photo-oxidation of benzyl alcohol (BA) to benzaldehyde and achieved a formation rate of 1.73 mmol g-1 h-1, greater than pristine BiOBr. The ultra-thin inter-facial contact boosted the oxygen vacancies (Ov) and Ti3+ and possessed the most negative adsorption energy, which boosted the transfer and separation of inter-facial charge carriers and the adsorption and dissociation of BA. Overall, the successful synthesis of TB composite, along with its exceptional photo-catalytic performance, offers valuable insights for applications in green chemistry and environmental remediation.
Collapse
Affiliation(s)
- Huiming Shi
- College of Science & College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Quanquan Shi
- College of Science & College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource & Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China.
| | - Xinrui Gu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Binli Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Brock Lumbers
- Faculty of Technology & Bionics, Rhine-Waal University of Applied Sciences, Kleve 47533, Germany
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
4
|
Chang F, Bao W, Li K, Bai W, Shi Z, Liu DG, Kong Y. Augmented photocatalytic NO removal by the S-scheme Bi 7O 9I 3/Bi 2S 3 heterojunctions with surface oxygen vacancies: Experimental analyses and theoretical calculations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122390. [PMID: 39243647 DOI: 10.1016/j.jenvman.2024.122390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The establishment of S-scheme heterojunctions represents an effective strategy for enhancing the transfer and separation of charge carriers, thereby bolstering redox capacities and consequently benefiting subsequent photocatalytic reactions. In this study, the pristine Bi7O9I3 underwent a facile vulcanization process to in-situ produce various composites. Systematical characterizations confirmed the simultaneous generation of Bi7O9I3/Bi2S3 (BI-BS) heterojunctions with surface oxygen vacancies (OVs). Under visible light, these BI-BS composites exhibited improved NO removal efficiencies with reduced NO2 generation compared to bare Bi7O9I3. Particularly, the best candidate BI-BS2 possesses the highest NO removal (43.02%) and lowest NO2 generation (5.44%) among all tested samples. The improvement was primarily attributed to synergetic effects of heterojunction and surface OVs, including enhanced charge separation, heightened light responsiveness, and improved generation of reactive oxygen-containing species through an S-scheme mode. Furthermore, the Density Functional Theory (DFT) calculations had demonstrated that the establishment of BI-BS heterojunctions with surface OVs not only optimized the electronic structure to facilitate the transfer and separation of charge carriers, but also significantly enhanced the adsorption of NO, H2O, and O2 molecules, ultimately favoring the generation of NO3- species. These as-synthesized composites indicated sufficient structural stability and hold potential for the photocatalytic removal of NO at ppb levels.
Collapse
Affiliation(s)
- Fei Chang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Wenlong Bao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Kaiwen Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Wenhao Bai
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhuoli Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Deng-Guo Liu
- Shanghai Environmental Monitoring Center, Shanghai, 200235, PR China.
| | - Yuan Kong
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics CAS Center for Excellence in Nanoscience and Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
5
|
Jiang Y, Sun H, Guo J, Liang Y, Qin P, Yang Y, Luo L, Leng L, Gong X, Wu Z. Vacancy Engineering in 2D Transition Metal Chalcogenide Photocatalyst: Structure Modulation, Function and Synergy Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310396. [PMID: 38607299 DOI: 10.1002/smll.202310396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Transition metal chalcogenides (TMCs) are widely used in photocatalytic fields such as hydrogen evolution, nitrogen fixation, and pollutant degradation due to their suitable bandgaps, tunable electronic and optical properties, and strong reducing ability. The unique 2D malleability structure provides a pre-designed platform for customizable structures. The introduction of vacancy engineering makes up for the shortcomings of photocorrosion and limited light response and provides the greatest support for TMCs in terms of kinetics and thermodynamics in photocatalysis. This work reviews the effect of vacancy engineering on photocatalytic performance based on 2D semiconductor TMCs. The characteristics of vacancy introduction strategies are summarized, and the development of photocatalysis of vacancy engineering TMCs materials in energy conversion, degradation, and biological applications is reviewed. The contribution of vacancies in the optical range and charge transfer kinetics is also discussed from the perspective of structure manipulation. Vacancy engineering not only controls and optimizes the structure of the TMCs, but also improves the optical properties, charge transfer, and surface properties. The synergies between TMCs vacancy engineering and atomic doping, other vacancies, and heterojunction composite techniques are discussed in detail, followed by a summary of current trends and potential for expansion.
Collapse
Affiliation(s)
- Yi Jiang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Haibo Sun
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, P. R. China
| | - Yunshan Liang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Pufeng Qin
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Yuan Yang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lin Luo
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xiaomin Gong
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Zhibin Wu
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| |
Collapse
|
6
|
Xu L, Yu JC, Wang Y. Recent advances on bismuth oxyhalides for photocatalytic CO 2 reduction. J Environ Sci (China) 2024; 140:183-203. [PMID: 38331499 DOI: 10.1016/j.jes.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 02/10/2024]
Abstract
Photocatalytic conversion of CO2 into fuels such as CO, CH4, and CH3OH, is a promising approach for achieving carbon neutrality. Bismuth oxyhalides (BiOX, where X = Cl, Br, and I) are appropriate photocatalysts for this purpose due to the merits of visible-light-active, efficient charge separation, and easy-to-modify crystal structure and surface properties. For practical applications, multiple strategies have been proposed to develop high-efficiency BiOX-based photocatalysts. This review summarizes the development of different approaches to prepare BiOX-based photocatalysts for efficient CO2 reduction. In the review, the fundamentals of photocatalytic CO2 reduction are introduced. Then, several widely used modification methods for BiOX photocatalysts are systematacially discussed, including heterojunction construction, introducing oxygen vacancies (OVs), Bi-enrichment, heteroatom-doping, and morphology design. Finally, the challenges and prospects in the design of future BiOX-based photocatalysis for efficient CO2 reduction are examined.
Collapse
Affiliation(s)
- Liangpang Xu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China.
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China.
| |
Collapse
|
7
|
Li Y, Han D, Wang Z, Gu F. Double-Solvent-Induced Derivatization of Bi-MOF to Vacancy-Rich Bi 4O 5Br 2: Toward Efficient Photocatalytic Degradation of Ciprofloxacin in Water and HCHO Gas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7080-7096. [PMID: 38293772 DOI: 10.1021/acsami.3c15898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
MOF-derived photocatalytic materials have potential in degrading ciprofloxacin (CIP) in water and HCHO gas pollutants. Novel derivatization means and defect regulation are effective techniques for improving the performance of MOF-derived photocatalysis. Vacancy-rich Bi4O5Br2 (MBO-x) were derived in one step from Bi-MOF (CAU-17) by a modified double-solvent method. MBO-50 produced more oxygen vacancies due to the combined effect of the CAU-17 precursor and double solvents. The photocatalytic performance of MBO was evaluated by degrading CIP and HCHO. Thanks to the favorable morphology and vacancy structure, MBO-50 demonstrated the best photocatalytic efficiency, with 97.0% removal of CIP (20 mg L-1) and 90.1% removal of HCHO (6.5 ppm) at 60 min of light irradiation. The EIS Nyquist measurement, transient photocurrent response, photoluminescence spectra, and the calculation of energy band information indicated that the vacancy sites can effectively capture photoexcited electrons during the charge transfer process, thus limiting the recombination of electrons and holes, improving the energy band structure, and making it easier to produce superoxide anion radical (·O2-) and to degrade CIP and HCHO. The improvement of photocatalytic performance of MBO-50 in HCHO degradation due to the bromine vacancy generation and filling mechanism was discussed in detail. This work provides a promising new idea for the modulation of MOF-derived photocatalytic materials.
Collapse
Affiliation(s)
- Yansheng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongmei Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fubo Gu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Rezaei M, Nezamzadeh-Ejhieh A, Massah AR. A comprehensive review on the boosted effects of anion vacancy in the heterogeneous photocatalytic degradation, part I: Focus on sulfur, nitrogen, carbon, and halogen vacancies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115927. [PMID: 38181561 DOI: 10.1016/j.ecoenv.2024.115927] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
The greenest environmental remediation way is the photocatalytic degradation of organic pollutants. However, limited photocatalytic applications are due to poor sunlight absorption and photogenerated charge carriers' recombination. These limitations can be overcome by introducing anion vacancy (AV) (O, S, N, C, and Halogen) defects in semiconductors that enhance light harvesting, facilitate charge separation, modulate electronic structure, and produce reactive radicals. In continuing part A of this review, in this part, we summarized the recent AVs' research, including S, N, C, and halogen vacancies on the boosted photocatalytic features of semiconductor materials, like metal oxides/sulfides, oxyhalides, and nitrides in detail. Also, we outline the recently developed AV designs for the photocatalytic degradation of organic pollutants. The AV creating and analysis methods and the recent photocatalytic applications and mechanisms of AV-mediated photocatalysts are reviewed. AV engineering photocatalysts' challenges and development prospects are illustrated to get a promising research direction.
Collapse
Affiliation(s)
- Mahdieh Rezaei
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran; Department of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Ahmad Reza Massah
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran; Department of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
9
|
Sun H, Qin P, Liang Y, Yang Y, Zhang J, Guo J, Hu X, Jiang Y, Zhou Y, Luo L, Wu Z. Sonochemically assisted the synthesis and catalytic application of bismuth-based photocatalyst: A mini review. ULTRASONICS SONOCHEMISTRY 2023; 100:106600. [PMID: 37741022 PMCID: PMC10520575 DOI: 10.1016/j.ultsonch.2023.106600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Recently, bismuth (Bi)-based photocatalysts have been a well-deserved hotspot in the field of photocatalysis owning to their photoelectrochemical properties driven by the distortion of the Bi 6 s orbital, while their narrow band gap and poor quantum efficiency still restrict their application. With the development of ultrasonic technology, it is expected to become a broom to clear the application obstacles of Bi-based photocatalysts. The special forces and environmental conditions brought by ultrasonic irradiation play beneficial roles in the preparation, modification and performance releasement of Bi-based photocatalysts. In this review, the role and influencing factors of ultrasound in the preparation and modification of Bi-based photocatalysts were introduced. Crucially, the mechanism of the improving the performance for various types of Bi-based photocatalysts by ultrasound in the whole process of photocatalysis was deeply analyzed. Then, the application of ultrasonic synergistic Bi-based photocatalysts in contaminants treatment and energy conversion was briefly introduced. Finally, based on an unambiguous understanding of ultrasonic technology in assisting Bi-based photocatalysts, the future directions and possibilities for ultrasonic synergistic Bi-based photocatalysts are explored.
Collapse
Affiliation(s)
- Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China.
| | - Xiaolong Hu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yi Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yunfei Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
10
|
Wang X, Ma S, Liu B, Wang S, Huang W. Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting. Chem Commun (Camb) 2023; 59:10044-10066. [PMID: 37551587 DOI: 10.1039/d3cc02843g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Photoelectrochemical (PEC) water splitting for hydrogen evolution has been considered as a promising technology to solve the energy and environmental issues. However, the solar-to-hydrogen (STH) conversion efficiencies of current PEC systems are far from meeting the commercial demand (10%) due to the lack of efficient photoelectrode materials. The recent rapid development of defect engineering of photoelectrodes has significantly improved the PEC performance, which is expected to break through the bottleneck of low STH efficiency. In this review, the category and the construction methods of different defects in photoelectrode materials are summarized. Based on the in-depth summary and analysis of existing reports, the PEC performance enhancement mechanism of defect engineering is critically discussed in terms of light absorption, carrier separation and transport, and surface redox reactions. Finally, the application prospects and challenges of defect engineering for PEC water splitting are presented, and the future research directions in this field are also proposed.
Collapse
Affiliation(s)
- Xin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Siqing Ma
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Boyan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Songcan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| |
Collapse
|
11
|
Mei H, Wang Z, Jin D, Zhang R, Wang X. Constructing BiOBr 1-xI x-y with Abundant Surface Br Vacancies for Excellent Visible-Light Photodegradation Capability of High-Concentration Refractory Contaminants. Inorg Chem 2023; 62:12822-12831. [PMID: 37525121 DOI: 10.1021/acs.inorgchem.3c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Bismuth oxybromide (BiOBr) is a promising photocatalytic semiconductor material due to its unique hierarchical structure and band structure. However, its photocatalytic applications are restricted due to its narrow visible-light absorption range and poor photooxidation capability. In this study, BiOBr1-xIx-y with rich surface Br vacancies (BrVs-rich BiOBr1-xIx-y) was created via a facile indirect substitution strategy. Benefiting from the broadened visible-light response range and reduced recombination rate of photogenerated carriers, BiOBr1-xIx-y shows excellent visible-light photodegradation ability for high-concentration refractory contaminants, such as phenol, tetracycline, bisphenol A, rhodamine B, methyl orange, and even real wastewater. At the same time, the Br vacancies can regulate the band structure of BiOBr1-xIx-y and serve as trap states to promote charge separation, thus facilitating surface photoredox reactions. An in-depth investigation of the Br vacancy effect and photodegradation mechanism was conducted. This novel study revealed the significance of Br vacancies in enhancing the photocatalytic performance of BiOBr under visible light, providing a promising strategy for improving the utilization efficiency of sunlight in wastewater treatment.
Collapse
Affiliation(s)
- Hao Mei
- School of Future Technology, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Zhichen Wang
- School of Future Technology, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Dai Jin
- School of Future Technology, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Rongbin Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Xuewen Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| |
Collapse
|
12
|
Sun J, Wen J, Wang J, Yang Y, Wang G, Liu J, Yu Q, Liu M. Unraveling the atomic-level vacancy modulation in Cu 9S 5 for NIR-driven efficient inhibition of drug-resistant bacteria: Key role of Cu vacancy position. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131082. [PMID: 36870131 DOI: 10.1016/j.jhazmat.2023.131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Cu9S5 possesses high hole concentration and potential superior electrical conductivity as a novel p-type semiconductor, whose biological applications remain largely unexploited. Encouraged by our recent work that Cu9S5 has enzyme-like antibacterial activity in the absence of light, which may further enhance the near infrared (NIR) antibacterial performance. Moreover, vacancy engineering can modulate the electronic structure of the nanomaterials and thus optimize their photocatalytic antibacterial activities. Here, we designed two different atomic arrangements with same VCuSCu vacancies of Cu9S5 nanomaterials (CSC-4 and CSC-3) determined by positron annihilation lifetime spectroscopy (PALS). Aiming at CSC-4 and CSC-3 as a model system, for the first time, we investigated the key role of different copper (Cu) vacancies positions in vacancy engineering toward optimizing the photocatalytic antibacterial properties of the nanomaterials. Combined with the experimental and theoretical approach, CSC-3 exhibited stronger absorption energy of surface adsorbate (LPS and H2O), longer lifetime of photogenerated charge carriers (4.29 ns), and lower reaction active energy (0.76 eV) than those of CSC-4, leading to the generation of abundant ·OH for attaining rapid drug-resistant bacteria killed and wound healed under NIR light irradiation. This work provided a novel insight for the effective inhibition of drug-resistant bacteria infection via vacancy engineering at the atomic-level modulation.
Collapse
Affiliation(s)
- Jingyu Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China
| | - Jinghong Wen
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jianling Wang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yang Yang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guichang Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin key Lab and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jiandang Liu
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China (USTC), Hefei, Anhui 230026, China.
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mingyang Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
13
|
Yuan Z, Jiang Z. Applications of BiOX in the Photocatalytic Reactions. Molecules 2023; 28:4400. [PMID: 37298876 PMCID: PMC10254493 DOI: 10.3390/molecules28114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BiOX (X = Cl, Br, I) families are a kind of new type of photocatalysts, which have attracted the attention of more and more researchers. The suitable band gaps and their convenient tunability via the change of X elements enable BiOX to adapt to many photocatalytic reactions. In addition, because of their characteristics of the unique layered structure and indirect bandgap semiconductor, BiOX exhibits excellent separation efficiency of photogenerated electrons and holes. Therefore, BiOX could usually demonstrate fine activity in many photocatalytic reactions. In this review, we will present the various applications and modification strategies of BiOX in photocatalytic reactions. Finally, based on a good understanding of the above issues, we will propose the future directions and feasibilities of the reasonable design of modification strategies of BiOX to obtain better photocatalytic activity toward various photocatalytic applications.
Collapse
Affiliation(s)
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
14
|
Liu Y, Li G, Wang D, Zhong Z, Hu K, Zhang C, Hu G, Li X, Wan Y. Lanthanide-doped upconversion glass-ceramic photocatalyst fabricated from fluorine-containing waste for the degradation of organic pollutants. J Colloid Interface Sci 2023; 638:461-474. [PMID: 36758258 DOI: 10.1016/j.jcis.2023.01.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Fluorine-containing waste is one kind of hazardous waste characteristic by hard disposal and utilization, it is an attractive way to prepare for fluoride-based luminescent matrix. In this work, to realize the high value-added utilization of fluorine-containing waste and reduce cost of the raw materials for preparation near-infrared (NIR) glass-ceramic (GC) photocatalyst, the pure fluoride of luminescent matrix was replaced by introducing fluorine-containing waste. The waste contained NIR GC photocatalyst was synthesis by the method of facile in-situ etching of an upconversion GC with HCl, which possesses core-shell structure, where the GC micro-powder including optically active centers lanthanides doped CaF2 nanocrystals are displayed as the core, and the BiOCl is as the superficial coating. The upconversion emission performance of CaF2 based luminescent matrix in photocatalyst is not weakened with HCl etching. NIR GC photocatalyst has high methyl orange and enrofloxacin degradation rate of 86 % and 82 % over 180 min after NIR light irradiation, respectively. The UV-Vis-NIR photocatalytic activity was enhanced degradation rate (93 % in 15 min) of enrofloxacin compared with those of commercial P25 and BiOCl. In addition, the photocatalyst had stable photocatalytic activity and it also can be regenerated. The study provided references for high value-added utilization fluorine-containing waste.
Collapse
Affiliation(s)
- Yucheng Liu
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Guobiao Li
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
| | - Dong Wang
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenchen Zhong
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Kaibo Hu
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Chuanqi Zhang
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Guoping Hu
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xuewei Li
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yinhua Wan
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
| |
Collapse
|
15
|
Ge J, Tang N, Guo J, Yu M, Zhang Y, Li X, Liang J. Mussel-inspired magnetic adsorbent MnO 2/PDA@Fe 3O 4 for removing heavy metal ions contaminants in single and mixed systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40846-40859. [PMID: 36622594 DOI: 10.1007/s11356-022-25094-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution has been a magnificent concern for a long period. A novel magnetic material, MnO2/PDA@Fe3O4, was prepared in this paper. With the assistance of multiple characterization methods, it was confirmed that polydopamine coated the magnetic nucleus and acted as a dense intermediate layer for MnO2 attachment. Having superior adsorption performance, MnO2/PDA@Fe3O4 could remove heavy metal cations efficiently no matter in single or mixed systems. The maximum adsorption capacities calculated by the Langmuir model for Pb(II), Cu(II), and Cd(II) were 295.01 mg/g, 130.30 mg/g, and 115.16 mg/g, respectively. In mixed systems, the adsorbent showed obvious selectivity for Pb(II). And the variation of Cu(II) concentration was more responsible for Pb(II) adsorption than that of Cd(II). The kinetic and thermodynamic data revealed that the polluted ions immobilizations by MnO2/PDA@Fe3O4 were chemisorption and were endothermic, entropy increase, spontaneous process. The presence of humic acid and coexisting ions induced only a very limited interference. In addition, MnO2/PDA@Fe3O4 maintained excellent adsorption performance and stability after five cycles of adsorption and removed 98.33% Pb(II) and 71.24% Cu(II) from actual water, respectively. This study confirmed that the MnO2/PDA@Fe3O4 had great potential and broad prospects to remediate the heavy metal contaminants in water.
Collapse
Affiliation(s)
- Jiangyue Ge
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Jiayin Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Mengdie Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Yafei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
16
|
Yu Y, Chen F, Jin X, Min J, Duan H, Li J, Wu Z, Cao B. Oxygen Vacancies-Rich S-Cheme BiOBr/CdS Heterojunction with Synergetic Effect for Highly Efficient Light Emitting Diode-Driven Pollutants Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:830. [PMID: 36903708 PMCID: PMC10005353 DOI: 10.3390/nano13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Recently, the use of semiconductor-based photocatalytic technology as an effective way to mitigate the environmental crisis attracted considerable interest. Here, the S-scheme BiOBr/CdS heterojunction with abundant oxygen vacancies (Vo-BiOBr/CdS) was prepared by the solvothermal method using ethylene glycol as a solvent. The photocatalytic activity of the heterojunction was investigated by degrading rhodamine B (RhB) and methylene blue (MB) under 5 W light-emitting diode (LED) light. Notably, the degradation rate of RhB and MB reached 97% and 93% in 60 min, respectively, which were better than that of BiOBr, CdS, and BiOBr/CdS. It was due to the construction of the heterojunction and the introduction of Vo, which facilitated the spatial separation of carriers and enhanced the visible-light harvest. The radical trapping experiment suggested that superoxide radicals (·O2-) acted as the main active species. Based on valence balance spectra, Mott-Schottky(M-S) spectra, and DFT theoretical calculations, the photocatalytic mechanism of the S-scheme heterojunction was proposed. This research provides a novel strategy for designing efficient photocatalysts by constructing S-scheme heterojunctions and introducing oxygen vacancies for solving environmental pollution.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fengjuan Chen
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, China
| | - Xuekun Jin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Junyong Min
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Haiming Duan
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jin Li
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhaofeng Wu
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Biaobing Cao
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
17
|
Panda L, Pradhan A, EnketeswaraSubudhi, Nanda B. Facile fabrication of plasmonic Ag modified CaTiO3: for boosting photocatalytic reduction of Cr6+ and antimicrobial study. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
18
|
Yan R, Liu X, Zhang H, Ye M, Wang Z, Yi J, Gu B, Hu Q. Carbon Quantum Dots Accelerating Surface Charge Transfer of 3D PbBiO 2I Microspheres with Enhanced Broad Spectrum Photocatalytic Activity-Development and Mechanism Insight. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1111. [PMID: 36770117 PMCID: PMC9918922 DOI: 10.3390/ma16031111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The development of a highly efficient, visible-light responsive catalyst for environment purification has been a long-standing exploit, with obstacles to overcome, including inefficient capture of near-infrared photons, undesirable recombination of photo-generated carriers, and insufficient accessible reaction sites. Hence, novel carbon quantum dots (CQDs) modified PbBiO2I photocatalyst were synthesized for the first time through an in-situ ionic liquid-induced method. The bridging function of 1-butyl-3-methylimidazolium iodide ([Bmim]I) guarantees the even dispersion of CQDs around PbBiO2I surface, for synchronically overcoming the above drawbacks and markedly promoting the degradation efficiency of organic contaminants: (i) CQDs decoration harness solar photons in the near-infrared region; (ii) particular delocalized conjugated construction of CQDs strength via the utilization of photo-induced carriers; (iii) π-π interactions increase the contact between catalyst and organic molecules. Benefiting from these distinguished features, the optimized CQDs/PbBiO2I nanocomposite displays significantly enhanced photocatalytic performance towards the elimination of rhodamine B and ciprofloxacin under visible/near-infrared light irradiation. The spin-trapping ESR analysis demonstrates that CQDs modification can boost the concentration of reactive oxygen species (O2•-). Combined with radicals trapping tests, valence-band spectra, and Mott-Schottky results, a possible photocatalytic mechanism is proposed. This work establishes a significant milestone in constructing CQDs-modified, bismuth-based catalysts for solar energy conversion applications.
Collapse
|
19
|
Zhang C, Xiong W, Li Y, Lin L, Zhou X, Xiong X. Continuous inactivation of human adenoviruses in water by a novel g-C 3N 4/WO 3/biochar memory photocatalyst under light-dark cycles. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130013. [PMID: 36155297 DOI: 10.1016/j.jhazmat.2022.130013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Viruses transmitted by water have raised considerable concerns for public health. A novel memory photocatalyst of g-C3N4/WO3/biochar was successfully developed for effective inactivation of human adenoviruses (HAdVs) in water, in which WO3 as an electron-storage reservoir and biochar as an electron shuttle is employed to synergistically improve photocatalytic activity of g-C3N4. The tertiary composite exhibited continuous photocatalytic performance for HAdVs inactivation without regrowth in water under light-dark cycles, i.e., ∼3.9-log inactivation under 6-h visible light irradiation and an additional ∼1.1-log inactivation under the following 6-h dark. The enhanced virucidal mechanism was attributed to the heterojunction formation and especially the electron-transfer pathway switching via biochar incorporation, contributing to electron transfer and storage in the light phase and then electron release in the dark phase, along with obviously increased generation of the virus-killing •OH radicals under light-dark cycles.
Collapse
Affiliation(s)
- Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Wei Xiong
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China.
| | - Xinyi Zhou
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
20
|
Zheng X, Song Y, Liu Y, Yang Y, Wu D, Yang Y, Feng S, Li J, Liu W, Shen Y, Tian X. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Zhou Y, Yin H, Ai S. Recent advances and applications of Bi2S3-based composites in photoelectrochemical sensors and biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Shi Y, Li J, Huang D, Wang X, Huang Y, Chen C, Li R. Specific Adsorption and Efficient Degradation of Cylindrospermopsin on Oxygen-Vacancy Sites of BiOBr. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yan Shi
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang443002, China
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang443002, China
| | - Jingzhi Li
- College of Biology & Pharmacy, China Three Gorges University, Yichang443002, China
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang443002, China
| | - Di Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Xiawei Wang
- College of Biology & Pharmacy, China Three Gorges University, Yichang443002, China
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang443002, China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang443002, China
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang443002, China
| | - Chuncheng Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Ruiping Li
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang443002, China
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang443002, China
| |
Collapse
|
23
|
Liu J, Wang H, Chang MJ, Li WJ, Zhu WY, Bai G, Yang LQ, Du HL, Luo ZM, Shang T. Efficient doping to synthesize high-performance Co/Fe-BiOCl photocatalyst assisted by the ion release from novel CoFe2O4 nanofiber reservoir. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Din STU, Xie WF, Yang W. Synthesis of Co 3O 4 Nanoparticles-Decorated Bi 12O 17Cl 2 Hierarchical Microspheres for Enhanced Photocatalytic Degradation of RhB and BPA. Int J Mol Sci 2022; 23:ijms232315028. [PMID: 36499352 PMCID: PMC9736037 DOI: 10.3390/ijms232315028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Three-dimensional (3D) hierarchical microspheres of Bi12O17Cl2 (BOC) were prepared via a facile solvothermal method using a binary solvent for the photocatalytic degradation of Rhodamine-B (RhB) and Bisphenol-A (BPA). Co3O4 nanoparticles (NPs)-decorated BOC (Co3O4/BOC) heterostructures were synthesized to further enhance their photocatalytic performance. The microstructural, morphological, and compositional characterization showed that the BOC microspheres are composed of thin (~20 nm thick) nanosheets with a 3D hierarchical morphology and a high surface area. Compared to the pure BOC photocatalyst, the 20-Co3O4/BOC heterostructure showed enhanced degradation efficiency of RhB (97.4%) and BPA (88.4%). The radical trapping experiments confirmed that superoxide (•O2-) radicals played a primary role in the photocatalytic degradation of RhB and BPA. The enhanced photocatalytic performances of the hierarchical Co3O4/BOC heterostructure are attributable to the synergetic effects of the highly specific surface area, the extension of light absorption to the more visible light region, and the suppression of photoexcited electron-hole recombination. Our developed nanocomposites are beneficial for the construction of other bismuth-based compounds and their heterostructure for use in high-performance photocatalytic applications.
Collapse
Affiliation(s)
- Syed Taj Ud Din
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
| | - Wan-Feng Xie
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
- School of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Woochul Yang
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
- Correspondence: ; Tel.: +82-02-2260-3444
| |
Collapse
|
25
|
Wang Z, Li J, Qiao Y, Liu X, Zheng Y, Li Z, Shen J, Zhang Y, Zhu S, Jiang H, Liang Y, Cui Z, Chu PK, Wu S. Rapid Ferroelectric-Photoexcited Bacteria-Killing of Bi 4Ti 3O 12/Ti 3C 2T x Nanofiber Membranes. ADVANCED FIBER MATERIALS 2022; 5:484-496. [PMID: 36466134 PMCID: PMC9707173 DOI: 10.1007/s42765-022-00234-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 05/20/2023]
Abstract
In this study, an antibacterial nanofiber membrane [polyvinylidene fluoride/Bi4Ti3O12/Ti3C2T x (PVDF/BTO/Ti3C2T x )] is fabricated using an electrostatic spinning process, in which the self-assembled BTO/Ti3C2T x heterojunction is incorporated into the PVDF matrix. Benefiting from the internal electric field induced by the spontaneously ferroelectric polarization of BTO, the photoexcited electrons and holes are driven to move in the opposite direction inside BTO, and the electrons are transferred to Ti3C2T x across the Schottky interface. Thus, directed charge separation and transfer are realized through the cooperation of the two components. The recombination of electron-hole pairs is maximumly inhibited, which notably improves the yield of reactive oxygen species by enhancing photocatalytic activity. Furthermore, the nanofiber membrane with an optimal doping ratio exhibits outstanding visible light absorption and photothermal conversion performance. Ultimately, photothermal effect and ferroelectric polarization enhanced photocatalysis endow the nanofiber membrane with the ability to kill 99.61% ± 0.28% Staphylococcus aureus and 99.71% ± 0.16% Escherichia coli under 20 min of light irradiation. This study brings new insights into the design of intelligent antibacterial textiles through a ferroelectric polarization strategy. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-022-00234-8.
Collapse
Affiliation(s)
- Zhiying Wang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Jianfang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Yuqian Qiao
- School of Materials Science and Engineering, Peking University, Beijing, 100871 China
| | - Xiangmei Liu
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401 China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871 China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Hui Jiang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Yanqin Liang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077 China
| | - Shuilin Wu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
- School of Materials Science and Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
26
|
Facile synthesis of BiOCl with extremely superior visible light photocatalytic activity synergistically enhanced by Co doping and oxygen vacancies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Zhang Z, Wang Y, Gao P, Feng L, Zhang L, Liu Y, Du Z. Visible-light-driven photocatalytic degradation of ofloxacin by BiOBr nanocomposite modified with oxygen vacancies and N-doped CQDs: Enhanced photodegradation performance and mechanism. CHEMOSPHERE 2022; 307:135976. [PMID: 35944686 DOI: 10.1016/j.chemosphere.2022.135976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The rapid recombination of photogenerated carriers and weak light absorption capacity are two major challenges for bismuth-based photocatalysts. Here, N-CQDs/BiO1-xBr micro-flower photocatalysts with the visible-light activity were fabricated through the ethylene glycol solvothermal method for the first time, and oxygen vacancies (OVs) and N-doped carbon quantum dots (N-CQDs) were simultaneously introduced on the surface of BiOBr. OVs were introduced to form defective BiOBr (BiO1-xBr). N-CQDs and BiO1-xBr formed a strong binding effect. Then, the composition, morphology, crystal structure and photoelectric property of photocatalysts were studied, and the mechanism and pathway of ofloxacin (OFL) photodegradation were studied. N-CQDs/BiO1-xBr-4 was a micro-flower composed of nanosheets with a thickness of about 60 nm, this structure produced multiple light reflections. Photoelectrochemical analysis confirmed that the synergistic effect of OVs and N-CQDs significantly promoted the electron-hole separation (3 times vs BiOBr) and enhanced the light absorption range (Eg = 2.96 eV vs 3.24 eV). Meanwhile, the removal rate of OFL by N-CQDs/BiO1-xBr-4 was 6 times higher than that by BiOBr (Kobs of N-CQDs/BiO1-xBr-4 was 32 times higher than that of BiOBr). Electron spin resonances analysis and radical quenching experiments showed that ·O2- and h+ played dominant roles in the OFL photodegradation system, and their contribution rates were 89.84% and 70.31%, respectively. There were main degradation pathways for OFL, including oxidation, dealkylation, hydroxylation and decarboxylation. This study explored the synergistic and complementary effects between OVs and N-CQDs, and provided a promising strategy for the photodegradation of toxic antibiotics by visible-light-driven photocatalysts.
Collapse
Affiliation(s)
- Zijing Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yang Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Peng Gao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
28
|
Sreedhar A, Hoai Ta QT, Noh JS. Role of p-n junction initiated mixed-dimensional 0D/2D, 1D/2D, and 2D/2D BiOX (X = Cl, Br, and I)/TiO 2 nanocomposite interfaces for environmental remediation applications: A review. CHEMOSPHERE 2022; 305:135478. [PMID: 35760130 DOI: 10.1016/j.chemosphere.2022.135478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, we are critically facing various environmental issues. Among these, water contamination is the foremost issue, which worsens our health and living organisms in the water. Thus, it is necessary to provide an avenue to minimize the toxic matter through the development of facile technique and harmless photocatalyst. In this review, we intended to uncover the findings associated with various 0D, 1D, and 2D nanostructures featured photocatalysts for advancements in interfacial characteristics and toxic matter degradation. In this context, we evaluated the promising mixed-dimensional 0D/2D, 1D/2D, and 2D/2D bismuth oxyhalides BiOX (X = Cl, Br, and I) integrated TiO2 nanostructure interfaces. Tunable mixed-dimensional interfaces highlighted with higher surface area, more heterojunctions, variation in the conduction and valence band potential, narrowed band gap, and built-in electric field formation between BiOX and TiO2, which exhibits remarkable toxic dye, heavy metals, and antibiotics degradation. Further, this review further examines insights into the charge carrier generation, separation, and shortened charge transfer path at reduced recombination. Considering the advantages of type-II, S-scheme, and Z-scheme charge transfer mechanisms in the BiOX/TiO2, we heightened the combination of various reactive species generation. In a word, the concept of mixed-dimensional BiOX/TiO2 heterojunction interface endows toxic matter adsorption and decomposition into useful products. Challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Adem Sreedhar
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea
| | - Qui Thanh Hoai Ta
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea
| | - Jin-Seo Noh
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea.
| |
Collapse
|
29
|
Kumar Y, Kumar R, Raizada P, Parwaz Khan AA, Nguyen VH, Kim SY, Le QV, Selvasembian R, Singh A, Gautam S, Nguyen CC, Singh P. Recent progress on elemental sulfur based photocatalysts for energy and environmental applications. CHEMOSPHERE 2022; 305:135477. [PMID: 35760133 DOI: 10.1016/j.chemosphere.2022.135477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The growing needs of the rising population and blatant misuse of resources have contributed enormously to environmental problems. Among the various methods, photocatalysis has emerged as one of the effective remediation methods. The continuous search for effective photocatalysts that can be made from abundant, cheap, non-toxic materials is going on. Although sulfur is a known insulator, recent sulfur use as a visible light photocatalyst has ushered a new era in this direction. Sulfur is a non-toxic, cheap, and abundant photocatalyst, exhibiting significant photocatalytic properties. But, hydrophobicity, poor light-harvesting and high recombination rate of charge carriers in elemental sulfur photocatalyst are some of the major drawbacks of the elemental sulfur photocatalyst. The photocatalytic activity of sulfur as a single element was low, but various methods such as nanoscaling, heterojunction formation, doping and surface modifications have been used to enhance it. The review highlights sulfur's crystal structure, electronic and optical properties, and morphological changes, making it an excellent visible light photocatalyst. The article points to the limitations of sulfur as a single photocatalyst and various strategies to improve the shortcomings. More recently, there has been an emphasis on the synthesis of metal-free photocatalysts. This review provides its readers with a comprehensive detail of sulfur being used as a dopant in improving the photocatalytic properties of metal-free photocatalysts and their environmental remediation use. Finally, the conclusion and future perspectives for sulfur-based nanostructures are presented.
Collapse
Affiliation(s)
- Yogesh Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India; Department of Chemistry, Government Degree College, Solan, HP, 173212, India
| | - Rohit Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram district, 603103, Tamil Nadu, India.
| | - Soo Young Kim
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Archana Singh
- CSIR Advanced Materials and Processes Research Institute, Bhopal, India
| | - Sourav Gautam
- Department of Chemistry, School of Basic & Applied Sciences, Maharaja Agrasen University, H.P, 174103, India
| | - Chinh Chien Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
30
|
Liu J, Huang L, Li Y, Yao J, Shu S, Huang L, Song Y, Tian Q. Constructing an S-scheme CuBi2O4/Bi4O5I2 heterojunction for light emitting diode-driven pollutant degradation and bacterial inactivation. J Colloid Interface Sci 2022; 621:295-310. [DOI: 10.1016/j.jcis.2022.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
|
31
|
|
32
|
Liu J, Wang H, Chang MJ, Sun M, He ZW, Zhang CM, Zhu WY, Chen JL, Du HL, Peng LG, Luo ZM, Zhang L. Magnetically separatable CoFe2O4/BiOCl: Controllable synthesis, superior photocatalytic performance and mechanism towards decomposing RhB, NOR and Cr(VI) under visible light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Vinoth S, Ong WJ, Pandikumar A. Defect engineering of BiOX (X = Cl, Br, I) based photocatalysts for energy and environmental applications: Current progress and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Prabagar JS, Yashas SR, Gurupadayya B, Wantala K, Diganta DB, Shivaraju HP. Degradation of doxycycline antibiotics using lanthanum copper oxide microspheres under simulated sunlight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57204-57214. [PMID: 35344145 DOI: 10.1007/s11356-022-19842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In this study, lanthanum copper oxide was synthesized under hydrothermal techniques and characterized for doxycycline degradation. The catalyst exhibited enhanced photocatalytic doxycycline degradation under visible light owing to its compatible bandgap energy (1.7 eV). The XRD data revealed high crystallinity of the material with no noticeable impurities. Three-dimensional microspheres of varying sizes (average diameter of 2.52 μm) were observed from SEM. EDX confirms the successful synthesis of La2CuO4. The effect of DC concentration, catalyst dosage, and initial pH on the degradation rate of DC was studied methodically. Interestingly, about 85% of doxycycline (10 mg/L) was degraded within 120 min of light-emitting diode irradiation at pH 10. Oxygen vacancies and surface defects were determined through photoluminescence spectra. The recyclability experiments suggested that the catalyst is capable of degrading DC for three consecutive runs. Radical trapping trials suggested that holes (h+), superoxide radicals (●O2-), and hydroxyl radicals (●OH) are involved in the photodegradation of DC. Herein, the novel approach of La2CuO4 synthesis and the efficient visible-light harvesting capability of as-prepared catalyst reveal the potentiality for DC degradation thereby opening a new horizon of research employing La2CuO4 used for various environmental applications.
Collapse
Affiliation(s)
- Jijoe Samuel Prabagar
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru-570015, Mysuru, India
- Center for Water, Food and Energy, Dombaranahalli Post, GREENS Trust, Turuvekere Taluka, Tumkur District, Harikaranahalli, Karnataka, India, 572215
| | - Shivamurthy Ravindra Yashas
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru-570015, Mysuru, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru-570015, Mysuru, India
| | - Kitirote Wantala
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Das Bhusan Diganta
- Department of Chemical Engineering, School of AACME, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Harikaranahalli Puttaiah Shivaraju
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru-570015, Mysuru, India.
- Center for Water, Food and Energy, Dombaranahalli Post, GREENS Trust, Turuvekere Taluka, Tumkur District, Harikaranahalli, Karnataka, India, 572215.
| |
Collapse
|
35
|
Sun H, Lang Z, Zhao Y, Zhao X, Qiu T, Hong Q, Wei K, Tan H, Kang Z, Li Y. Copper-Bridged Tetrakis(4-ethynylphenyl)ethene Aggregates with Photo-Regulated 1 O 2 and O 2 .- Generation for Selective Photocatalytic Aerobic Oxidation. Angew Chem Int Ed Engl 2022; 61:e202202914. [PMID: 35543927 DOI: 10.1002/anie.202202914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/07/2022]
Abstract
Active species regulation is a key scientific issue that essentially determines the selectivity and activity of a photocatalyst. Herein, CuI -bridged tetrakis(4-ethynylphenyl)ethene aggregates (T4 EPE-Cu) with photo-regulated 1 O2 and O2 .- generation were demonstrated for selective photocatalytic aerobic oxidation. In this system, transient photovoltage combined with the density functional theory calculations confirmed that Cu-alkynyl was the main oxygen activation site. The adsorbed O2 tends to produce O2 .- because of the potential well effect of Cu-alkynyl under high-energy light excitation. But under low-energy light, O2 tends to produce 1 O2 via resonance energy transfer with Cu-alkynyl. For α-terpinene oxidation, the ratios of 1 O2 products to O2 .- products can be controlled from 1.3 (380 nm) to 10.7 (600 nm). Furthermore, T4 EPE-Cu exhibited ultrahigh photocatalytic performance for Glaser coupling and benzylamine oxidation, with a conversion and selectivity of over 99 %.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yingnan Zhao
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xinyu Zhao
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Tianyu Qiu
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Qiang Hong
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Kaiqiang Wei
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
36
|
Visible-Light-Driven Antimicrobial Activity and Mechanism of Polydopamine-Reduced Graphene Oxide/BiVO4 Composite. Int J Mol Sci 2022; 23:ijms23147712. [PMID: 35887058 PMCID: PMC9315587 DOI: 10.3390/ijms23147712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, a photocatalytic antibacterial composite of polydopamine-reduced graphene oxide (PDA-rGO)/BiVO4 is prepared by a hydrothermal self-polymerization reduction method. Its morphology and physicochemical properties are characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FT-IR), and X-ray diffraction (XRD). The results indicate that BiVO4 particles are evenly distributed on the rGO surface. Escherichia coli (E. coli) MG1655 is selected as the model bacteria, and its antibacterial performance is tested by flat colony counting and the MTT method under light irradiation. PDA-rGO/BiVO4 inhibits the growth of E. coli under both light and dark conditions, and light significantly enhances the bacteriostasis of PDA-rGO/BiVO4. A combination of BiVO4 with PDA-rGO is confirmed by the above characterization methods as improving the photothermal performance under visible light irradiation. The composite possesses enhanced photocatalytic antibacterial activity. Additionally, the photocatalytic antibacterial mechanism is investigated via the morphology changes in the SEM images of MG1655 bacteria, 2′,7′-dichlorofluorescein diacetate (DCFH-DA), the fluorescence detection of the reactive oxygen species (ROS), and gene expression. These results show that PDA-rGO/BiVO4 can produce more ROS and lead to bacterial death. Subsequently, the q-PCR results show that the transmembrane transport of bacteria is blocked and the respiratory chain is inhibited. This study may provide an important strategy for expanding the application of BiVO4 in biomedicine and studying the photocatalytic antibacterial mechanism.
Collapse
|
37
|
Castillo-Cabrera GX, Espinoza-Montero PJ, Alulema-Pullupaxi P, Mora JR, Villacís-García MH. Bismuth Oxyhalide-Based Materials (BiOX: X = Cl, Br, I) and Their Application in Photoelectrocatalytic Degradation of Organic Pollutants in Water: A Review. Front Chem 2022; 10:900622. [PMID: 35898970 PMCID: PMC9309798 DOI: 10.3389/fchem.2022.900622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
An important target of photoelectrocatalysis (PEC) technology is the development of semiconductor-based photoelectrodes capable of absorbing solar energy (visible light) and promoting oxidation and reduction reactions. Bismuth oxyhalide-based materials BiOX (X = Cl, Br, and I) meet these requirements. Their crystalline structure, optical and electronic properties, and photocatalytic activity under visible light mean that these materials can be coupled to other semiconductors to develop novel heterostructures for photoelectrochemical degradation systems. This review provides a general overview of controlled BiOX powder synthesis methods, and discusses the optical and structural features of BiOX-based materials, focusing on heterojunction photoanodes. In addition, it summarizes the most recent applications in this field, particularly photoelectrochemical performance, experimental conditions and degradation efficiencies reported for some organic pollutants (e.g., pharmaceuticals, organic dyes, phenolic derivatives, etc.). Finally, as this review seeks to serve as a guide for the characteristics and various properties of these interesting semiconductors, it discusses future PEC-related challenges to explore.
Collapse
Affiliation(s)
- G. Xavier Castillo-Cabrera
- Escuela de Ciencias Químicas, Pontificia Universidad Católica Del Ecuador, Quito, Ecuador
- Facultad de Ciencias Químicas, Universidad Central Del Ecuador, Quito, Ecuador
| | | | | | | | | |
Collapse
|
38
|
Construction of 0D/3D carbon quantum dots modified PbBiO2Cl microspheres with accelerated charge carriers for promoted visible-light-driven degradation of organic contaminants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Sun H, Lang Z, Zhao Y, Zhao X, Qiu T, Hong Q, Wei K, Tan H, Kang Z, Li Y. Copper‐Bridged Tetrakis(4‐ethynylphenyl)ethene Aggregates with Photo‐Regulated
1
O
2
and O
2
.−
Generation for Selective Photocatalytic Aerobic Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huiying Sun
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Yingnan Zhao
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xinyu Zhao
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Tianyu Qiu
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Qiang Hong
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Kaiqiang Wei
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 Macau SAR China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| |
Collapse
|
40
|
Zhao J, Xue M, Ji M, Wang B, Wang Y, Li Y, Chen Z, Li H, Xia J. “Electron collector” Bi19S27Br3 nanorod-enclosed BiOBr nanosheet for efficient CO2 photoconversion. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64037-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
In-situ sunlight-driven tuning of photo-induced electron-hole generation and separation rates in bismuth oxychlorobromide for highly efficient water decontamination under visible light irradiation. J Colloid Interface Sci 2022; 614:58-65. [DOI: 10.1016/j.jcis.2022.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022]
|
42
|
Synthesis and Theoretical–Experimental Characterization of BiOBr: The Role of Oxygen and Halide Vacancies on the Optoelectric Properties of this Bismuth Oxyhalide. Top Catal 2022. [DOI: 10.1007/s11244-022-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Shangguan Z, Yuan X, Jiang L, Zhao Y, Qin L, Zhou X, Wu Y, Chew JW, Wang H. Zeolite-based Fenton-like catalysis for pollutant removal and reclamation from wastewater. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Faisal M, Rashed MA, Ahmed J, Alsaiari M, Jalalah M, Alsareii SA, Harraz FA. Au nanoparticles decorated polypyrrole-carbon black/g-C 3N 4 nanocomposite as ultrafast and efficient visible light photocatalyst. CHEMOSPHERE 2022; 287:131984. [PMID: 34438206 DOI: 10.1016/j.chemosphere.2021.131984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Modification and bandgap engineering are proposed to be extremely significant in improving the photocatalytic activity of novel photocatalysts. The current research focused on the fabrication of ultrafast and efficient visible light-responsive ternary photocatalyst containing g-C3N4 nanostructures in conjugation with polypyrrole doped carbon black (PPy-C) and gold (Au) nanoparticles by highly effectual, simple, and straightforward methodology. Various analytical techniques like XRD, FESEM, TEM, XPS, FTIR, and UV-Vis spectroscopy were applied for characterization purposes. The XRD and XPS results confirmed the successful creation of a nanocomposite framework among Au, PPy-C and g-C3N4. The TEM images revealed that bare g-C3N4 holds sheets or layered graphitic structure with sizes ranging from 100 to 300 nm. The sponge-like PPy-C network intermingled perfectly with g-C3N4 sheets along with homogeneously distributed 5-15 nm Au nanoparticles. The band gap energy (Eg) for bare g-C3N4, PPy-C/g-C3N4 and Au@PPy-C/g-C3N4 nanocomposites were found to be 2.74, 2.68, and 2.60 eV, respectively. The photocatalytic activity for all newly designed photocatalysts have been assessed during the degradation of insecticide Imidacloprid and methylene blue (MB) dye, where Au@PPy-C/C3N4 was found to be extremely efficient with ultrafast removal of both imidacloprid and MB in just 25 min of visible light irradiation. It was revealed that the Au@PPy-C/g-C3N4 ternary photocatalyst removed 96.0% of target analyte imidacloprid, which is ⁓ 2.91 times more efficient than bare g-C3N4 in treating imidacloprid. This report provides a distinctly promising, highly effectual and straightforward route to destruct extremely toxic and notorious pollutants and opens a new gateway in the present challenging scenario of environmental concerns.
Collapse
Affiliation(s)
- M Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science and Arts, Najran University, Saudi Arabia
| | - Md A Rashed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Saudi Arabia
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, Faculty of Engineering, Najran University, Saudi Arabia
| | - S A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo, 11421, Egypt.
| |
Collapse
|
45
|
Facile synthesis of BiOCl single-crystal photocatalyst with high exposed (0 0 1) facets and its application in photocatalytic degradation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Yu M, Yuan X, Guo J, Tang N, Ye S, Liang J, Jiang L. Selective graphene-like metal-free 2D nanomaterials and their composites for photocatalysis. CHEMOSPHERE 2021; 284:131254. [PMID: 34216926 DOI: 10.1016/j.chemosphere.2021.131254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
From the viewpoint of sustainability, graphene-like metal-free 2D nanomaterials (GMFs) hold great potential in different photocatalytic fields due to their distinct structures and properties. Although their lattice structures are highly similar, the properties of these nanomaterials are in vast diversity owing to the uniqueness of particular atomic arrangement, thus giving rise to their multi-faceted functionalities in photocatalytic process. In this review, we summarize the latest progress of GMFs and their hybrid composites in photocatalytic field, including graphene and its derivatives, hexagonal boron nitride (h-BN), graphitic carbon nitride (g-C3N4), black phosphorus (BP) and emerging 2D covalent organic frameworks (COFs). Their unique 2D structure and key photocatalytic properties are firstly briefly introduced. Then a critical discussion on their multiple roles in the activity enhancement of composite photocatalysts is emphasized, which in turn points out the direction of maximizing their functions and guides our efficient construction of hybrid photocatalysts based on above 2D nanomaterials. On this basis, a summary about the hybridization of above 2D metal-free materials is presented, and the merits of 2D/2D hybrid systems are elaborated. Last, we wrap up this review with some summative remarks, covering understanding their own unique strengths and weaknesses by comparison and proposing the major challenges and perspectives in this emerging field.
Collapse
Affiliation(s)
- Mengdie Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jiayin Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
47
|
Fei J, Peng X, Jiang L, Yuan X, Chen X, Zhao Y, Zhang W. Recent advances in graphitic carbon nitride as a catalyst for heterogeneous Fenton-like reactions. Dalton Trans 2021; 50:16887-16908. [PMID: 34734599 DOI: 10.1039/d1dt02367e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Graphitic carbon nitride (g-C3N4), an appealing metal-free polymer, has featured in extensive research in heterogeneous Fenton-like reactions owing to its advantages of stable chemical and thermal properties, ease of structural regulation and unique redox ability. However, there are still some gaps in the understanding of the mechanism and fate of g-C3N4 and its derivatives in heterogeneous Fenton reaction degradation of contaminants. This paper gives systematic emphasis to the development and progress of g-C3N4 and its composites as catalysts in heterogeneous Fenton-like reactions. The main synthesis strategies of g-C3N4 composites are discussed, including calcination, hydrothermal method and self-assembly method. Then, the key catalytic properties of g-C3N4 in Fenton-like applications, including anchoring nanoparticles, increasing specific surface area and exposed active surface sites, as well as regulating charge transfer reactions, are highlighted. Special emphasis is placed on its multifunctional role in heterogeneous Fenton-like reactions and the mechanisms involved in the activation of hydrogen peroxide, persulfates, and photocatalytic activation of persulfate. Lastly, the existing challenges and possible development direction of g-C3N4-coupling Fenton reactions are proposed. It is believed that this paper will bring useful information for the development of graphitic carbon nitride in both laboratory studies and practical applications.
Collapse
Affiliation(s)
- Jia Fei
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Xin Peng
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China. .,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China. .,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Xiangyan Chen
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Yanlan Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China. .,Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Wei Zhang
- National & Local United Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
48
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|