1
|
Nowok A, Sobczak S, Roszak K, Szeremeta AZ, Mączka M, Katrusiak A, Pawlus S, Formalik F, Barros Dos Santos AJ, Paraguassu W, Sieradzki A. Temperature and volumetric effects on structural and dielectric properties of hybrid perovskites. Nat Commun 2024; 15:7571. [PMID: 39217142 PMCID: PMC11365980 DOI: 10.1038/s41467-024-51396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Three-dimensional organic-inorganic perovskites are rapidly evolving materials with diverse applications. This study focuses on their two representatives - acetamidinium manganese(II) formate (AceMn) and formamidinium manganese(II) formate (FMDMn) - subjected to varying temperature and pressure. We show that AceMn undergoes atypical pressure-induced structural transformations at room temperature, increasing the symmetry from ambient-pressure P21/n phase II to the high-pressure Pbca phase III. In turn, FMDMn in its C2/c phase II displays temperature- and pressure-induced ordering of cage cations that proceeds without changing the phase symmetry or energy barriers. The FMD+ cations do not order under constant volume across the pressure-temperature plane, despite similar pressure and temperature evolution of the unit-cell parameters. Temperature and pressure affect the cage cations differently, which is particularly pronounced in their relaxation dynamics seen by dielectric spectroscopy. Their motion require a rearrangement of the metal-formate framework, resulting in the energy and volumetric barriers defined by temperature-independent activation energy and activation volume parameters. As this process is phonon-assisted, the relaxation time is strongly temperature-dependent. Consequently, relaxation times do not scale with unit-cell volume nor H-bond lengths in formates, offering the possibility of tuning their electronic properties by external stimuli (like temperature or pressure) even without any structural changes.
Collapse
Affiliation(s)
- Andrzej Nowok
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, INSA-T, Toulouse, France.
- Department of Experimental Physics, Wrocław University of Science and Technology, Wrocław, Poland.
| | - Szymon Sobczak
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Kinga Roszak
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poznań, Poland
| | - Anna Z Szeremeta
- August Chełkowski Institute of Physics, University of Silesia in Katowice, Chorzów, Poland
| | - Mirosław Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Katrusiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poznań, Poland.
| | - Sebastian Pawlus
- August Chełkowski Institute of Physics, University of Silesia in Katowice, Chorzów, Poland
| | - Filip Formalik
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Department of Micro, Nano and Bioprocess Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | | | | | - Adam Sieradzki
- Department of Experimental Physics, Wrocław University of Science and Technology, Wrocław, Poland.
| |
Collapse
|
2
|
Mączka M, Smółka S, Ptak M. Phonon Properties and Lattice Dynamics of Two- and Tri-Layered Lead Iodide Perovskites Comprising Butylammonium and Methylammonium Cations-Temperature-Dependent Raman Studies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2503. [PMID: 38893767 PMCID: PMC11172726 DOI: 10.3390/ma17112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024]
Abstract
Hybrid lead iodide perovskites are promising photovoltaic and light-emitting materials. Extant literature data on the key optoelectronic and luminescent properties of hybrid perovskites indicate that these properties are affected by electron-phonon coupling, the dynamics of the organic cations, and the degree of lattice distortion. We report temperature-dependent Raman studies of BA2MAPb2I7 and BA2MA2Pb3I10 (BA = butylammonium; MA = methylammonium), which undergo two structural phase transitions. Raman data obtained in broad temperature (360-80 K) and wavenumber (1800-10 cm-1) ranges show that ordering of BA+ cations triggers the higher temperature phase transition, whereas freezing of MA+ dynamics occurs below 200 K, leading to the onset of the low-temperature phase transition. This ordering is associated with significant deformation of the inorganic sublattice, as evidenced by changes observed in the lattice mode region. Our results show, therefore, that Raman spectroscopy is a very valuable tool for monitoring the separate dynamics of different organic cations in perovskites, comprising "perovskitizer" and interlayer cations.
Collapse
Affiliation(s)
- Mirosław Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2 str., 50-422 Wroclaw, Poland; (S.S.); (M.P.)
| | | | | |
Collapse
|
3
|
Usevičius G, Turčak J, Zhang Y, Eggeling A, Einorytė Ž, Hope MA, Svirskas Š, Klose D, Kalendra V, Aidas K, Jeschke G, Banys J, Šimėnas M. Probing structural and dynamic properties of MAPbCl 3 hybrid perovskite using Mn 2+ EPR. Dalton Trans 2024; 53:7292-7302. [PMID: 38587489 PMCID: PMC11059044 DOI: 10.1039/d4dt00116h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Hybrid methylammonium (MA) lead halide perovskites have emerged as materials exhibiting excellent photovoltaic performance related to their rich structural and dynamic properties. Here, we use multifrequency (X-, Q-, and W-band) electron paramagnetic resonance (EPR) spectroscopy of Mn2+ impurities in MAPbCl3 to probe the structural and dynamic properties of both the organic and inorganic sublattices of this compound. The temperature dependent continuous-wave (CW) EPR experiments reveal a sudden change of the Mn2+ spin Hamiltonian parameters at the phase transition to the ordered orthorhombic phase indicating its first-order character and significant slowing down of the MA cation reorientation. Pulsed EPR experiments are employed to measure the temperature dependences of the spin-lattice relaxation T1 and decoherence T2 times of the Mn2+ ions in the orthorhombic phase of MAPbCl3 revealing a coupling between the spin center and vibrations of the inorganic framework. Low-temperature electron spin echo envelope modulation (ESEEM) experiments of the protonated and deuterated MAPbCl3 analogues show the presence of quantum rotational tunneling of the ammonium groups, allowing to accurately probe their rotational energy landscape.
Collapse
Affiliation(s)
- Gediminas Usevičius
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania.
| | - Justinas Turčak
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania.
| | - Yuxuan Zhang
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Andrea Eggeling
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Žyginta Einorytė
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania.
| | - Michael Allan Hope
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Šarūnas Svirskas
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania.
| | - Daniel Klose
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Vidmantas Kalendra
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania.
| | - Kestutis Aidas
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania.
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jūras Banys
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania.
| | - Mantas Šimėnas
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania.
| |
Collapse
|
4
|
Mączka M, Sobczak S, Ptak M, Smółka S, Fedoruk K, Dybała F, Herman AP, Paraguassu W, Zaręba JK, Kudrawiec R, Sieradzki A, Katrusiak A. Revisiting a (001)-oriented layered lead chloride templated by 1,2,4-triazolium: structural phase transitions, lattice dynamics and broadband photoluminescence. Dalton Trans 2024; 53:6906-6919. [PMID: 38563080 DOI: 10.1039/d4dt00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study revisits a (001)-oriented layered lead chloride templated by 1,2,4-triazolium, Tz2PbCl4, which recently has been an object of intense research but still suffers from gaps in characterization. Indeed, the divergent reports on the crystal structures of Tz2PbCl4 at various temperatures, devoid of independent verification of chiral phases through second harmonic generation (SHG), have led to an unresolved debate regarding the existence of a low-temperature phase transition (PT) and the noncentrosymmetric nature of the low-temperature phase. Now, by combining differential scanning calorimetry, single-crystal X-ray diffraction, dielectric, as well as linear and nonlinear optical spectroscopies on Tz2PbCl4, we reveal a sequence of reversible PTs at T1 = 361 K (phase I-II), T2 = 339 K (phase II-III), and T3 = 280 K (phase III-IV). No SHG activity could be registered for any of the four crystal phases, as checked by wide-temperature range SHG screening, supporting their centrosymmetry. The dipole relaxation processes indicate a decrease in activation energy with increasing temperature, from 0.60, 0.38, to 0.24 eV observed for phase IV (space group P21/c), phase III (Pnma), and phase II (Cmcm), respectively. This change is interpreted as a result of the diminishing strength of H-bonds as the system transforms from phase IV to III and subsequently to II. The weaker H-bonds facilitate the reorientation of Tz+ cations in the presence of an external electric field. The photoluminescence spectra of Tz2PbCl4 reveal an intriguing interplay of narrow and broadband emission, linked respectively to free excitons and excitons trapped on defects. Notably, as the temperature decreases from 300 K to 16 K, both the emission bands exhibit distinctive blue and red shifts, indicative of increased in-plane octahedral distortion. This dynamic behaviour transforms the photoluminescence of Tz2PbCl4 from greenish-blue at 300 K to yellowish-green at 13 K, enriching our understanding of 2D lead halide perovskites and highlighting the optoelectronic potential of Tz2PbCl4.
Collapse
Affiliation(s)
- Mirosław Mączka
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland.
| | - Szymon Sobczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Maciej Ptak
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland.
| | - Szymon Smółka
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland.
| | - Katarzyna Fedoruk
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Filip Dybała
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur P Herman
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Waldeci Paraguassu
- Faculdade de Fisica, Universidade Federal do Para, 66075-110 Belem, Brazil
| | - Jan K Zaręba
- Advanced Materials Engineering and Modeling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Robert Kudrawiec
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Adam Sieradzki
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Katrusiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
5
|
Simenas M, Gagor A, Banys J, Maczka M. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chem Rev 2024; 124:2281-2326. [PMID: 38421808 PMCID: PMC10941198 DOI: 10.1021/acs.chemrev.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX3 structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking. The goal of this review is to summarize the current state of knowledge on mixing effects on the structural phase transitions, crystal symmetry, cation and lattice dynamics, and phase diagrams of three- and low-dimensional lead halide perovskites. This review analyzes different mixing recipes and ingredients providing a comprehensive picture of mixing effects and their relation to the attractive properties of these materials.
Collapse
Affiliation(s)
- Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Anna Gagor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| | - Juras Banys
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Miroslaw Maczka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| |
Collapse
|
6
|
Wakizaka M, Gupta S, Wan Q, Takaishi S, Noro H, Sato K, Yamashita M. Spin qubits of Cu(II) doped in Zn(II) metal-organic frameworks above microsecond phase memory time. Chemistry 2024; 30:e202304202. [PMID: 38146235 DOI: 10.1002/chem.202304202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 12/27/2023]
Abstract
With the aim of creating Cu(II) spin qubits in a rigid metal-organic framework (MOF), this work demonstrates a doping of 5 %, 2 %, 1 %, and 0.1 % mol of Cu(II) ions into a perovskite-type MOF [CH6 N3 ][ZnII (HCOO)3 ]. The presence of dopant Cu(II) sites are confirmed with anisotropic g-factors (gx =2.07, gy =2.12, and gz =2.44) in the S=1/2 system by experimentally and theoretically. Magnetic dynamics indicate the occurrence of a slow magnetic relaxation via the direct and Raman processes under an applied field, with a relaxation time (τ) of 3.5 ms (5 % Cu), 9.2 ms (2 % Cu), and 15 ms (1 % Cu) at 1.8 K. Furthermore, pulse-ESR spectroscopy reveals spin qubit properties with a spin-spin relaxation (phase memory) time (T2 ) of 0.21 μs (2 %Cu), 0.39 μs (1 %Cu), and 3.0 μs (0.1 %Cu) at 10 K as well as Rabi oscillation between MS =±1/2 spin sublevels. T2 above microsecond is achieved for the first time in the Cu(II)-doped MOFs. It can be observed at submicrosecond around 50 K. These spin relaxations are very sensitive to the magnetic dipole interactions relating with cross-relaxation between the Cu(II) sites and can be tuned by adjusting the dopant concentration.
Collapse
Affiliation(s)
- Masanori Wakizaka
- Department of Applied Chemistry and Bioscience, Faculty of Science and Technology, Chitose Institute of Science and Technology, 758-65 Bibi, Chitose, 066-8655, Japan
| | - Shraddha Gupta
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Qingyun Wan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Honoka Noro
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Kazunobu Sato
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, P. R. China
| |
Collapse
|
7
|
Mączka M, Ptak M, Gągor A, Zaręba JK, Liang X, Balčiu̅nas S, Semenikhin OA, Kucheriv OI, Gural’skiy IA, Shova S, Walsh A, Banys J, Šimėnas M. Phase Transitions, Dielectric Response, and Nonlinear Optical Properties of Aziridinium Lead Halide Perovskites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9725-9738. [PMID: 38047186 PMCID: PMC10687860 DOI: 10.1021/acs.chemmater.3c02200] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Hybrid organic-inorganic lead halide perovskites are promising candidates for next-generation solar cells, light-emitting diodes, photodetectors, and lasers. The structural, dynamic, and phase-transition properties play a key role in the performance of these materials. In this work, we use a multitechnique experimental (thermal, X-ray diffraction, Raman scattering, dielectric, nonlinear optical) and theoretical (machine-learning force field) approach to map the phase diagrams and obtain information on molecular dynamics and mechanism of the structural phase transitions in novel 3D AZRPbX3 perovskites (AZR = aziridinium; X = Cl, Br, I). Our work reveals that all perovskites undergo order-disorder phase transitions at low temperatures, which significantly affect the structural, dielectric, phonon, and nonlinear optical properties of these compounds. The desirable cubic phases of AZRPbX3 remain stable at lower temperatures (132, 145, and 162 K for I, Br, and Cl) compared to the methylammonium and formamidinium analogues. Similar to other 3D-connected hybrid perovskites, the dielectric response reveals a rather high dielectric permittivity, an important feature for defect tolerance. We further show that AZRPbBr3 and AZRPbI3 exhibit strong nonlinear optical absorption. The high two-photon brightness of AZRPbI3 emission stands out among lead perovskites emitting in the near-infrared region.
Collapse
Affiliation(s)
- Mirosław Mączka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland
| | - Maciej Ptak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland
| | - Anna Gągor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland
| | - Jan K. Zaręba
- Institute
of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Xia Liang
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | | | - Oleksandr A. Semenikhin
- Department
of Chemistry, Taras Shevchenko National
University of Kyiv, 64 Volodymyrska St., Kyiv 01601, Ukraine
| | - Olesia I. Kucheriv
- Department
of Chemistry, Taras Shevchenko National
University of Kyiv, 64 Volodymyrska St., Kyiv 01601, Ukraine
| | - Il’ya A. Gural’skiy
- Department
of Chemistry, Taras Shevchenko National
University of Kyiv, 64 Volodymyrska St., Kyiv 01601, Ukraine
| | - Sergiu Shova
- Department
of Inorganic Polymers, Petru Poni Institute
of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
| | - Aron Walsh
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
- Department
of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Ju̅ras Banys
- Faculty
of Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Mantas Šimėnas
- Faculty
of Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
8
|
Xu WJ, Zelenovskii P, Tselev A, Verissimo L, Romanyuk K, Yuan W, Zhang WX, Kholkin A, Rocha J. A hybrid double perovskite ferroelastic exhibiting the highest number of orientation states. Chem Commun (Camb) 2023; 59:11264-11267. [PMID: 37661855 DOI: 10.1039/d3cc02645k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Integrating NH4+ as a B'-site ion within a three-dimensional double hybrid perovskite resulted in a novel high-temperature ferroelastic, (Me3NOH)2(NH4)[Co(CN)6], which uniquely demonstrates a reversible triclinic-to-cubic phase transition at 369 K and offers a record-setting 24 orientation states, the highest ever reported among all ferroelastics.
Collapse
Affiliation(s)
- Wei-Jian Xu
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Pavel Zelenovskii
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Alexander Tselev
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Luis Verissimo
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Konstantin Romanyuk
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Wei Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Andrei Kholkin
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João Rocha
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Stefańska D, Kabański A, Vu THQ, Adaszyński M, Ptak M. Structure, Luminescence and Temperature Detection Capability of [C(NH 2) 3]M(HCOO) 3 (M = Mg 2+, Mn 2+, Zn 2+) Hybrid Organic-Inorganic Formate Perovskites Containing Cr 3+ Ions. SENSORS (BASEL, SWITZERLAND) 2023; 23:6259. [PMID: 37514554 PMCID: PMC10386541 DOI: 10.3390/s23146259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Metal-organic frameworks are of great interest to scientists from various fields. This group also includes organic-inorganic hybrids with a perovskite structure. Recently their structural, phonon, and luminescent properties have been paid much attention. However, a new way of characterization of these materials has become luminescence thermometry. Herein, we report the structure, luminescence, and temperature detection ability of formate organic-inorganic perovskite [C(NH2)3]M(HCOO)3 (Mg2+, Mn2+, Zn2+) doped with Cr3+ ions. Crystal field strength (Dq/B) and Racah parameters were determined based on diffuse reflectance spectra. It was shown that Cr3+ ions are positioned in the intermediate crystal field or close to it with a Dq/B range of 2.29-2.41. The co-existence of the spin-forbidden and spin-allowed transitions of Cr3+ ions enable the proposal of an approach for remote readout of the temperature. The relative sensitivity (Sr) can be easily modified by sample composition and Cr3+ ions concentration. The luminescent thermometer based on the 2E/4T2g transitions has the relative sensitivity Sr of 2.08%K-1 at 90 K for [C(NH2)3]Mg(HCOO)3: 1% Cr3+ and decrease to 1.20%K-1 at 100 K and 1.08%K-1 at 90 K for Mn2+ and Zn2+ analogs, respectively.
Collapse
Affiliation(s)
- Dagmara Stefańska
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Adam Kabański
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Thi Hong Quan Vu
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Marek Adaszyński
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Maciej Ptak
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| |
Collapse
|
10
|
Silva RX, Hora RR, Nonato A, García-Fernández A, Salgado-Beceiro J, Señarís-Rodríguez MA, Andújar MS, Ayala AP, Paschoal CWA. Order-disorder phase transition and molecular dynamics in the hybrid perovskite [(CH 3) 3NH][Mn(N 3) 3]. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122198. [PMID: 36502746 DOI: 10.1016/j.saa.2022.122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
We present a temperature-dependent Raman scattering study of a [(CH3)3NH][Mn(N3)3] hybrid organic-inorganic azide-perovskite, in which we have analysed in detail the wavenumber and full width at half-maximum (FWHM) of lattice modes and internal modes of the NC3 skeleton, N3- and CH3 molecular groups. In general, the modes exhibited unusual behaviour during the phase transitions, including discontinuity in the phonon wavenumber, bandwidth, and unconventional shifts upon temperature variation. Spectral features on heating reveal the absence of significant distortions in the NC3 skeleton and a relatively restricted order-disorder process of the TrMA+ cations. On the other hand, linewidth anomalies of the δNC3 and νasNC3 modes have been attributed to the molecular dynamics of encapsulated cations. The unconventional blue shift of the symmetric stretching modes of azide ligands indicates the weakening of the intermolecular interactions between the TrMA+ cations and azido-bridges, and the strengthening of the intramolecular bonds. Additionally, we have used differential scanning calorimetry to confirm the subtle monoclinic to monoclinic (P21/c → C2/c) phase transition at around 330 K; and the phase transition to trigonal structure (R3¯m) above 359 K, whose associated entropy variation turns to be |ΔS| ∼ 22.3 J·kg-1 K-1 and displays a barocaloric (BC) tunability |δTt/δP| ∼ 3.17 K kbar-1, according to our estimations using the Clausius-Clapeyron method. Although the obtained values of entropy change and BC tunability are very close to those reported on formate-perovskites and other important caloric materials, those parameters are much lower than the giant entropy change of ∼80 Jkg-1 K-1 and large BC tunability ∼12 K kbar-1 observed for the analogue azide-perovskite [(CH3)4N][Mn(N3)]3 (TMAMnN3). Very interestingly, our combined study shed light to understand such different behaviour, as they reveal that the hydrogen bonds created between the TrMA+ cations and the framework prevent an extensive order-disorder process that is needed to obtain large entropy changes and large BC coefficients as it occurs in the case of related azide-perovskites with no H-bonds between the A cations (for example TMA) and the framework.
Collapse
Affiliation(s)
- R X Silva
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 65455-900 Fortaleza, CE, Brazil; Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Campus de Codó, 65400-000 Codó, MA, Brazil.
| | - R R Hora
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 65455-900 Fortaleza, CE, Brazil
| | - A Nonato
- Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Campus de Bacabal, 65700-000 Bacabal, MA, Brazil
| | - Alberto García-Fernández
- Grupo QuiMolMat, Departamento de Química Fundamental, Facultad de Ciencias y CICA, Universidade da Coruña, Campus A Coruña, 15071 A Coruña, Spain
| | - Jorge Salgado-Beceiro
- Grupo QuiMolMat, Departamento de Química Fundamental, Facultad de Ciencias y CICA, Universidade da Coruña, Campus A Coruña, 15071 A Coruña, Spain
| | - María Antonia Señarís-Rodríguez
- Grupo QuiMolMat, Departamento de Química Fundamental, Facultad de Ciencias y CICA, Universidade da Coruña, Campus A Coruña, 15071 A Coruña, Spain
| | - Manuel Sánchez Andújar
- Grupo QuiMolMat, Departamento de Química Fundamental, Facultad de Ciencias y CICA, Universidade da Coruña, Campus A Coruña, 15071 A Coruña, Spain
| | - A P Ayala
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 65455-900 Fortaleza, CE, Brazil
| | - C W A Paschoal
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 65455-900 Fortaleza, CE, Brazil
| |
Collapse
|
11
|
Kabański A, Ptak M, Stefańska D. Metal-Organic Framework Optical Thermometer Based on Cr 3+ Ion Luminescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7074-7082. [PMID: 36710446 PMCID: PMC9923675 DOI: 10.1021/acsami.2c19957] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks with perovskite structures have recently attracted increasing attention due to their structural, optical, and phonon properties. Herein, we report the structural and luminescence studies of a series of six heterometallic perovskite-type metal-organic frameworks with the general formula [EA]2NaCrxAl1-x(HCOO)6, where x = 1, 0.78, 0.57, 0.30, 0.21, and 0. The diffuse reflectance spectral analysis provided valuable information, particularly on crystal field strength (Dq/B) and energy band gap (Eg). We showed that the Dq/B varies in the 2.33-2.76 range depending on the composition of the sample. Performed Raman, XRD, and lifetime decay analyses provided information on the relationship between those parameters and the chemical composition. We also performed the temperature-dependent luminescence studies within the 80-400 K range, which was the first attempt to use an organic-inorganic framework luminescence thermometer based solely on the luminescence of Cr3+ ions. The results showed a strong correlation between the surrounding temperature, composition, and spectroscopic properties, allowing one to design a temperature sensing model. The temperature-dependent luminescence of the Cr3+ ions makes the investigated materials promising candidates for noncontact thermometers.
Collapse
|
12
|
Usevičius G, Eggeling A, Pocius I, Kalendra V, Klose D, Mączka M, Pöppl A, Banys J, Jeschke G, Šimėnas M. Probing Methyl Group Tunneling in [(CH 3) 2NH 2][Zn(HCOO) 3] Hybrid Perovskite Using Co 2+ EPR. Molecules 2023; 28:molecules28030979. [PMID: 36770643 PMCID: PMC9920925 DOI: 10.3390/molecules28030979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid perovskites doped with paramagnetic Mn2+ ions. Here, we investigate the feasibility of using an alternative fast-relaxing Co2+ paramagnetic center to study the methyl group tunneling, and, as a model compound, we use dimethylammonium zinc formate [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite. Our multifrequency (X-, Q- and W-band) EPR experiments reveal a high-spin state of the incorporated Co2+ center, which exhibits fast spin-lattice relaxation and electron spin decoherence. Our pulsed EPR experiments reveal magnetic field independent electron spin echo envelope modulation (ESEEM) signals, which are assigned to the methyl group tunneling. We use density operator simulations to extract the tunnel frequency of 1.84 MHz from the experimental data, which is then used to calculate the rotational barrier of the methyl groups. We compare our results with the previously reported Mn2+ case showing that our approach can detect very small changes in the local methyl group environment in hybrid perovskites and related materials.
Collapse
Affiliation(s)
- Gediminas Usevičius
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania
| | - Andrea Eggeling
- Department of Physical Chemistry, ETH-Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Ignas Pocius
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania
| | - Vidmantas Kalendra
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania
| | - Daniel Klose
- Department of Physical Chemistry, ETH-Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Mirosław Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany
| | - Jūras Banys
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania
| | - Gunnar Jeschke
- Department of Physical Chemistry, ETH-Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Mantas Šimėnas
- Faculty of Physics, Vilnius University, Sauletekio 3, 10257 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
13
|
Vijayakanth T, Sahoo S, Kothavade P, Bhan Sharma V, Kabra D, Zaręba JK, Shanmuganathan K, Boomishankar R. A Ferroelectric Aminophosphonium Cyanoferrate with a Large Electrostrictive Coefficient as a Piezoelectric Nanogenerator. Angew Chem Int Ed Engl 2023; 62:e202214984. [PMID: 36408916 DOI: 10.1002/anie.202214984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Hybrid materials possessing piezo- and ferroelectric properties emerge as excellent alternatives to conventional piezoceramics due to their merits of facile synthesis, lightweight nature, ease of fabrication and mechanical flexibility. Inspired by the structural stability of aminophosphonium compounds, here we report the first A3 BX6 type cyanometallate [Ph2 (i PrNH)2 P]3 [Fe(CN)6 ] (1), which shows a ferroelectric saturation polarization (Ps ) of 3.71 μC cm-2 . Compound 1 exhibits a high electrostrictive coefficient (Q33 ) of 0.73 m4 C-2 , far exceeding those of piezoceramics (0.034-0.096 m4 C-2 ). Piezoresponse force microscopy (PFM) analysis demonstrates the polarization switching and domain structure of 1 further confirming its ferroelectric nature. Furthermore, thermoplastic polyurethane (TPU) polymer composite films of 1 were prepared and employed as piezoelectric nanogenerators. Notably, the 15 wt % 1-TPU device gave a maximum output voltage of 13.57 V and a power density of 6.03 μW cm-2 .
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India.,Present address: The Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Supriya Sahoo
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Premkumar Kothavade
- Polymer Science and Engineering Division and Academy of Scientific and Innovative Research, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Vijay Bhan Sharma
- Department of Physics, Indian Institute of Technology, Mumbai, 400076, India
| | - Dinesh Kabra
- Department of Physics, Indian Institute of Technology, Mumbai, 400076, India
| | - Jan K Zaręba
- Institute of Advanced Materials, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
| | - Kadhiravan Shanmuganathan
- Polymer Science and Engineering Division and Academy of Scientific and Innovative Research, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ramamoorthy Boomishankar
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
14
|
Hybrid Chlorides with Methylhydrazinium Cation: [CH 3NH 2NH 2]CdCl 3 and Jahn-Teller Distorted [CH 3NH 2NH 2]CuCl 3. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020473. [PMID: 36677531 PMCID: PMC9865361 DOI: 10.3390/molecules28020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
The synthesis, structural, phonon, optical, and magnetic properties of two hybrid organic-inorganic chlorides with monoprotonated methylhydrazinium cations (CH3NH2NH2+, MHy+), [CH3NH2NH2]CdCl3 (MHyCdCl3), and [CH3NH2NH2]CuCl3 (MHyCuCl3), are reported. In contrast to previously reported MHyMIICl3 (MII = Mn2+, Ni2+, and Co2+) analogues, neither compound undergoes phase transitions. The MHyCuCl3 has a crystal structure familiar to previous crystals composed of edge-shared 1D chains of the [CuCl5N] octahedra. MHyCuCl3 crystallizes in monoclinic P21/c symmetry with MHy+ cations directly linked to the Cu2+ ions. The MHyCdCl3 analogue crystallizes in lower triclinic symmetry with zig-zag chains of the edge-shared [CdCl6] octahedra. The absence of phase transitions is investigated and discussed. It is connected with slightly stronger hydrogen bonding between cations and the copper-chloride chains in MHyCuCl3 due to the strong Jahn-Teller effect causing the octahedra to elongate, resulting in a better fit of cations in the accessible space between chains. The absence of structural transformation in MHyCdCl3 is due to intermolecular hydrogen bonding between two neighboring MHy+ cations, which has never been reported for MHy+-based hybrid halides. Optical investigations revealed that the bandgaps in Cu2+ and Cd2+ analogues are 2.62 and 5.57 eV, respectively. Magnetic tests indicated that MHyCuCl3 has smeared antiferromagnetic ordering at 4.8 K.
Collapse
|
15
|
Stefańska D. Effect of Organic Cation on Optical Properties of [A]Mn(H 2POO) 3 Hybrid Perovskites. Molecules 2022; 27:8953. [PMID: 36558085 PMCID: PMC9784195 DOI: 10.3390/molecules27248953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Hybrid organic-inorganic compounds crystallizing in a three-dimensional (3D) perovskite-type architecture have attracted considerable attention due to their multifunctional properties. One of the most intriguing groups is perovskites with hypophosphite linkers. Herein, the optical properties of six hybrid hypophosphite perovskites containing manganese ions are presented. The band gaps of these compounds, as well as the luminescence properties of the octahedrally coordinated Mn2+ ions associated with the 4T1g(G) → 6A1g(S) transition are shown to be dependent on the organic cation type and Goldschmidt tolerance factor. Thus, a correlation between essential structural features of Mn-based hybrid hypophosphites and their optical properties was observed. Additionally, the broad infrared luminescence of the studied compounds was examined for potential application in an indoor lighting system for plant growth.
Collapse
Affiliation(s)
- Dagmara Stefańska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
16
|
Šimėnas M, Balčiu̅nas S, Ga̧gor A, Pienia̧żek A, Tolborg K, Kinka M, Klimavicius V, Svirskas Š, Kalendra V, Ptak M, Szewczyk D, Herman AP, Kudrawiec R, Sieradzki A, Grigalaitis R, Walsh A, Ma̧czka M, Banys J. Mixology of MA 1-x EA x PbI 3 Hybrid Perovskites: Phase Transitions, Cation Dynamics, and Photoluminescence. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10104-10112. [PMID: 36439319 PMCID: PMC9686138 DOI: 10.1021/acs.chemmater.2c02807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Mixing molecular cations in hybrid lead halide perovskites is a highly effective approach to enhance the stability and performance of optoelectronic devices based on these compounds. In this work, we prepare and study novel mixed 3D methylammonium (MA)-ethylammonium (EA) MA1-x EA x PbI3 (x < 0.4) hybrid perovskites. We use a suite of different techniques to determine the structural phase diagram, cation dynamics, and photoluminescence properties of these compounds. Upon introduction of EA, we observe a gradual lowering of the phase-transition temperatures, indicating stabilization of the cubic phase. For mixing levels higher than 30%, we obtain a complete suppression of the low-temperature phase transition and formation of a new tetragonal phase with a different symmetry. We use broad-band dielectric spectroscopy to study the dielectric response of the mixed compounds in an extensive frequency range, which allows us to distinguish and characterize three distinct dipolar relaxation processes related to the molecular cation dynamics. We observe that mixing increases the rotation barrier of the MA cations and tunes the dielectric permittivity values. For the highest mixing levels, we observe the signatures of the dipolar glass phase formation. Our findings are supported by density functional theory calculations. Our photoluminescence measurements reveal a small change of the band gap upon mixing, indicating the suitability of these compounds for optoelectronic applications.
Collapse
Affiliation(s)
- Mantas Šimėnas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Sergejus Balčiu̅nas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Anna Ga̧gor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, PL-50-422Wroclaw, Poland
| | - Agnieszka Pienia̧żek
- Department
of Semiconductor Materials Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, PL-50-370Wroclaw, Poland
| | - Kasper Tolborg
- Thomas
Young Centre and Department of Materials, Imperial College London, SW7 2AZLondon, U.K.
| | - Martynas Kinka
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Vytautas Klimavicius
- Institute
of Chemical Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Šaru̅nas Svirskas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Vidmantas Kalendra
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Maciej Ptak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, PL-50-422Wroclaw, Poland
| | - Daria Szewczyk
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, PL-50-422Wroclaw, Poland
| | - Artur P. Herman
- Department
of Semiconductor Materials Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, PL-50-370Wroclaw, Poland
| | - Robert Kudrawiec
- Department
of Semiconductor Materials Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, PL-50-370Wroclaw, Poland
| | - Adam Sieradzki
- Department
of Experimental Physics, Wroclaw University
of Science and Technology, Wybrzeze Wyspianskiego 27, PL-50-370Wroclaw, Poland
| | - Robertas Grigalaitis
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| | - Aron Walsh
- Thomas
Young Centre and Department of Materials, Imperial College London, SW7 2AZLondon, U.K.
| | - Mirosław Ma̧czka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, PL-50-422Wroclaw, Poland
| | - Ju̅ras Banys
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257Vilnius, Lithuania
| |
Collapse
|
17
|
Synthesis, Photoluminescence and Vibrational Properties of Aziridinium Lead Halide Perovskites. Molecules 2022; 27:molecules27227949. [PMID: 36432050 PMCID: PMC9698367 DOI: 10.3390/molecules27227949] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Three-dimensional lead halide perovskites are known for their excellent optoelectronic properties, making them suitable for photovoltaic and light-emitting applications. Here, we report for the first time the Raman spectra and photoluminescent (PL) properties of recently discovered three-dimensional aziridinium lead halide perovskites (AZPbX3, X = Cl, Br, I), as well as assignment of vibrational modes. We also report diffuse reflection data, which revealed an extended absorption of light of AZPbX3 compared to the MA and FA counterparts and are beneficial for solar cell application. We demonstrated that this behavior is correlated with the size of the organic cation, i.e., the energy band gap of the cubic lead halide perovskites decreases with the increasing size of the organic cation. All compounds show intense PL, which weakens on heating and shifts toward higher energies. This PL is red shifted compared to the FA and MA counterparts. An analysis of the PL data revealed the small exciton binding energy of AZPbX3 compounds (29-56 meV). Overall, the properties of AZPbX3 are very similar to those of the well-known MAPbX3 and FAPbX3 perovskites, indicating that the aziridinium analogues are also attractive materials for light-emitting and solar cell applications.
Collapse
|
18
|
Smółka S, Mączka M, Drozdowski D, Stefańska D, Gągor A, Sieradzki A, Zaręba JK, Ptak M. Effect of Dimensionality on Photoluminescence and Dielectric Properties of Imidazolium Lead Bromides. Inorg Chem 2022; 61:15225-15238. [PMID: 36102245 PMCID: PMC9516686 DOI: 10.1021/acs.inorgchem.2c02496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Hybrid organic–inorganic
lead halide perovskites have emerged
as promising materials for various applications, including solar cells,
light-emitting devices, dielectrics, and optical switches. In this
work, we report the synthesis, crystal structures, and linear and
nonlinear optical as well as dielectric properties of three imidazolium
lead bromides, IMPbBr3, IM2PbBr4,
and IM3PbBr5 (IM+ = imidazolium).
We show that these compounds exhibit three distinct structure types.
IMPbBr3 crystallizes in the 4H-hexagonal perovskite structure
with face- and corner-shared PbBr6 octahedra (space group P63/mmc at 295 K), IM2PbBr4 adopts a one-dimensional (1D) double-chain structure
with edge-shared octahedra (space group P1̅
at 295 K), while IM3PbBr5 crystallizes in the
1D single-chain structure with corner-shared PbBr6 octahedra
(space group P1̅ at 295 K). All compounds exhibit
two structural phase transitions, and the lowest temperature phases
of IMPbBr3 and IM3PbBr5 are noncentrosymmetric
(space groups Pna21 at 190 K and P1 at 100 K, respectively), as confirmed by measurements
of second-harmonic generation (SHG) activity. X-ray diffraction and
thermal and Raman studies demonstrate that the phase transitions feature
an order–disorder mechanism. The only exception is the isostructural P1̅ to P1̅ phase transition
at 141 K in IM2PbBr4, which is of a displacive
type. Dielectric studies reveal that IMPbBr3 is a switchable
dielectric material, whereas IM3PbBr5 is an
improper ferroelectric. All compounds exhibit broadband, highly shifted
Stokes emissions. Features of these emissions, i.e., band gap and excitonic absorption, are discussed in relation to
the different structures of each composition. Three imidazolium lead bromides of various
chemical compositions
and crystal structures display broadband photoluminescence that can
be tuned from bluish-green to orange. All compounds exhibit two structural
phase transitions, which lead to interesting optical and electrical
properties such SHG activity, ferroelectricity, or dielectric switching.
Collapse
Affiliation(s)
- Szymon Smółka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422Wrocław, Poland
| | - Mirosław Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422Wrocław, Poland
| | - Dawid Drozdowski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422Wrocław, Poland
| | - Dagmara Stefańska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422Wrocław, Poland
| | - Anna Gągor
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422Wrocław, Poland
| | - Adam Sieradzki
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370Wrocław, Poland
| | - Jan K. Zaręba
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370Wrocław, Poland
| | - Maciej Ptak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422Wrocław, Poland
| |
Collapse
|
19
|
Wu LK, Feng Y, Wang ZJ, Li LH, Hu ZB, Ye HY, Li JR. Metal-dependent structural phase transition and dielectric response in two organic–inorganic hybrids of [C4H10N]2[SbCl5] and [C4H10N]3[BiCl6]. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Feng Y, Wang ZJ, Li LH, Liao RM, Hu ZB, Li JR, Shi C, Ye HY. Structural Phase Transition and Switchable Dielectric Behaviour of a One-Dimensional Chains Niobium Oxyfluoride. CrystEngComm 2022. [DOI: 10.1039/d2ce00428c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
tructural phase transition is always accompanied by measurable properties change of material, which provides us more opportunities for material modification. Herein, a new niobium oxyfluoride, [HIm][NbOF4] (HIm = imidazole cation,...
Collapse
|
21
|
Rok M, Moskwa M, Hetmańczyk J, Hetmańczyk Ł, Bator G. Switchable dielectric constant, structural and vibrational studies of double perovskite organic–inorganic hybrids: (azetidinium) 2[KCr(CN) 6] and (azetidinium) 2[KFe(CN) 6]. CrystEngComm 2022. [DOI: 10.1039/d2ce00270a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two novel organic–inorganic hybrid crystals (C3H8N)2[KCr(CN)6] (AZECr) and (C3H8N)2[KFe(CN)6] (AZEFe) were synthesized and characterized.
Collapse
Affiliation(s)
- Magdalena Rok
- Faculty of Chemistry, University of Wroclaw, F. Joliot – Curie 14, 50-383 Wroclaw, Poland
| | - Marcin Moskwa
- Faculty of Chemistry, University of Wroclaw, F. Joliot – Curie 14, 50-383 Wroclaw, Poland
| | - Joanna Hetmańczyk
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Łukasz Hetmańczyk
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Grażyna Bator
- Faculty of Chemistry, University of Wroclaw, F. Joliot – Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
22
|
Maczka M, Gągor A, Stefanska D, Zaręba JK, Pikul A. Structural, magnetic and photoluminescent properties of new hybrid hypophosphites: discovery of the first noncentrosymmetric and two cobalt-based members. Dalton Trans 2022; 51:9094-9102. [DOI: 10.1039/d2dt01212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid organic-inorganic perovskites comprising hypophosphite ligands are emerging functional materials exhibiting magnetic, photoluminescence, negative thermal expansion and negative linear compressibility behaviour. This work reports five novel hypophosphite perovskites, [A]M(H2POO)3 (A=...
Collapse
|
23
|
Zou K, Zhang T, Ding K, Cheng SN, Zhang Y, Ge JZ, Fu DW. Solvent-induced reversible high-temperature phase transition in crown ether clathrates. NEW J CHEM 2022. [DOI: 10.1039/d2nj00642a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The phase transitions of crown ether complexes with molecular motor motion triggered by the solvent-induced effect are reported.
Collapse
Affiliation(s)
- Ke Zou
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Kun Ding
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Sai-Nan Cheng
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Jia-Zhen Ge
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
24
|
Wang P, Chen MK, Tong YQ, Yin SQ, Huang B. Structural phase transition and dielectric relaxation in an organic–inorganic hybrid compound: [(CH 3) 3NH] 4[Fe(SCN) 6]Cl. CrystEngComm 2022. [DOI: 10.1039/d2ce01150f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new hybrid compound undergoes a structural phase transition accompanied by the thermal hysteresis of dielectric bistability as well as anisotropic dielectric relaxation along the a-, b-, and c-axis.
Collapse
Affiliation(s)
- Ping Wang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Ming-Kun Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Qiao Tong
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Shi-Qing Yin
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
25
|
Mączka M, Stefańska D, Gągor A, Pikul A. The cation-dependent structural, magnetic and optical properties of a family of hypophosphite hybrid perovskites. Dalton Trans 2021; 51:352-360. [PMID: 34897339 DOI: 10.1039/d1dt03382d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypophosphite hybrid perovskites have recently received widespread attention due to their diverse structural and magnetic properties, negative thermal expansion and photoluminescence behaviour. Herein, we report two new three-dimensional hybrid perovskites containing unusually large organic cations, pyrrolidinium and 2-hydroxyethylammonium. We report the crystal structures of these new manganese-hypophosphite frameworks and their magnetic and optical properties. We also report the magnetic and optical properties of two previously discovered analogues, dimethylammonium and imidazolium manganese hypophosphites. Both new compounds crystallize in a monoclinic structure, space group P21/n, with ordered organic cations at room temperature. Magnetic studies show that all studied compounds are examples of canted antiferromagnets but the weak ferromagnetic contribution and the ordering temperature are significantly modulated by the type of organic cation located in the cavity of the framework. We discuss the origin of this behaviour. Upon ultraviolet excitation, all compounds exhibit broadband photoluminescence associated with the 4T1g(G) → 6A1g(S) transition of octahedrally coordinated Mn2+ ions. The position of the PL band depends on the type of organic cation, being the most blue-shifted for the imidazolium analogue (646 nm) and the most red-shifted for the pyrrolidinium counterpart (689 nm). The most interesting property of the studied hypophosphites is, however, the strong temperature dependence of the photoluminescence intensity, suggesting the possible application of these compounds in non-contact optical thermometry.
Collapse
Affiliation(s)
- Mirosław Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland.
| | - Dagmara Stefańska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland.
| | - Anna Gągor
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland.
| | - Adam Pikul
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland.
| |
Collapse
|
26
|
Peksa P, Trzmiel J, Ptak M, Ciupa-Litwa A, Sieradzki A. Metal-Formate Framework Stiffening and Its Relevance to Phase Transition Mechanism. MATERIALS 2021; 14:ma14206150. [PMID: 34683741 PMCID: PMC8537347 DOI: 10.3390/ma14206150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022]
Abstract
In the last decade, one of the most widely examined compounds of motal-organic frameworks was undoubtedly ((CH3)2NH2)(Zn(HCOO)3), but the problem of the importance of framework dynamics in the order–disorder phase change of the mechanism has not been fully clarified. In this study, a combination of temperature-dependent dielectric, calorimetric, IR, and Raman measurements was used to study the impact of ((CH3)2NH2)(Zn(DCOO)3) formate deuteration on the phase transition mechanism in this compound. This deuteration led to the stiffening of the metal-formate framework, which in turn caused an increase in the phase transition temperature by about 5 K. Interestingly, the energetic ordering of DMA+ cations remained unchanged compared to the non-deuterated compound.
Collapse
Affiliation(s)
- Paulina Peksa
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Justyna Trzmiel
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Maciej Ptak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Box 1410, 50-950 Wrocław, Poland; (M.P.); (A.C.-L.)
| | - Aneta Ciupa-Litwa
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Box 1410, 50-950 Wrocław, Poland; (M.P.); (A.C.-L.)
| | - Adam Sieradzki
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence:
| |
Collapse
|