1
|
He YQ, Tang JH. Anthracene-Based Endoperoxides as Self-Sensitized Singlet Oxygen Carriers for Hypoxic-Tumor Photodynamic Therapy. Adv Healthc Mater 2025; 14:e2403009. [PMID: 39506461 DOI: 10.1002/adhm.202403009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Singlet oxygen is a crucial reactive oxygen species (ROS) in photodynamic therapy (PDT). However, the hypoxic tumor microenvironment limits the production of cytotoxic singlet oxygen through the light irradiation of PDT photosensitizers (PSs). This restriction poses a major challenge in improving the effectiveness of PDT. To overcome this challenge, researchers have explored the development of singlet oxygen carriers that can capture and release singlet oxygen in physiological conditions. Among these developments, anthracene-based endoperoxides, initially discovered almost 100 years ago, have shown the ability to generate singlet oxygen controllably under thermal or photo stimuli. Recent advancements have led to the development of a new class of self-sensitized anthracene-endoperoxides, with potential applications in enhancing PDT effects for hypoxic tumors. This review discusses the current research progress in utilizing self-sensitized anthracene-endoperoxides as singlet oxygen carriers for improved PDT. It covers anthracene-conjugated small organic molecules, metal-organic complexes, polymeric structures, and other self-sensitized nano-structures. The molecular structural designs, mechanisms, and characteristics of these systems will be discussed. This review aims to provide valuable insights for developing high-performance singlet oxygen carriers for hypoxic-tumor PDT.
Collapse
Affiliation(s)
- Yan-Qin He
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Jian-Hong Tang
- School of Future technology, University of Chinese Academy of Sciences (UCAS), Beijing, 101408, P. R. China
| |
Collapse
|
2
|
Liang S, Liu Y, Zhu H, Liao G, Zhu W, Zhang L. Emerging nitric oxide gas-assisted cancer photothermal treatment. EXPLORATION (BEIJING, CHINA) 2024; 4:20230163. [PMID: 39713202 PMCID: PMC11655315 DOI: 10.1002/exp.20230163] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Photothermal therapy (PTT) has garnered significant attention in recent years, but the standalone application of PTT still faces limitations that hinder its ability to achieve optimal therapeutic outcomes. Nitric oxide (NO), being one of the most extensively studied gaseous molecules, presents itself as a promising complementary candidate for PTT. In response, various nanosystems have been developed to enable the simultaneous utilization of PTT and NO-mediated gas therapy (GT), with the integration of photothermal agents (PTAs) and thermally-sensitive NO donors being the prevailing approach. This combination seeks to leverage the synergistic effects of PTT and GT while mitigating the potential risks associated with gas toxicity through the use of a single laser irradiation. Furthermore, additional internal or external stimuli have been employed to trigger NO release when combined with different types of PTAs, thereby further enhancing therapeutic efficacy. This comprehensive review aims to summarize recent advancements in NO gas-assisted cancer photothermal treatment. It commences by providing an overview of various types of NO donors and precursors, including those sensitive to photothermal, light, ultrasound, reactive oxygen species, and glutathione. These NO donors and precursors are discussed in the context of dual-modal PTT/GT. Subsequently, the incorporation of other treatment modalities such as chemotherapy (CHT), photodynamic therapy (PDT), alkyl radical therapy, radiation therapy, and immunotherapy (IT) in the creation of triple-modal therapeutic nanoplatforms is presented. The review further explores tetra-modal therapies, such as PTT/GT/CHT/PDT, PTT/GT/CHT/chemodynamic therapy (CDT), PTT/GT/PDT/IT, PTT/GT/starvation therapy (ST)/IT, PTT/GT/Ca2+ overload/IT, PTT/GT/ferroptosis (FT)/IT, and PTT/GT/CDT/IT. Finally, potential challenges and future perspectives concerning these novel paradigms are discussed. This comprehensive review is anticipated to serve as a valuable resource for future studies focused on the development of innovative photothermal/NO-based cancer nanotheranostics.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guangfu Liao
- College of Material EngineeringFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Zhang
- Department of Critical Care MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| |
Collapse
|
3
|
Zhang Q, Wang X, Chen J, Wu J, Zhou M, Xia R, Wang W, Zheng X, Xie Z. Recent progress of porphyrin metal-organic frameworks for combined photodynamic therapy and hypoxia-activated chemotherapy. Chem Commun (Camb) 2024; 60:13641-13652. [PMID: 39497649 DOI: 10.1039/d4cc04512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Nanoscale metal-organic frameworks integrated with porphyrins (Por-nMOFs) have emerged as efficient nanoplatforms for photodynamic therapy (PDT), which relies on the conversion of molecular oxygen into cytotoxic singlet oxygen. However, the hypoxic microenvironment within tumors significantly limits the efficacy of PDT. To address this challenge, researchers have explored various strategies to either alter or exploit the hypoxic conditions in tumors. One such strategy involves leveraging the porous structure of Por-nMOFs to load hypoxia-activated prodrugs (HAPs) like tirapazamine (TPZ), thereby utilizing the tumor's intrinsic hypoxic environment to trigger a chemotherapeutic effect that synergizes with PDT. Advances in nanoscience have enabled the development of porphyrin-based nMOFs capable of simultaneously loading both porphyrin photosensitizers and TPZ, ensuring effective release within cancer cells under high-phosphate conditions. The subsequent activation of co-loaded TPZ, by the tumor's own hypoxic microenvironment, and that created during PDT, facilitates a combined PDT and chemotherapy approach. This method not only enhances the suppression of cancer cell proliferation but also improves control over tumor metastasis while mitigating the negative impact of hypoxia on singular Por-nMOFs in PDT. This review summarizes recent advances in Por-nMOFs research, focusing on the design strategies for enhancing water dispersibility, circulatory stability, and targeting specificity through post-synthetic modifications. Additionally, this review highlights the bioapplication of Por-nMOFs by integrating TPZ chemotherapy and other therapeutic modalities to combat hypoxic and metastatic malignancies. We anticipate that this review will inspire further research into Por-nMOFs and advance their application in biomedicine.
Collapse
Affiliation(s)
- Qiuyun Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Xiaohui Wang
- School of Public Health, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Junjie Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
4
|
Zhu H, Cui M, Tang Q, Zhao H, Zhang P, Zeng S, Li W, Zhou Q, Zhang J, Chen Y. Photoactivated full-API nanodrug (FAND): harnessing transition metal complexes and MTH1 inhibitor for enhanced DNA damage in cancer cells. Biomater Sci 2024; 12:3154-3162. [PMID: 38687170 DOI: 10.1039/d4bm00316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The effectiveness of photodynamic therapy (PDT) has been greatly restricted by the hypoxic tumor microenvironment and the susceptible resistance of monotherapy. Although nanodrugs based on transition metal complexes capable of integrating PDT with photoactivated chemotherapy (PACT) have garnered tremendous attention as promising candidates for overcoming the above limitations, the therapeutic efficacy of these nanodrugs is still hampered by inadequate loading of active pharmaceutical ingredients (APIs) and the inherent ability of cancer cells to repair damaged DNA. Herein, we developed a photoactivated full-API nanodrug, Ru-T FAND, by one-step self-assembly of RuDPB and TH287. By virtue of its 100 wt% API content and favorable stability in water, the Ru-T FAND exhibited improved cellular uptake behavior and intracellular 1O2 generation. Attractively, the Ru-T FAND with triple anti-cancer modalities can photogenerate 1O2, photo-release DPB ligand and inhibit the repair of DNA damage, ultimately enhancing its phototherapeutic effect on cancer cells. Importantly, the uncaged DPB ligand from RuDPB emits red fluorescence, enabling real-time monitoring of the drug's absorption, distribution and efficacy. Collectively, the presented photoactivated Ru-T FANDs with multiple anti-cancer mechanisms will expand new horizons for the development of safe, efficient and synergistic tumor phototherapy strategies.
Collapse
Affiliation(s)
- Huiyun Zhu
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Maozhi Cui
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Qiang Tang
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hua Zhao
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Pu Zhang
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Shengmei Zeng
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Weiyu Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jinfeng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yongjie Chen
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Wang Z, Yang L. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy. Pharmacol Res 2024; 203:107150. [PMID: 38521285 DOI: 10.1016/j.phrs.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
6
|
Shirmanova MV, Lukina MM, Sirotkina MA, Shimolina LE, Dudenkova VV, Ignatova NI, Tobita S, Shcheslavskiy VI, Zagaynova EV. Effects of Photodynamic Therapy on Tumor Metabolism and Oxygenation Revealed by Fluorescence and Phosphorescence Lifetime Imaging. Int J Mol Sci 2024; 25:1703. [PMID: 38338976 PMCID: PMC10855179 DOI: 10.3390/ijms25031703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers-chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging. Oxygen content was assessed using phosphorescence lifetime macro-imaging with an oxygen-sensitive probe. For visualization of the perfused microvasculature, an optical coherence tomography-based angiography was used. It was found that PDT induces different alterations in cellular metabolism, depending on the degree of oxygen depletion. Moderate decrease in oxygen in the case of KillerRed was accompanied by an increase in the fraction of free NAD(P)H, an indicator of glycolytic switch, early after the treatment. Severe hypoxia after PDT with Photoditazine resulted from a vascular shutdown yielded in a persistent increase in protein-bound (mitochondrial) fraction of NAD(P)H. These findings improve our understanding of physiological mechanisms of PDT in cellular and vascular modes and can be useful to develop new approaches to monitoring its efficacy.
Collapse
Affiliation(s)
- Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Maria M. Lukina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Marina A. Sirotkina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Liubov E. Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Varvara V. Dudenkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Nadezhda I. Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Vladislav I. Shcheslavskiy
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Elena V. Zagaynova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| |
Collapse
|
7
|
Avgoustakis K, Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics 2024; 16:179. [PMID: 38399240 PMCID: PMC10892652 DOI: 10.3390/pharmaceutics16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.
Collapse
Affiliation(s)
- Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Clinical Studies Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Athina Angelopoulou
- Department of Chemical Engineering, Polytechnic School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
8
|
Zhang Z, Wei Z, Guo J, Lyu J, Wang B, Wang G, Wang C, Zhou L, Yuan Z, Xing G, Wu C, Zhang X. Metallopolymer strategy to explore hypoxic active narrow-bandgap photosensitizers for effective cancer photodynamic therapy. Nat Commun 2024; 15:170. [PMID: 38167652 PMCID: PMC10762066 DOI: 10.1038/s41467-023-43890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Practical photodynamic therapy calls for high-performance, less O2-dependent, long-wavelength-light-activated photosensitizers to suit the hypoxic tumor microenvironment. Iridium-based photosensitizers exhibit excellent photocatalytic performance, but the in vivo applications are hindered by conventional O2-dependent Type-II photochemistry and poor absorption. Here we show a general metallopolymerization strategy for engineering iridium complexes exhibiting Type-I photochemistry and enhancing absorption intensity in the blue to near-infrared region. Reactive oxygen species generation of metallopolymer Ir-P1, where the iridium atom is covalently coupled to the polymer backbone, is over 80 times higher than that of its mother polymer without iridium under 680 nm irradiation. This strategy also works effectively when the iridium atom is directly included (Ir-P2) in the polymer backbones, exhibiting wide generality. The metallopolymer nanoparticles exhibiting efficient O2•- generation are conjugated with integrin αvβ3 binding cRGD to achieve targeted photodynamic therapy.
Collapse
Affiliation(s)
- Zhao Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Zixiang Wei
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Jintong Guo
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Jinxiao Lyu
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, China
| | - Gang Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, China
| | - Chunfei Wang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Liqiang Zhou
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Zhen Yuan
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China.
| |
Collapse
|
9
|
Feng L, Wang Y, Bi Z, Wei Z, Zhang H, Zhang S. Single-Atom Nanoenzyme-Based Autoluminescence System for Cancer Cell Imaging and Mitochondrial-Targeted Therapy. ACS APPLIED BIO MATERIALS 2023; 6:5086-5096. [PMID: 37943145 DOI: 10.1021/acsabm.3c00751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The autoluminescence nanoplatform based on a single-atom catalyst has the potential to achieve accurate tumor diagnosis and treatment. Taking advantage of this, glycyrrhetinic acid (GA) and chitosan-modified single Fe-N-C atom catalysts (SAF NPs) loaded with luminol-curcumin (Cur) were fabricated (SAF-LCCG). Once delivered to the tumor, this autoluminescence SAF-LCCG could target the mitochondria to restrain tumor metastasis and promote the production of hydrogen peroxide (H2O2). Then, SAF NPs with Fenton-like properties could actively utilize intracellular H2O2 to produce ·OH for chemodynamic therapy. After that, excess ·OH and H2O2 were transmitted to luminol to emit blue-violet chemiluminescence (CL) for cancer cell imaging. Synchronously, light was transferred to Cur to produce reactive oxygen species (ROS) which realized photodynamic therapy. Besides, Cur could be served as a chemotherapeutic drug to enhance intracellular ROS for penetrating therapy. More importantly, the massive accumulation of ROS in cancer cells can promote the CL intensity of luminol, which realized the cyclic ROS amplification. This autoluminescence nanoplatform was developed for accurate cancer cell imaging, effective inhibition of tumor metastasis, and synergistic and penetrated treatment of tumors.
Collapse
Affiliation(s)
- Lu Feng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yuqi Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhiru Bi
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zizhen Wei
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Huairong Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| |
Collapse
|
10
|
Li W, Li R, Ye Q, Zou Y, Lu X, Zhang W, Chen J, Zhao Y. Mn 3 O 4 Nanoshell Coated Metal-Organic Frameworks with Microenvironment-Driven O 2 Production and GSH Exhaustion Ability for Enhanced Chemodynamic and Photodynamic Cancer Therapies. Adv Healthc Mater 2023:e2202280. [PMID: 36753620 DOI: 10.1002/adhm.202202280] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/21/2022] [Indexed: 02/10/2023]
Abstract
Nanomedicine exhibits emerging potentials to deliver advanced therapeutic strategies in the fight against triple-negative breast cancer (TNBC). Nevertheless, it is still difficult to develop a precise codelivery system that integrates highly effective photosensitizers, low toxicity, and hydrophobicity. In this study, PCN-224 is selected as the carrier to enable effective cancer therapy through light-activated reactive oxygen species (ROS) formation, and the PCN-224@Mn3 O4 @HA is created in a simple one-step process by coating Mn3 O4 nanoshells on the PCN-224 template, which can then be used as an "ROS activator" to exert catalase- and glutathione peroxidase-like activities to alleviate tumor hypoxia while reducing tumor reducibility, leading to improved photodynamic therapeutic (PDT) effect of PCN-224. Meanwhile, Mn2+ produced cytotoxic hydroxyl radicals (∙OH) via the Fenton-like reaction, thus producing a promising spontaneous chemodynamic therapeutic (CDT) effect. Importantly, by remodeling the tumor microenvironment (TME), Mn3 O4 nanoshells downregulated hypoxia-inducible factor 1α expression, inhibiting tumor growth and preventing tumor revival. Thus, the developed nanoshells, via light-controlled ROS formation and multimodality imaging abilities, can effectively inhibit tumor proliferation through synergistic PDT/CDT, and prevent tumor resurgence by remodeling TME.
Collapse
Affiliation(s)
- Wenya Li
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, 510630, P. R. China
| | - Rongtian Li
- Department of Clinical Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, 51805, P. R. China
| | - Qiang Ye
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, 510630, P. R. China
| | - Yiming Zou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xing Lu
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, 510630, P. R. China
| | - Wenhua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jinxiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yinghua Zhao
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, 510630, P. R. China
| |
Collapse
|
11
|
Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells. Int J Mol Sci 2023; 24:ijms24032656. [PMID: 36768975 PMCID: PMC9916860 DOI: 10.3390/ijms24032656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Photodynamic therapy (PDT) holds great promise in cancer eradication due to its target selectivity, non-invasiveness, and low systemic toxicity. However, due to the hypoxic nature of many native tumors, PDT is frequently limited in its therapeutic effect. Additionally, oxygen consumption during PDT may exacerbate the tumor's hypoxic condition, which stimulates tumor proliferation, metastasis, and invasion, resulting in poor treatment outcomes. Therefore, various strategies have been developed to combat hypoxia in PDT, such as oxygen carriers, reactive oxygen supplements, and the modulation of tumor microenvironments. However, most PDT-related studies are still conducted on two-dimensional (2D) cell cultures, which fail to accurately reflect tissue complexity. Thus, three-dimensional (3D) cell cultures are ideal models for drug screening, disease simulation and targeted cancer therapy, since they accurately replicate the tumor tissue architecture and microenvironment. This review summarizes recent advances in the development of strategies to overcome tumor hypoxia for enhanced PDT efficiency, with a particular focus on nanoparticle-based photosensitizer (PS) delivery systems, as well as the advantages of 3D cell cultures.
Collapse
|
13
|
Pewklang T, Chansaenpak K, Bakar SN, Lai RY, Kue CS, Kamkaew A. Aza-BODIPY based carbonic anhydrase IX: Strategy to overcome hypoxia limitation in photodynamic therapy. Front Chem 2022; 10:1015883. [PMID: 36405312 PMCID: PMC9666899 DOI: 10.3389/fchem.2022.1015883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022] Open
Abstract
Hypoxia caused by photodynamic therapy (PDT) is a major hurdle to cancer treatment since it can promote recurrence and progression by activating angiogenic factors, lowering therapeutic efficacy dramatically. In this work, AZB-I-CAIX2 was developed as a carbonic anhydrase IX (CAIX)-targeting NIR photosensitizer that can overcome the challenge by utilizing a combination of CAIX knockdown and PDT. AZB-I-CAIX2 showed a specific affinity to CAIX-expressed cancer cells and enhanced photocytotoxicity compared to AZB-I-control (the molecule without acetazolamide). Moreover, selective detection and effective cell cytotoxicity of AZB-I-CAIX2 by PDT in hypoxic CAIX-expressed murine cancer cells were achieved. Essentially, AZB-I-CAIX2 could minimize tumor size in the tumor-bearing mice compared to that in the control groups. The results suggested that AZB-I-CAIX2 can improve therapeutic efficiency by preventing PDT-induced hypoxia through CAIX inhibition.
Collapse
Affiliation(s)
- Thitima Pewklang
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Siti Nursyahirah Bakar
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Selangor, Malaysia,*Correspondence: Anyanee Kamkaew, ; Chin Siang Kue,
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand,*Correspondence: Anyanee Kamkaew, ; Chin Siang Kue,
| |
Collapse
|
14
|
Kadkhoda J, Tarighatnia A, Nader ND, Aghanejad A. Targeting mitochondria in cancer therapy: Insight into photodynamic and photothermal therapies. Life Sci 2022; 307:120898. [PMID: 35987340 DOI: 10.1016/j.lfs.2022.120898] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Mitochondria are critical multifunctional organelles in cells that generate power, produce reactive oxygen species, and regulate cell survival. Mitochondria that are dysfunctional are eliminated via mitophagy as a way to protect cells under moderate stress and physiological conditions. However, mitophagy is a double-edged sword and can trigger cell death under severe stresses. By targeting mitochondria, photodynamic (PD) and photothermal (PT) therapies may play a role in treating cancer. These therapeutic modalities alter mitochondrial membrane potential, thereby affecting respiratory chain function and generation of reactive oxygen species promotes signaling pathways for cell death. In this regard, PDT, PTT, various mitochondrion-targeting agents and therapeutic methods could have exploited the vital role of mitochondria as the doorway to regulated cell death. Targeted mitochondrial therapies would provide an excellent opportunity for effective mitochondrial injury and accurate tumor erosion. Herein, we summarize the recent progress on the roles of PD and PT treatments in regulating cancerous cell death in relation to mitochondrial targeting and the signaling pathways involved.
Collapse
Affiliation(s)
- Jamileh Kadkhoda
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|