1
|
Saha B, Pal C, Malik H, Gopakumar TG, Rath SP. Conformational Switching of a Nano-Size Urea-Bridged Zn(II)Porphyrin Dimer by External Stimuli. Chemistry 2024; 30:e202402536. [PMID: 39250167 DOI: 10.1002/chem.202402536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
For the first time, explicit stabilization of all the three conformers, viz. (cis,cis), (cis,trans) and (trans,trans), of a 'nano-sized' highly-flexible urea-bridged Zn(II)porphyrin dimer have been achieved via careful manipulations of external stimuli such as solvent dielectrics, temperature, anionic interactions, axial ligation and surface-induced stabilization. The conformers differ widely in their structures, chemical and photophysical properties and thus have vast potential applicability. X-ray structural characterizations have been reported for the (cis,cis) and (cis,trans)-conformers. While (cis,cis) conformer stabilized exclusively in dichloromethane, more polar solvents resulted in the stabilization of (cis,trans) and (trans,trans)-conformers. Low temperature promotes the stabilization of (cis,trans)-conformer while rise in temperature facilitates flipping to the (cis,cis) one. Significantly, exclusive stabilization of the (trans,trans)-isomer has been illustrated using acetate anion which facilitates H-bonding with the two amide linkages of the urea spacer. Remarkably, HOPG surface facilitates stabilization of the energetically challenging (trans,trans)-conformer via CH⋅⋅⋅π and π⋅⋅⋅π interactions with the solid surface to the porphyrinic cores. DFT calculations demonstrate that the relative stability of the conformers can be modulated upon slight external perturbations as also observed in the experiment. Several factors contributing towards the conformational landscape for the highly flexible urea-bridged porphyrin dimers have been mapped.
Collapse
Affiliation(s)
- Bapan Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Chandrani Pal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Himani Malik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
2
|
Barriendos I, Almárcegui Í, Carmona M, Tejero AG, Soriano-Jarabo A, Blas C, Aguado Z, Carmona D, Lahoz FJ, García-Orduña P, Viguri F, Rodríguez R. Stereocontrol of Metal-Centred Chirality in Rhodium(III) and Ruthenium(II) Complexes with N 2N'P Ligand. Chempluschem 2024; 89:e202400410. [PMID: 38950125 DOI: 10.1002/cplu.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Rh(III) and Ru(II) complexes, [RhCl2(κ4-N2N'P-L)][SbF6] (1) and [RuCl2(κ4-N2N'P-L)] (2), were synthesised using the tetradentate ligand L (L=N,N-bis[(pyridin-2-yl)methyl]-[2-(diphenylphosphino)phenyl]methanamine). In each case only one diastereomer is detected, featuring cis-disposed pyridine groups. The chloride ligand trans to pyridine can be selectively abstracted by AgSbF6, with the ruthenium complex (2) reacting more readily at room temperature compared to the rhodium complex (1) which requires elevated temperatures. Rhodium complexes avoid the second chloride abstraction, whereas ruthenium complexes can form the chiral bisacetonitrile complex [Ru(κ4-N2N'P-L)(NCMe)2][SbF6]2 (5) upon corresponding treatment with AgSbF6. The complex [RhCl2(κ4-N2N'P-L)][SbF6] (1) has also been used to synthesise polymetallic species, such as the tetrametallic complex [{RhCl2(κ4-N2N'P-L)}2(μ-Ag)2][SbF6]4 (6) which was formed with complete diastereoselectivity and chiral molecular self-recognition. In addition, a stable bimetallic mixed-valence complex [{Rh(κ4-N2N'P-L)}{Rh(COD)}(μ-Cl)2][SbF6]2 (7) (COD=cyclooctadiene) was synthesised. These results highlight the significant differences in chloride lability between Rh3+ and Ru2+ complexes and demonstrate the potential for complexes to act as catalyst precursors and ligands in further chemistry applications.
Collapse
Affiliation(s)
- Irati Barriendos
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Íber Almárcegui
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - María Carmona
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Alvaro G Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Alejandro Soriano-Jarabo
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Carlota Blas
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Zulima Aguado
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
- Universidad San Jorge, Department of Pharmacy, Faculty of Health Sciences, 50830, Villanueva de Gállego (Zaragoza), Spain
| | - Daniel Carmona
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Fernando J Lahoz
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Pilar García-Orduña
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Fernando Viguri
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Ricardo Rodríguez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Departamento de Química Inorgánica, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
3
|
He J, Hara M, Ohnuki R, Yoshioka S, Ikai T, Takeoka Y. Circularly Polarized Luminescence Chirality Inversion and Dual Anticounterfeiting Labels Based on Fluorescent Cholesteric Liquid Crystal Particles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43991-44003. [PMID: 39054591 DOI: 10.1021/acsami.4c08331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The development of materials with circularly polarized luminescence (CPL) properties is a promising but challenging frontier in advanced materials science. Modulating the chiral properties of chiral polymers has also been a focus of research. Studies have been conducted to control the ground-state chirality of chiral polymers by adjusting the concentration of the chiral dopant. However, the chirality inversion of CPL of fluorescent liquid crystal particles by chiral dopant concentration has not been reported. Here, we report the preparation of fluorescent cholesteric liquid crystal (FCLC) particles that display polarizable structural color and CPL, demonstrating how varying the chiral dopant amount can reverse the CPL direction, leading to systems where the rotation directions of polarizable structural color and CPL either align or differ. This study confirmed the critical role played by the formation of the twist grain boundary phase in inducing the inversion of the ground-state chirality of FCLC particles and, subsequently, triggering the inversion process of CPL chirality. Furthermore, it leverages chiral structural color and fluorescence of FCLC particles to develop a sophisticated dual verification system. This system, utilizing both circularly polarized light and fluorescence, offers enhanced anticounterfeiting protection for high-value items.
Collapse
Affiliation(s)
- Jialei He
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryosuke Ohnuki
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda 278-8510, Japan
| | - Shinya Yoshioka
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda 278-8510, Japan
| | - Tomoyuki Ikai
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
4
|
Ajormal F, Bikas R, Noshiranzadeh N, Emami M, Kozakiewicz-Piekarz A. Synthesis of chiral Cu(II) complexes from pro-chiral Schiff base ligand and investigation of their catalytic activity in the asymmetric synthesis of 1,2,3-triazoles. Sci Rep 2024; 14:10603. [PMID: 38719987 PMCID: PMC11079015 DOI: 10.1038/s41598-024-60930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
A pro-chiral Schiff base ligand (HL) was synthesized by the reaction of 2-amino-2-ethyl-1,3-propanediol and pyridine-2-carbaldehyde in methanol. The reaction of HL with CuCl2·2H2O and CuBr2 in methanol gave neutral mononuclear Cu(II) complexes with general formula of [Cu(HL)Cl2] (1) and [Cu(HL)Br2] (2), respectively. By slow evaporation of the methanolic solutions of 1 and 2, their enantiomers were isolated in crystalline format. The formation of pure chiral crystals in the racemic mixture was amply authenticated by single crystal X-ray analysis, which indicated that S-[Cu(HL)Cl2], R-[Cu(HL)Cl2], and S-[Cu(HL)Br2] are crystallized in chiral P212121 space group of orthorhombic system. Preferential crystallization was used to isolate the R and S enantiomers as single crystals and the isolated compounds were also studied by CD analysis. Structural studies indicated that the origin of the chirality in these compounds is related to the coordination mode of the employed pro-chiral ligand (HL) because one of its carbon atoms has been converted to a chiral center in the synthesized complexes. Subsequently, these complexes were used in click synthesis of a β-hydroxy-1,2,3-triazole and the results of catalytic studies indicated that 1 and 2 can act as enantioselective catalysts for the asymmetric synthesis of β-hydroxy-1,2,3-triazole product under mild condition. This study illustrates the significant capacity of the use of pro-chiral ligands in preparing chiral catalysts based on complexes which can also be considered as an effective approach to cheap chiral catalysts from achiral reagents.
Collapse
Affiliation(s)
- Fatemeh Ajormal
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, 34148-96818, Iran.
| | - Nader Noshiranzadeh
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran.
| | - Marzieh Emami
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| |
Collapse
|
5
|
Qin WW, Long BF, Zhu ZH, Wang HL, Liang FP, Zou HH. Coordination recognition of differential template units of lanthanide chiral chain. Dalton Trans 2024; 53:3675-3684. [PMID: 38293800 DOI: 10.1039/d3dt04028c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Coordination-driven self-assembly processes often produce remarkable structures. In particular, self-assembly processes mediated by chiral template units have provided research ideas for analyzing the formation of chiral macromolecules in living organisms. In this study, by regulating the proportion of reaction raw materials in the "one-pot" synthesis of lanthanide complexes, we constructed chiral template units with different coordination orientations. As a result, lanthanide chiral chains connected to different structures were obtained through the self-assembly process of coordination recognition. In particular, driven by coordination, chiral template units with codirectional coordination points (called cis configuration) coordinate solely with cis template units during the self-assembly process to obtain a one-dimensional (1D) chain R-1/S-1 with an "S"-shaped distribution. Moreover, chiral template units with reversed coordination sites (called trans configuration) and twisted chiral template units are connected solely to templates with the same configuration to form a 1D chain R-2/S-2 with an axial helix. A circular dichroism spectrum shows that R-1/S-1 and R-2/S-2 are two pairs of enantiomers. The controllable construction of these two differential 1D chains is of great significance for studying coordination recognition at the molecular level. To the best of our knowledge, this is the first study to construct a 1D lanthanide chain through the self-assembly process of coordination recognition. The assembly process of nucleotides to form a hierarchical structure is simulated. This work provides a vivid example of the controllable synthesis of lanthanide complexes with precise structures and offers a new perspective on the formation process of chiral macromolecules that simulates natural processes.
Collapse
Affiliation(s)
- Wen-Wen Qin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Bing-Fan Long
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
6
|
Tejero AG, Castillo J, Viguri F, Carmona D, Passarelli V, Lahoz FJ, García-Orduña P, Rodríguez R. Dynamic Configuration on a Chiral-at-Rhodium Catalyst Featuring a Flexible Tetradentate Ligand. Chemistry 2024; 30:e202303935. [PMID: 38031971 DOI: 10.1002/chem.202303935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
The unique dynamic configuration of an enantioselective chiral-at-metal catalyst based on Rh(III) and a non-chiral tetradentate ligand is described and resolved. At room temperature, the catalyst undergoes a dynamic configuration process leading to the formation of two interconvertible metal-stereoisomers, remarkably without racemization. Density functional theory (DFT) calculations indicate that this metal-isomerization proceeds via a concerted transition state, which features a trigonal bipyramidal geometry stabilized by the tetradentate ligand. Furthermore, the resolved enantiopure complex shows high catalytic enantioinduction in the Friedel-Crafts reaction, achieving enantiomeric ratios as high as 99 : 1.
Collapse
Affiliation(s)
- Alvaro G Tejero
- Departamento de Catálisis y Procesos Catalíticos, Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Castillo
- Departamento de Catálisis y Procesos Catalíticos, Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Fernando Viguri
- Departamento de Catálisis y Procesos Catalíticos, Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Daniel Carmona
- Departamento de Catálisis y Procesos Catalíticos, Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Vincenzo Passarelli
- Departamento de Catálisis y Procesos Catalíticos, Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Fernando J Lahoz
- Departamento de Catálisis y Procesos Catalíticos, Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Pilar García-Orduña
- Departamento de Catálisis y Procesos Catalíticos, Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Ricardo Rodríguez
- Departamento de Catálisis y Procesos Catalíticos, Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
7
|
Zhu H, Pesce L, Chowdhury R, Xue W, Wu K, Ronson TK, Friend RH, Pavan GM, Nitschke JR. Stereocontrolled Self-Assembly of a Helicate-Bridged Cu I12L 4 Cage That Emits Circularly Polarized Light. J Am Chem Soc 2024; 146:2379-2386. [PMID: 38251985 PMCID: PMC10835658 DOI: 10.1021/jacs.3c11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
Control over the stereochemistry of metal-organic cages can give rise to useful functions that are entwined with chirality, such as stereoselective guest binding and chiroptical applications. Here, we report a chiral CuI12L4 pseudo-octahedral cage that self-assembled from condensation of triaminotriptycene, aminoquinaldine, and diformylpyridine subcomponents around CuI templates. The corners of this cage consist of six head-to-tail dicopper(I) helicates whose helical chirality can be controlled by the addition of enantiopure 1,1'-bi-2-naphthol (BINOL) during the assembly process. Chiroptical and nuclear magnetic resonance (NMR) studies elucidated the process and mechanism of stereochemical information transfer from BINOL to the cage during the assembly process. Initially formed CuI(BINOL)2 thus underwent stereoselective ligand exchange during the formation of the chiral helicate corners of the cage, which determined the overall cage stereochemistry. The resulting dicopper(I) helicate corners of the cage were also shown to generate circularly polarized luminescence.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luca Pesce
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
| | - Rituparno Chowdhury
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Weichao Xue
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kai Wu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Richard H. Friend
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Giovanni M. Pavan
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
- Department
of Applied Science and Techology, Politecnico
di Torino, 10129 Torino, Italy
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Albrecht M. The Monomer-Dimer Equilibrium of Triscatechol Titanium(IV)-Based Hierarchical Helicates as a Tool for the Development of Molecular Balances and Molecular Switches. Acc Chem Res 2023; 56:3271-3281. [PMID: 37955356 DOI: 10.1021/acs.accounts.3c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
ConspectusHierarchical helicates are formed by noncovalent connection of two or more monomeric metal complex units, e.g., by bridging metal cations. A unique kind of hierarchical helicate is obtained from 3-carbonyl substituted catechol ligands with titanium(IV) ions in the presence of lithium cations. This kind of supramolecular complex shows in solution a "monomer-dimer" equilibrium. There are different possibilities (solvent, countercation, substituents at carbonyl unit, etc.) to shift this equilibrium to either the monomer or the dimer side. Thus, the lithium-bridged catecholate-based hierarchical helicates resemble a molecular switch. In this Account, different aspects are discussed of how this unique behavior of the dimeric titanium catecholates can be used for application.Thorough investigation of the energetics of the monomer-dimer equilibrium leads to a deeper understanding of the thermodynamic and kinetic effects of the dimerization (or dissociation) process. In this context, even weak interaction of substituents in the periphery of the complexes can be observed. Hereby on the one hand, solvent effects have an important influence and can be easily evaluated. The thorough understanding of the behavior of the monomer-dimer equilibrium allows one to develop some novel applications. In this respect, the use of the hierarchical helicate-based switch as a platform for reaction control and catalysis is described. Decent enantioselectivities up to ee = 58% can be found in Diels-Alder reactions in the periphery of the dimers, while switching to the monomer as a reaction platform still allows the cycloaddition reaction but turns the selectivity off. Additionally, it is described that catalytically important units can be introduced and hydrogenation reactions as well as Michael-type reactions are catalyzed at the helicates.Covalent connection of two catechol ester units leads to classical helicates. Depending on the alkaline metal cation, those can be switched from a compressed to an expanded form or vice versa. Hereby the monomer-dimer equilibrium is transformed into a structural switch. The switching process can be initiated by removal or addition of lithium cations (e.g., by addition of [2.1.1]cryptand). Alternative switching possibilities are based in the case of glycol bridged helicates on cation translocation isomerism and with thioester derivatives it occurs spontaneously in DMSO. Introduction of chiral tethers results in a three state switch allowing expansion/compression as well as switching of the helicity.
Collapse
Affiliation(s)
- Markus Albrecht
- Institut für Organische Chemie, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
9
|
Ikbal SA, Zhao P, Ehara M, Akine S. Acceleration and deceleration of chirality inversion speeds in a dynamic helical metallocryptand by alkali metal ion binding. SCIENCE ADVANCES 2023; 9:eadj5536. [PMID: 37922347 PMCID: PMC10624348 DOI: 10.1126/sciadv.adj5536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2023]
Abstract
We report that the chirality inversion kinetics of a trinickel(II) cryptand can be controlled by guest recognition in the cryptand cavity. When the guest was absent, the nickel(II) cryptand underwent a dynamic interconversion between the P and M forms in solution, preferring the M form, with a half-life of t1/2 = 4.99 min. The P/M equilibrium is reversed to P-favored by binding with an alkali metal ion in the cryptand cavity. The timescale of this M→P inversion kinetics was both notably accelerated and decelerated by the guest binding (t1/2 = 0.182 min for K+ complex; 186 min for Cs+ complex); thus, the equilibration rate constants differed by up to 1000-fold depending on the guest metal ions. This acceleration/deceleration can be explained in terms of the virtual binding constants at the transition state of the P/M chirality inversion; K+ binding more stabilizes the transition state rather than the P and M forms to result in the acceleration.
Collapse
Affiliation(s)
- Sk Asif Ikbal
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Shigehisa Akine
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
10
|
Zhao T, Wu W, Yang C. Chiroptical regulation of macrocyclic arenes with flipping-induced inversion of planar chirality. Chem Commun (Camb) 2023; 59:11469-11483. [PMID: 37691554 DOI: 10.1039/d3cc03829g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Studies on various macrocyclic arenes have received increasing attention due to their straightforward syntheses, convenient derivatization, and unique complexation properties. Represented by pillar[n]arenes, several distinctive macrocyclic arenes have recently emerged with the following characteristics: they possess a pair of enantiomeric planar chiral conformations, and interconversion between these enantiomeric conformations can be achieved through the flipping of ring units. Complexation of a chiral guest with these macrocyclic arenes will lead to a shift of the equilibrium between the Rp and Sp conformers, leading to intriguing possibilities for chiral induction and sensing. By the introduction of bulky substituents on the rims, employing rotaxanation or pseudocatenation, planar chirality could be locked, enabling the enantiomeric separation of the chiral structures. The induced or separated chiral conformers/compounds exhibit significant chiroptical properties. These macrocyclic arenes, with flipping-induced inversion of planar chirality, demonstrated intriguing chiral induction dynamics and kinetics. In this featured review, we systematically summarize the progress in chiroptical induction/regulation of these macrocyclic arenes, particularly in the fields of chiral sensing, molecular machines, molecular recognition, and assembly.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| |
Collapse
|
11
|
Dhamija A, Chandel D, Rath SP. Modulation of supramolecular chirality by stepwise axial coordination in a nano-size trizinc(ii)porphyrin trimer. Chem Sci 2023; 14:6032-6038. [PMID: 37293642 PMCID: PMC10246700 DOI: 10.1039/d3sc00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Herein, we report a chiral guest's triggered spring-like contraction and extension motions coupled with unidirectional twisting in a novel flexible and 'nano-size' achiral trizinc(ii)porphyrin trimer host upon step-wise formation of 1 : 1, 1 : 2, and 1 : 4 host-guest supramolecular complexes based on the stoichiometry of the diamine guests for the first time. During these processes, porphyrin CD responses have been induced, inverted, and amplified, and reduced, respectively, in a single molecular framework due to the change in the interporphyrin interactions and helicity. Also, the sign of the CD couplets is just the opposite between R and S substrates which suggests that the chirality is dictated solely by the stereographic projection of the chiral center. Interestingly, the long-range electronic communications between the three porphyrin rings generate trisignate CD signals that provide further information about molecular structures.
Collapse
Affiliation(s)
- Avinash Dhamija
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Dolly Chandel
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| |
Collapse
|
12
|
Adachi K, Fa S, Wada K, Kato K, Ohtani S, Nagata Y, Akine S, Ogoshi T. Adaptive Planar Chirality of Pillar[5]arenes Invertible by n-Alkane Lengths. J Am Chem Soc 2023; 145:8114-8121. [PMID: 36977281 DOI: 10.1021/jacs.3c01019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Chirality of host molecules can be induced and/or inverted by the guest molecules. However, the adapting chirality of hosts to the length of n-alkanes remains a great challenge because n-alkanes are neutral, achiral, and linear molecules, resulting in a weak interaction with most compounds. Herein, we report a system with chirality adapted to n-alkane lengths, using a pillar[5]arene-based macrocyclic host, S-Br, which contains five stereogenic carbons and five terminal bromine atoms on each rim. The electron-rich cavity of S-Br could include n-alkanes and the planar-chiral isomers sensitively inverted in response to the lengths of the complexed n-alkanes. The inclusion of a short n-alkane such as n-pentane made S-Br more inclined to be in the pS-form, whereas the inclusion of long n-alkanes such as n-heptane made the pR-form more favorable. The difference in the stability of the isomers was supported by the crystal structures and the theoretical calculations. Furthermore, temperature drives the adaptive chirality of S-Br with n-alkanes. An n-alkane with middle length, n-hexane, showed the dominance of the pR-form of S-Br at a higher temperature, whereas the pS-form was shown at a lower temperature.
Collapse
Affiliation(s)
- Keisuke Adachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuuya Nagata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
13
|
Deng WF, Li YX, Zhao YX, Hu JS, Yao ZS, Tao J. Inversion of Molecular Chirality Associated with Ferroelectric Switching in a High-Temperature Two-Dimensional Perovskite Ferroelectric. J Am Chem Soc 2023; 145:5545-5552. [PMID: 36827700 DOI: 10.1021/jacs.3c00634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Controlling molecular chirality by external stimuli is of great significance in both fundamental research and technological applications. Herein, we report a high-temperature (384 K) molecular ferroelectric of a Cu(II) complex whose spontaneous polarization can be switched associated with flipping of molecular chirality. In this two-dimensional perovskite structure, the inorganic layer is separated by (NH3(CH2)2SS(CH2)2NH3)2+ organic cations skewed in a chiral conformation (P- or M-helicity in an individual crystal). As the stereodynamic disulfide bridge determines the molecular dipole moment along the polar axis, the chiral organic cation can be converted to its enantiomer as a consequence of an electric field-induced shift of the S-S moiety relative to its screw axis during the ferroelectric switching. The variation of the molecular chirality is examined with single-crystal X-ray diffraction and circular dichroism spectra. The simultaneous switching of molecular chirality and spontaneous polarization in this perovskite ferroelectric may lead to novel chiral electronic phenomena.
Collapse
Affiliation(s)
- Wen-Feng Deng
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yu-Xia Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yan-Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jie-Sheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
14
|
Yan S, Feng G, Geng J, Feng F, Ma H, Huang W. Tunable Construction of Sandwich-Type Double-[1 + 1] and Half-Folded [2 + 2] Schiff-Base Complexes Controlled by the Combination of Primary and Secondary Template Effects. Inorg Chem 2022; 61:20994-21003. [PMID: 36495277 DOI: 10.1021/acs.inorgchem.2c03473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first-row transition-metal ions Mn2+-Cu2+ could serve as effective templates to construct three types of double-[1 + 1], [2 + 2], and [1 + 1] Schiff-base dinuclear macrocyclic complexes in the presence of dialdehydes with different pendant arms and a common 1,8-diamine. The extremely flexible nature of macrocyclic ligands allows for the multiple template-directed syntheses, but the final products could be finely tuned by the subtle variations of Mn2+-Cu2+ ions in a 3d-electronic configuration, radius, and coordination number/geometry as well as the auxiliary (pendant-armed and anionic) template effect at the same time. Two borderlines are observed at the Co2+ ion for forming double-[1 + 1] and [2 + 2] metallacycles involving the H2pdd precursor and the [1 + 1] Cu2+ complex for double-[1 + 1] and [2 + 2] macrocycles containing the H2hpdd unit, respectively. The structural diversity is originated from the non-perfect match between [1 + 1]/[2 + 2] Schiff-base macrocycles and dinuclear metal centers; hence, a compromise between the metal coordination modes and alterations of the ligand conformation takes place.
Collapse
Affiliation(s)
- Suqiong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China
| | - Genfeng Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China
| | - Jiao Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China
| | - Hui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu Province, P. R. China.,Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| |
Collapse
|
15
|
A novel regulable enantioselective platform based on porphyrin tubular cage assemblies with controllable handedness. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Babu Mukkamala S, Wang S. Supramolecular Organic Nanowires of 2,6‐Naphthalene Dicarboxylic Acid Observed in the Lamellar Space of Zn
3
(PO
4
)
4
and Zn
1.6
Co
1.4
(PO
4
)
4
Host Lattices. ChemistrySelect 2022. [DOI: 10.1002/slct.202202808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saratchandra Babu Mukkamala
- Department of Chemistry GITAM School of Science GITAM (Deemed to be University) Visakhapatnam 530045, A.P. India
| | - Sue‐Lein Wang
- Department of Chemistry National Tsing-Hua University, Hsinchu Taiwan ROC
| |
Collapse
|