1
|
Rosales-Martínez C, López-Alcalá D, Assis M, Castillo-Blas C, Baldoví JJ, Abánades Lázaro I. Promoting photoswitching in mismatching mixed-linker multivariate Zr 6 MOFs. RSC Adv 2024; 14:37984-37992. [PMID: 39610818 PMCID: PMC11603581 DOI: 10.1039/d4ra07366e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Multivariate metal-organic frameworks (MTV MOFs) have emerged as promising materials due to their ability to combine properties that enhance features beyond those of their pristine counterparts. Despite the potential for tailoring electronic properties through structural distortions and defects introduced by linkers of variable lengths, examples remain scarce, and information on the electronic structure is limited. Here, we present the multivariate mismatching linker approach to generate photoswitching nanoparticulated MOFs with variable lattice parameters and porosity features controlled by mixed-linker composition. Structural defects, such as dangling linkers, are generated due to mismatching crystal lattices, tuning the electronic structure. Combining biphenyl and azobenzene ditopic linkers promotes cis-trans photoswitching of dangling azobenzene linkers, which is constrained in Zr6-azobenzene MOFs. Moreover, introducing low quantities of azobenzene drastically reduces the bandgap of the materials due to the contribution of the azo group, which is supported by first-principles calculations. This paves the way for new photo-responsive materials for photo-switching applications.
Collapse
Affiliation(s)
| | - Diego López-Alcalá
- Instituto de Ciencia Molecular, Universitat de Valencia Paterna 46980 Spain
| | - Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Universidad Catolica de Valencia San Vicente Mártir (UCV) Valencia 46002 Spain
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
| | - José J Baldoví
- Instituto de Ciencia Molecular, Universitat de Valencia Paterna 46980 Spain
| | | |
Collapse
|
2
|
Li L, Li F, Xu W, Guo M, Zhu P, Xing T, Li Z, Wang M, Wu M. Construction of a Fluorinated-Anion Pillared Metal-Organic Framework Exhibiting Dual-Pore Architecture for Simultaneous Enhancement of C 2H 2 Adsorption Capacity and Selectivity. Chemistry 2024:e202403340. [PMID: 39436391 DOI: 10.1002/chem.202403340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/23/2024]
Abstract
Physisorption-based separation processes represents a promising alternative to the conventional thermally driven methods, such as cryogenic separation. However, a significant challenge lies in balancing the trade-off between adsorption capacity and selectivity of adsorbents. In this study, we introduce a novel fluorinated-anion pillared metal-organic frameworks (APMOFs) featuring a dual-pore architecture, constructed using a pyridine-oxazole bifunctional ligand. The inherent low symmetry of the ligand leads to significant distortion of the fluorinated-anion pillars, resulting in a distinctive type of APMOFs characterized by dual-pore architecture. On pore structure with constrict pore width is enriched with a high density of anion fluorinated pillars, offering numerous active sites advantageous for enhancing separation selectivity. Concurrently, the other pore structure exhibits larger dimensions, facilitating increased gas molecule accommodation and thereby augmenting adsorption capacity. Gas sorption studies reveal a substantial C2H2 adsorption capacity and a high C2H2/CO2 separation selectivity. Breakthrough experiments confirm its exceptional separation performance, while theoretical investigations elucidate a sequential adsorption process within these APMOFs, underscoring the efficacy of this strategy in overcoming trade-off limits in adsorbents.
Collapse
Affiliation(s)
- Liangjun Li
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China
| | - Fangru Li
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China
| | - Wenli Xu
- Sohool of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 102488, China
| | - Mengwei Guo
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China
| | - Peijie Zhu
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China
| | - Tao Xing
- Research and Innovation Centre of New Energy, Shandong Energy Group., Co. Ltd, Jinan, 250101, China
| | - Zhi Li
- Research and Innovation Centre of New Energy, Shandong Energy Group., Co. Ltd, Jinan, 250101, China
| | - Mingqing Wang
- Research and Innovation Centre of New Energy, Shandong Energy Group., Co. Ltd, Jinan, 250101, China
| | - Mingbo Wu
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China
| |
Collapse
|
3
|
Mantel A, Stöger B, Prado-Roller A, Shiozawa H. Host-guest charge transfer for scalable single crystal epitaxy of a metal-organic framework. COMMUNICATIONS MATERIALS 2024; 5:220. [PMID: 39430062 PMCID: PMC11488492 DOI: 10.1038/s43246-024-00657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
Methods to grow large crystals provide the foundation for material science and technology. Here we demonstrate single crystal homoepitaxy of a metal-organic framework (MOF) built of zinc, acetate and terephthalate ions, that encapsulate arrays of octahedral zinc dimethyl sulfoxide (DMSO) complex cations within its one-dimensional (1D) channels. The three-dimensional framework is built of two-dimensional Zn-terephthalate square lattices interconnected by anionic acetate pillars through diatomic zinc nodes. The charge of the anionic framework is neutralized by the 1D arrays of Zn ( DMSO ) 6 2 + cations that fill every second 1D channel of the framework. It is demonstrated that the repeatable and scalable epitaxy allows square cuboids of this charge-transfer MOF to grow stepwise to sizes in the centimeter range. The continuous growth with no size limits can be attributed to the ionic nature of the anionic framework with cationic 1D molecular fillers. These findings pave the way for epitaxial growth of bulk crystals of MOFs.
Collapse
Affiliation(s)
- Arthur Mantel
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | | | | | - Hidetsugu Shiozawa
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
- Faculty of Physics, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Li D, Gao MY, Deng CH, Li GB, Qin SJ, Yang QY, Song BQ. Cross-Linking CdSO 4-Type Nets with Hexafluorosilicate Anions to Form an Ultramicroporous Material for Efficient C 2H 2/CO 2 and C 2H 2/C 2H 4 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402523. [PMID: 38747010 DOI: 10.1002/smll.202402523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Indexed: 10/04/2024]
Abstract
A 44.610.8 topology hybrid ultramicroporous material (HUM), {[Cu1.5F(SiF6)(L)2.5]·G}n, (L = 4,4'-bisimidazolylbiphenyl, G = guest molecules), 1, formed by cross-linking interpenetrated 3D four-connected CdSO4-type nets with hexafluorosilicate anions is synthesized and evaluated in the context of gas sorption and separation herein. 1 is the first HUM functionalized with two different types of fluorinated sites (SiF6 2- and F- anions) lining along the pore surface. The optimal pore size (≈5 Å) combining mixed and high-density electronegative fluorinated sites enable 1 to preferentially adsorb C2H2 over CO2 and C2H4 by hydrogen bonding interactions with a high C2H2 isosteric heat of adsorption (Qst) of ≈42.3 kJ mol-1 at zero loading. The pronounced discriminatory sorption behaviors lead to excellent separation performance for C2H2/CO2 and C2H2/C2H4 that surpasses many well-known sorbents. Dynamic breakthrough experiments are conducted to confirm the practical separation capability of 1, which reveal an impressive separation factor of 6.1 for equimolar C2H2/CO2 mixture. Furthermore, molecular simulation and density functional theory (DFT) calculations validate the strong binding of C2H2 stems from the chelating fix of C2H2 between SiF6 2- anion and coordinated F- anion.
Collapse
Affiliation(s)
- Dan Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Mei-Yan Gao
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Cheng-Hua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Guo-Bi Li
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Shao-Jie Qin
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bai-Qiao Song
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| |
Collapse
|
5
|
Li CN, Xu WG, Liu L, Han ZB. Defect engineering improves CO 2/N 2 and CH 4/N 2 separation performance of MOF-801. Dalton Trans 2024; 53:5356-5359. [PMID: 38445433 DOI: 10.1039/d3dt04009g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A defect engineering modification method is reported to improve the CO2/N2 and CH4/N2 separation performance of MOF-801, owing to skeleton shrinkage caused by defect modification, Zr-FA0.5 shows excellent gas separation performance compared with the prototype MOF.
Collapse
Affiliation(s)
- Chen-Ning Li
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Wei-Guo Xu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| |
Collapse
|
6
|
Zhao YL, Zhang X, Li MZ, Li JR. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024; 53:2056-2098. [PMID: 38214051 DOI: 10.1039/d3cs00285c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.
Collapse
Affiliation(s)
- Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Mu-Zi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
7
|
Harvey-Reid NC, Sensharma D, Mukherjee S, Patil KM, Kumar N, Nikkhah SJ, Vandichel M, Zaworotko MJ, Kruger PE. Crystal Engineering of a New Hexafluorogermanate Pillared Hybrid Ultramicroporous Material Delivers Enhanced Acetylene Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4803-4810. [PMID: 38258417 DOI: 10.1021/acsami.3c16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hybrid ultramicroporous materials (HUMs), metal-organic platforms that incorporate inorganic pillars, are a promising class of porous solids. A key area of interest for such materials is gas separation, where HUMs have already established benchmark performances. Thanks to their ready compositional modularity, we report the design and synthesis of a new HUM, GEFSIX-21-Cu, incorporating the ligand pypz (4-(3,5-dimethyl-1H-pyrazol-4-yl)pyridine, 21) and GeF62- pillaring anions. GEFSIX-21-Cu delivers on two fronts: first, it displays an exceptionally high C2H2 adsorption capacity (≥5 mmol g-1) which is paired with low uptake of CO2 (<2 mmol g-1), and, second, a low enthalpy of adsorption for C2H2 (ca. 32 kJ mol-1). This combination is rarely seen in the C2H2 selective physisorbents reported thus far, and not observed in related isostructural HUMs featuring pypz and other pillaring anions. Dynamic column breakthrough experiments for 1:1 and 2:1 C2H2/CO2 mixtures revealed GEFSIX-21-Cu to selectively separate C2H2 from CO2, yielding ≥99.99% CO2 effluent purities. Temperature-programmed desorption experiments revealed full sorbent regeneration in <35 min at 60 °C, reinforcing HUMs as potentially technologically relevant materials for strategic gas separations.
Collapse
Affiliation(s)
- Nathan C Harvey-Reid
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Debobroto Sensharma
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Soumya Mukherjee
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Komal M Patil
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Naveen Kumar
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sousa Javan Nikkhah
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Matthias Vandichel
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Paul E Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
8
|
Xu W, Li L, Guo M, Zhang F, Dai P, Gu X, Liu D, Liu T, Zhang K, Xing T, Wang M, Li Z, Wu M. Fabrication of Pillar-Cage Fluorinated Anion Pillared Metal-Organic Frameworks via a Pillar Embedding Strategy and Efficient Separation of SO 2 through Multi-Site Trapping. Angew Chem Int Ed Engl 2023; 62:e202312029. [PMID: 37747695 DOI: 10.1002/anie.202312029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Flue gas desulfurization is crucial for both human health and ecological environments. However, developing efficient SO2 adsorbents that can break the trade-off between adsorption capacity and selectivity is still challenging. In this work, a new type of fluorinated anion-pillared metal-organic frameworks (APMOFs) with a pillar-cage structure is fabricated through pillar-embedding into a highly porous and robust framework. This type of APMOFs comprises smaller tetrahedral cages and larger icosahedral cages interconnected by embedded [NbOF5 ]2- and [TaOF5 ]2- anions acting as pillars. The APMOFs exhibits high porosity and density of fluorinated anions, ensuring exceptional SO2 adsorption capacity and ultrahigh selectivity for SO2 /CO2 and SO2 /N2 gas mixtures. Furthermore, these two structures demonstrate excellent stability towards water, acid/alkali, and SO2 adsorption. Cycle dynamic breakthrough experiments confirm the excellent separation performance of SO2 /CO2 gas mixtures and their cyclic stability. SO2 -loaded single-crystal X-ray diffraction, Grand canonical Monte Carlo (GCMC) simulations combined with density functional theory (DFT) calculations reveal the preferred adsorption domains for SO2 molecules. The multiple-site host-guest and guest-guest interactions facilitate selective recognition and dense packing of SO2 in this hybrid porous material. This work will be instructive for designing porous materials for flue gas desulfurization and other gas-purification processes.
Collapse
Affiliation(s)
- Wenli Xu
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, P. R. China
| | - Liangjun Li
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, P. R. China
| | - Mengwei Guo
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, P. R. China
| | - Fuzhao Zhang
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, P. R. China
| | - Pengcheng Dai
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, P. R. China
| | - Xin Gu
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, P. R. China
| | - Dandan Liu
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, P. R. China
| | - Tao Liu
- New Energy Division, Shandong Energy Group CO., LTD., 250101, Jinan, China
| | - Kuitong Zhang
- New Energy Division, Shandong Energy Group CO., LTD., 250101, Jinan, China
| | - Tao Xing
- New Energy Division, Shandong Energy Group CO., LTD., 250101, Jinan, China
| | - Muzhou Wang
- New Energy Division, Shandong Energy Group CO., LTD., 250101, Jinan, China
| | - Zhi Li
- New Energy Division, Shandong Energy Group CO., LTD., 250101, Jinan, China
| | - Mingbo Wu
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, P. R. China
| |
Collapse
|
9
|
Li W, Liu X, Yu X, Zhang B, Ji C, Shi Z, Zhang L, Liu Y. Three Robust Isoreticular Metal-Organic Frameworks with High-Performance Selective CO 2 Capture and Separation. Inorg Chem 2023; 62:18248-18256. [PMID: 37870805 DOI: 10.1021/acs.inorgchem.3c02851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Based on the hard-soft acid base (HSAB) theory, three robust isoreticular metal-organic frameworks (MOFs) with nia topology were successfully synthesized by solvothermal reaction {[In3O(BHB)(H2O)3]NO3·3DMA (JLU-MOF110(In)), [Fe3O(BHB)(H2O)3]NO3 (JLU-MOF110(Fe)), and [Fe2NiO(BHB)(H2O)3] (JLU-MOF110(FeNi)) (DMA = N,N-dimethylacetamide, H6BHB = 4,4″-benzene-1,3,5-triyl-hexabenzoic acid)}. Both JLU-MOF110(In) and JLU-MOF110(Fe) are cationic frameworks, and their BET surface areas are 301 and 446 m2/g, respectively. By modification of the components of metal clusters, JLU-MOF110(FeNi) features a neutral framework, and the BET surface area is increased up to 808 m2/g. All three MOF materials exhibit high chemical and thermal stability. JLU-MOF110(In) remains stable for 24 h at pH values ranging from 1 to 11, while JLU-MOF110(Fe) and JLU-MOF110(FeNi) persist to be stable for 24 h at pH from 1 to 12. JLU-MOF110(In) exhibits thermal stability up to 350 °C, whereas JLU-MOF110(Fe) and JLU-MOF(FeNi) can be stable up to 300 °C. Thanks to the microporous cage-based structure and abundant open metal sites, JLU-MOF110(In), JLU-MOF110(Fe), and JLU-MOF110(FeNi) have excellent CO2 capture capacity (28.0, 51.5, and 99.6 cm3/g, respectively, under 298 K and 1 bar). Interestingly, the ideal adsorption solution theory results show that all three MOFs exhibit high separation selectivity toward CO2 over N2 (35.2, 43.2, and 43.2 for CO2/N2 = 0.15/0.85) and CO2 over CH4 (14.4, 11.5, and 10.1 for CO2/CH4 = 0.5/0.5) at 298 K and 1 bar. Thus, all three MOFs are potential candidates for CO2 capture and separation. Among them, JLU-MOF110(FeNi) displays the best separation potential, as revealed by dynamic column breakthrough experiments.
Collapse
Affiliation(s)
- Wen Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyao Liu
- Sinochem Holdings Corporation Ltd., Beijing 100031, P. R. China
| | - Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Borong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chao Ji
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhaohui Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lirong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Grigoletto S, Dos Santos AG, de Lima GF, De Abreu HA. Dynamical and electronic properties of anion-pillared metal-organic frameworks for natural gas separation. Phys Chem Chem Phys 2023; 25:27532-27541. [PMID: 37801025 DOI: 10.1039/d3cp02368k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The increasing demand for natural gas as a clean energy source has emphasized the need for efficient gas separation technologies. Metal-organic frameworks (MOFs) have emerged as a promising class of materials for gas separation, with anion-pillared MOFs (APMOFs) gaining attention for their fine-tuned pore design and shape/size selectivity. In this study, we investigate the dynamical and electronic properties of three APMOFs, SIFSIX-3-Cu, SIFSIX-2-Cu-i, and SIFSIX-2-Cu, for the separation of methane from ethane, ethene, propane, propene, and N using computational simulations. Our simulations employ Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD) techniques combined with Density Functional Theory (DFT) calculations. We find that that all three APMOFs exhibit promising separation capabilities for methane from propane and propene based on both thermodynamics and kinetics parameters. In addition, we use Noncovalent Interaction (NCI) analysis to investigate intermolecular interactions and find that the fluorine atoms in the MOF can polarize gas molecules and establish electrostatic interactions with hydrogen atoms in the molecule. Finally, we show that SIFSIX-2-Cu-i is a potential candidate for separating N2/CH4 due to its interpenetration.
Collapse
Affiliation(s)
- Sabrina Grigoletto
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Arthur Gomes Dos Santos
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Guilherme Ferreira de Lima
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Heitor Avelino De Abreu
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
11
|
Su H, Zhou Y, Huang T, Sun F. Study on Gas Sorption and Iodine Uptake of a Metal-Organic Framework Based on Curcumin. Molecules 2023; 28:5237. [PMID: 37446898 DOI: 10.3390/molecules28135237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Medi-MOF-1 is a highly porous Metal-Organic framework (MOF) constructed from Zn(II) and curcumin. The obtained crystal was characterized using powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). A micrometer-sized crystal with similar morphology was successfully obtained using the solvothermal method. Thanks to its high surface area, good stability, and abound pores, the as-synthesized medi-MOF-1 could be used as a functional porous material to adsorb different gases (H2, CO2, CH4, and N2) and iodine (I2). The activated sample exhibited a high I2 adsorption ability of 1.936 g g-1 at room temperature via vapor diffusion. Meanwhile, the adsorbed I2 could be released slowly in ethanol, confirming the potential application for I2 adsorption.
Collapse
Affiliation(s)
- Hongmin Su
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yang Zhou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Tao Huang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
12
|
Gao MY, Bezrukov AA, Song BQ, He M, Nikkhah SJ, Wang SQ, Kumar N, Darwish S, Sensharma D, Deng C, Li J, Liu L, Krishna R, Vandichel M, Yang S, Zaworotko MJ. Highly Productive C 3H 4/C 3H 6 Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material. J Am Chem Soc 2023; 145:11837-11845. [PMID: 37204941 PMCID: PMC10236493 DOI: 10.1021/jacs.3c03505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 05/21/2023]
Abstract
Ultramicroporous materials can be highly effective at trace gas separations when they offer a high density of selective binding sites. Herein, we report that sql-NbOFFIVE-bpe-Cu, a new variant of a previously reported ultramicroporous square lattice, sql, topology material, sql-SIFSIX-bpe-Zn, can exist in two polymorphs. These polymorphs, sql-NbOFFIVE-bpe-Cu-AA (AA) and sql-NbOFFIVE-bpe-Cu-AB (AB), exhibit AAAA and ABAB packing of the sql layers, respectively. Whereas NbOFFIVE-bpe-Cu-AA (AA) is isostructural with sql-SIFSIX-bpe-Zn, each exhibiting intrinsic 1D channels, sql-NbOFFIVE-bpe-Cu-AB (AB) has two types of channels, the intrinsic channels and extrinsic channels between the sql networks. Gas and temperature induced transformations of the two polymorphs of sql-NbOFFIVE-bpe-Cu were investigated by pure gas sorption, single-crystal X-ray diffraction (SCXRD), variable temperature powder X-ray diffraction (VT-PXRD), and synchrotron PXRD. We observed that the extrinsic pore structure of AB resulted in properties with potential for selective C3H4/C3H6 separation. Subsequent dynamic gas breakthrough measurements revealed exceptional experimental C3H4/C3H6 selectivity (270) and a new benchmark for productivity (118 mmol g-1) of polymer grade C3H6 (purity >99.99%) from a 1:99 C3H4/C3H6 mixture. Structural analysis, gas sorption studies, and gas adsorption kinetics enabled us to determine that a binding "sweet spot" for C3H4 in the extrinsic pores is behind the benchmark separation performance. Density-functional theory (DFT) calculations and Canonical Monte Carlo (CMC) simulations provided further insight into the binding sites of C3H4 and C3H6 molecules within these two hybrid ultramicroporous materials, HUMs. These results highlight, to our knowledge for the first time, how pore engineering through the study of packing polymorphism in layered materials can dramatically change the separation performance of a physisorbent.
Collapse
Affiliation(s)
- Mei-Yan Gao
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Andrey A. Bezrukov
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Bai-Qiao Song
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Meng He
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Sousa Javan Nikkhah
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shi-Qiang Wang
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way 138634, Singapore
| | - Naveen Kumar
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shaza Darwish
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Debobroto Sensharma
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Chenghua Deng
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Jiangnan Li
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Lunjie Liu
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rajamani Krishna
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, Netherlands
| | - Matthias Vandichel
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Michael J. Zaworotko
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| |
Collapse
|
13
|
Gao MY, Sensharma D, Bezrukov AA, Andaloussi YH, Darwish S, Deng C, Vandichel M, Zhang J, Zaworotko MJ. A Robust Molecular Porous Material for C 2 H 2 /CO 2 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206945. [PMID: 36541750 DOI: 10.1002/smll.202206945] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A molecular porous material, MPM-2, comprised of cationic [Ni2 (AlF6 )(pzH)8 (H2 O)2 ] and anionic [Ni2 Al2 F11 (pzH)8 (H2 O)2 ] complexes that generate a charge-assisted hydrogen-bonded network with pcu topology is reported. The packing in MPM-2 is sustained by multiple interionic hydrogen bonding interactions that afford ultramicroporous channels between dense layers of anionic units. MPM-2 is found to exhibit excellent stability in water (>1 year). Unlike most hydrogen-bonded organic frameworks which typically show poor stability in organic solvents, MPM-2 exhibited excellent stability with respect to various organic solvents for at least two days. MPM-2 is found to be permanently porous with gas sorption isotherms at 298 K revealing a strong affinity for C2 H2 over CO2 thanks to a high (ΔQst )AC [Qst (C2 H2 ) - Qst (CO2 )] of 13.7 kJ mol-1 at low coverage. Dynamic column breakthrough experiments on MPM-2 demonstrated the separation of C2 H2 from a 1:1 C2 H2 /CO2 mixture at 298 K with effluent CO2 purity of 99.995% and C2 H2 purity of >95% after temperature-programmed desorption. C-H···F interactions between C2 H2 molecules and F atoms of AlF6 3- are found to enable high selectivity toward C2 H2 , as determined by density functional theory simulations.
Collapse
Affiliation(s)
- Mei-Yan Gao
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Debobroto Sensharma
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Andrey A Bezrukov
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Yassin H Andaloussi
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Shaza Darwish
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Chenghua Deng
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| |
Collapse
|
14
|
Zhang X, Hu Y, Lyu H, Li J, Zhou T. Multi-level computational screening of anion-pillared metal-organic frameworks for propane and propene separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Huang W, Zhu B, Zhu J, Li X, Wang X, Yan B, Yi F, Zhang Z. High-thermal-conducting polycarbosilane modified activated carbon for the efficient adsorption of n-hexane vapor. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2022.140270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Jiang Y, Wang L, Yan T, Hu J, Sun W, Krishna R, Wang D, Gu Z, Liu D, Cui X, Xing H, Zhang Y. Insights into the thermodynamic-kinetic synergistic separation of propyne/propylene in anion pillared cage MOFs with entropy-enthalpy balanced adsorption sites. Chem Sci 2023; 14:298-309. [PMID: 36687342 PMCID: PMC9811657 DOI: 10.1039/d2sc05742e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Propyne/propylene (C3H4/C3H6) separation is an important industrial process yet challenged by the trade-off of selectivity and capacity due to the molecular similarity. Herein, record C3H4/C3H6 separation performance is achieved by fine tuning the pore structure in anion pillared MOFs. SIFSIX-Cu-TPA (ZNU-2-Si) displays a benchmark C3H4 capacity (106/188 cm3 g-1 at 0.01/1 bar and 298 K), excellent C3H4/C3H6 IAST selectivity (14.6-19.3) and kinetic selectivity, and record high C3H4/C3H6 (10/90) separation potential (36.2 mol kg-1). The practical C3H4/C3H6 separation performance is fully demonstrated by breakthroughs under various conditions. 37.8 and 52.9 mol kg-1 of polymer grade C3H6 can be produced from 10/90 and 1/99 C3H4/C3H6 mixtures. 4.7 mol kg-1 of >99% purity C3H4 can be recovered by a stepped desorption process. Based on the in situ single crystal analysis and DFT calculation, an unprecedented entropy-enthalpy balanced adsorption pathway is discovered. MD simulation further confirmed the thermodynamic-kinetic synergistic separation of C3H4/C3H6 in ZNU-2-Si.
Collapse
Affiliation(s)
- Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Tongan Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 China
| | - Jianbo Hu
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam Netherlands
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University Jiangsu 225009 China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 China
| | - Xili Cui
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Huabin Xing
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
17
|
Zhang Z, Huang W, Li X, Wang X, Zheng Y, Yan B, Wu C. Water-stable composite of HKUST-1 with its pyrolysis products for enhanced CO2 capture capacity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Dubskikh VA, Lysova AA, Samsonenko DG, Dorovatovskii PV, Lazarenko VA, Dybtsev DN, Fedin VP. VARIETY OF METAL-ORGANIC FRAMEWORKS BASED ON CADMIUM(II) AND BITHIOPHENEDICARBOXYLIC ACID. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Zheng Y, Huang W, Chen W, Li X, Wang X, Zhang Z, Wu C, Fu L. Effect analysis of initial water content and temperature on the adsorption of VOCs by activated carbon based on molecular simulation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yongyin Zheng
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Centre for Oil Vapor Recovery, Changzhou University, Changzhou, People’s Republic of China
| | - Weiqiu Huang
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Centre for Oil Vapor Recovery, Changzhou University, Changzhou, People’s Republic of China
| | - Weihua Chen
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Centre for Oil Vapor Recovery, Changzhou University, Changzhou, People’s Republic of China
| | - Xufei Li
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Centre for Oil Vapor Recovery, Changzhou University, Changzhou, People’s Republic of China
- School of Materials Science and Engineering, Changzhou University, Changzhou, People’s Republic of China
| | - Xinya Wang
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Centre for Oil Vapor Recovery, Changzhou University, Changzhou, People’s Republic of China
- School of Materials Science and Engineering, Changzhou University, Changzhou, People’s Republic of China
| | - Zhen Zhang
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Centre for Oil Vapor Recovery, Changzhou University, Changzhou, People’s Republic of China
| | - Chunyan Wu
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Centre for Oil Vapor Recovery, Changzhou University, Changzhou, People’s Republic of China
| | - Lipei Fu
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Centre for Oil Vapor Recovery, Changzhou University, Changzhou, People’s Republic of China
| |
Collapse
|