1
|
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:953. [PMID: 36903831 PMCID: PMC10005089 DOI: 10.3390/nano13050953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.
Collapse
Affiliation(s)
- Sandy Elmehrath
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ha L. Nguyen
- Department of Chemistry University of California—Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, CA 94720, USA
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Amr Amin
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
2
|
Bian Y, Guo D. Targeted Therapy for Hepatocellular Carcinoma: Co-Delivery of Sorafenib and Curcumin Using Lactosylated pH-Responsive Nanoparticles. Drug Des Devel Ther 2020; 14:647-659. [PMID: 32109990 PMCID: PMC7035906 DOI: 10.2147/dddt.s238955] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/11/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a leading cancer worldwide. In the present investigation, sorafenib (SFN) and curcumin (CCM) were co-delivered using pH-sensitive lactosylated nanoparticles (LAC-NPs) for targeted HCC treatment. METHODS pH-responsive lactosylated materials were synthesized. SFN and CCM co-delivered, pH-responsive lactosylated nanoparticles (LAC-SFN/CCM-NPs) were self-assembled by using the nanoprecipitation technique. The nanoparticles were characterized in terms of particle size, charge and drug release profile. The anti-cancer effects of the nanoparticles were evaluated in human hepatic carcinoma cells (HepG2) cells and HCC tumor xenograft models. RESULTS LAC-SFN/CCM-NPs are spherical particles with light coats on the surface. The size and zeta potential of LAC-SFN/CCM-NPs were 115.5 ± 3.6 nm and -34.6 ± 2.4, respectively. The drug release of LAC-SFN/CCM-NPs in pH 5.5 was more efficient than in pH 7.4. LAC-SFN/CCM-NPs group exhibited the smallest tumor volume (239 ± 14 mm3), and the inhibition rate of LAC-SFN/CCM-NPs was 77.4%. CONCLUSION In summary, LAC-SFN/CCM-NPs was proved to be a promising system for targeted HCC therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line
- Cell Proliferation/drug effects
- Curcumin/administration & dosage
- Curcumin/pharmacology
- Drug Delivery Systems
- Drug Screening Assays, Antitumor
- Drug Tolerance
- Hep G2 Cells
- Humans
- Injections, Intravenous
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Targeted Therapy
- Particle Size
- Sorafenib/administration & dosage
- Sorafenib/pharmacology
- Surface Properties
Collapse
Affiliation(s)
- Yun Bian
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, The Fourth People’s Hospital of Wuxi City, WuXi214000, Jiangsu Province, People’s Republic of China
| | - Dong Guo
- Affiliated Hospital of Jiangnan University, The Fourth People’s Hospital of Wuxi City, Wuxi214000, Jiangsu Province, People’s Republic of China
| |
Collapse
|
3
|
Lin HS, Huang YL, Wang YRS, Hsiao E, Hsu TA, Shiao HY, Jiaang WT, Sampurna BP, Lin KH, Wu MS, Lai GM, Yuh CH. Identification of Novel Anti-Liver Cancer Small Molecules with Better Therapeutic Index than Sorafenib via Zebrafish Drug Screening Platform. Cancers (Basel) 2019; 11:cancers11060739. [PMID: 31141996 PMCID: PMC6628114 DOI: 10.3390/cancers11060739] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths worldwide. Sorafenib was the only U.S. Food and Drug Administration (FDA) approved drug for treating advanced HCC until recently, so development of new target therapy is urgently needed. In this study, we established a zebrafish drug screening platform and compared the therapeutic effects of two multiple tyrosine kinase inhibitors, 419S1 and 420S1, with Sorafenib. All three compounds exhibited anti-angiogenesis abilities in immersed fli1:EGFP transgenic embryos and the half inhibition concentration (IC50) was determined. 419S1 exhibited lower hepatoxicity and embryonic toxicity than 420S1 and Sorafenib, and the half lethal concentration (LC50) was determined. The therapeutic index (LC50/IC50) for 419S1 was much higher than for Sorafenib and 420S1. The compounds were either injected retro-orbitally or by oral gavage to adult transgenic zebrafish with HCC. The compounds not only rescued the pathological feature, but also reversed the expression levels of cell-cycle-related genes and protein levels of a proliferation marker. Using a patient-derived-xenograft assay, we found that the effectiveness of 419S1 and 420S1 in preventing liver cancer proliferation is better than that of Sorafenib. With integrated efforts and the advantage of the zebrafish platform, we can find more effective and safe drugs for HCC treatment and screen for personalized medicine.
Collapse
Affiliation(s)
- Han-Syuan Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Yi-Luen Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Yi-Rui Stefanie Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Eugene Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Hui-Yi Shiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Bonifasius Putera Sampurna
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Kuan-Hao Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| | - Gi-Ming Lai
- TMU Research Center of Cancer Translational Medicine, Taipei Municipal Wanfang Hospital, Taipei 11696, Taiwan.
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan.
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan.
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
4
|
Duan W, Liu Y. Targeted and synergistic therapy for hepatocellular carcinoma: monosaccharide modified lipid nanoparticles for the co-delivery of doxorubicin and sorafenib. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2149-2161. [PMID: 30034219 PMCID: PMC6047861 DOI: 10.2147/dddt.s166402] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose Targeted hepatocellular carcinoma therapy was carried out to improve the efficacy of liver cancer treatment. The purpose of this study was to design an N-acetylgalactosamine (NAcGal) modified and pH sensitive doxorubicin (DOX) prodrug (NAcGal-DOX) for the construction of lipid nanoparticles (LNPs). Methods NAcGal-DOX and sorafenib (SOR) co-loaded LNPs were designed and the synergistic effects were evaluated on human hepatic carcinoma (HepG2) cells in vitro and anti-hepatic carcinoma mice model in vivo. Results Cellular uptake efficiency of NAcGal modified LNPs was significantly higher than unmodified LNPs. NAcGal modified LNPs showed the most significant inhibition effect among all the samples tested. The results revealed that the LNPs system achieved significant synergistic effects, best tumor inhibition ability and the lowest systemic toxicity. Conclusion These results proved that the NAcGal conjugated and pH sensitive co-delivery nano-system could be a promising strategy for treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wendu Duan
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei Province 071000, People's Republic of China,
| | - Yan Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei Province 071000, People's Republic of China,
| |
Collapse
|
5
|
Martin del Campo SE, Levine KM, Mundy-Bosse BL, Grignol VP, Fairchild ET, Campbell AR, Trikha P, Mace TA, Paul BK, Jaime-Ramirez AC, Markowitz J, Kondadasula SV, Guenterberg KD, McClory S, Karpa VI, Pan X, Olencki TE, Monk JP, Mortazavi A, Tridandapani S, Lesinski GB, Byrd JC, Caligiuri MA, Shah MH, Carson WE. The Raf Kinase Inhibitor Sorafenib Inhibits JAK-STAT Signal Transduction in Human Immune Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:1995-2005. [PMID: 26238487 DOI: 10.4049/jimmunol.1400084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/07/2015] [Indexed: 01/07/2023]
Abstract
Sorafenib is an oral multikinase inhibitor that was originally developed as a Raf kinase inhibitor. We hypothesized that sorafenib would also have inhibitory effects on cytokine signaling pathways in immune cells. PBMCs from normal donors were treated with varying concentrations of sorafenib and stimulated with IFN-α or IL-2. Phosphorylation of STAT1 and STAT5 was measured by flow cytometry and confirmed by immunoblot analysis. Changes in IFN-α- and IL-2-stimulated gene expression were measured by quantitative PCR, and changes in cytokine production were evaluated by ELISA. Cryopreserved PBMCs were obtained from cancer patients before and after receiving 400 mg sorafenib twice daily. Patient PBMCs were thawed, stimulated with IL-2 or IFN-α, and evaluated for phosphorylation of STAT1 and STAT5. Pretreatment of PBMCs with 10 μM sorafenib decreased STAT1 and STAT5 phosphorylation after treatment with IFN-α or IL-2. This inhibitory effect was observed in PBMCs from healthy donors over a range of concentrations of sorafenib (5-20 μM), IL-2 (2-24 nM), and IFN-α (10(1)-10(6) U/ml). This effect was observed in immune cell subsets, including T cells, B cells, NK cells, regulatory T cells, and myeloid-derived suppressor cells. Pretreatment with sorafenib also inhibited PBMC expression of IFN-α- and IL-2-regulated genes and inhibited NK cell production of IFN-γ, RANTES, MIP1-α, and MIG in response to IFN-α stimulation. PBMCs from patients receiving sorafenib therapy showed decreased responsiveness to IL-2 and IFN-α treatment. Sorafenib is a Raf kinase inhibitor that could have off-target effects on cytokine-induced signal transduction in immune effector cells.
Collapse
Affiliation(s)
| | - Kala M Levine
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | | | - Valerie P Grignol
- Department of Surgery, The Ohio State University, Columbus, OH 43210; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Ene T Fairchild
- Department of General Pediatrics, Nationwide Children's Hospital, Columbus, OH 43205
| | - Amanda R Campbell
- Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Prashant Trikha
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Thomas A Mace
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Bonnie K Paul
- Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Joseph Markowitz
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | | | | | - Susan McClory
- Department of Internal Medicine, Barnes-Jewish Hospital, St. Louis, MO 63110
| | | | - Xueliang Pan
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210
| | - Thomas E Olencki
- Medical Oncology, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - J Paul Monk
- Medical Oncology, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Amir Mortazavi
- Medical Oncology, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Susheela Tridandapani
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Department of Pulmonary, Allergy, Critical Care and Sleep, The Ohio State University, Columbus, OH 43210
| | - Gregory B Lesinski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Medical Oncology, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - John C Byrd
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; and
| | - Michael A Caligiuri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Department of Internal Medicine, The Ohio State University, Columbus, OH 43210; and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Manisha H Shah
- Medical Oncology, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| | - William E Carson
- Department of Surgery, The Ohio State University, Columbus, OH 43210; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210
| |
Collapse
|
6
|
Cilurzo F, Staltari O, Patanè M, Ammendola M, Garaffo C, Di Paola ED. Nexavar(®)-related adverse reactions: Calabrian (Italy) experience for sorafenib exposition in 2012. J Pharmacol Pharmacother 2013; 4:S86-9. [PMID: 24347990 PMCID: PMC3853677 DOI: 10.4103/0976-500x.120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major global health problem and Calabria in the south of Italy is not an exception. Sorafenib is the first and only Food and Drug Administration approved drug for the treatment of advanced HCC and it is currently under intensive monitoring by the Health Authorities in Italy Agenzia Italiana del Farmaco. This general report has been developed with the aim of briefly reviewing the data found in the reports of adverse reactions (ADRs) collected in Calabria in 2012 for sorafenib treated patients. Extrapolated data have highlighted some differences between the adverse drug reactions reported in patients younger or older than 70 years and other important differences with the current approved leaflet. Several limitations might be present in data analysis form spontaneous reporting, however, the relevance of reporting ADRs (dermatitis, asthenia, vomiting, etc.) for the early identification of drug related signals has to be underlined.
Collapse
Affiliation(s)
- Felisa Cilurzo
- Department of Science of Health, School of Medicine, University of Catanzaro, Italy ; Department of Science of Health, Pharmacovigilance's Centre Calabria Region, University Hospital Mater Domini, Italy
| | - Orietta Staltari
- Department of Science of Health, School of Medicine, University of Catanzaro, Italy ; Department of Science of Health, Pharmacovigilance's Centre Calabria Region, University Hospital Mater Domini, Italy
| | - Marinella Patanè
- Department of Science of Health, School of Medicine, University of Catanzaro, Italy ; Department of Science of Health, Pharmacovigilance's Centre Calabria Region, University Hospital Mater Domini, Italy
| | - Michele Ammendola
- Department of Medical and Surgery Science, University of Catanzaro, Magna Graecia, Medical School, Catanzaro, Italy
| | | | - Eugenio Donato Di Paola
- Department of Science of Health, School of Medicine, University of Catanzaro, Italy ; Department of Science of Health, Pharmacovigilance's Centre Calabria Region, University Hospital Mater Domini, Italy
| |
Collapse
|
7
|
Gutierrez JA, Gish RG. Efficacy of combination treatment modalities for intermediate and advanced hepatocellular carcinoma: intra-arterial therapies, sorafenib and novel small molecules. Transl Cancer Res 2013; 2:460-471. [PMID: 26504748 PMCID: PMC4618672 DOI: 10.3978/j.issn.2218-676x.2013.10.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a growing epidemic with a high mortality rate and clear need for improved therapies. In patients with Barcelona-Clinic Liver Cancer (BCLC) B and C, treatment with transarterial chemoembolization (TACE) has been the gold standard in therapy as it delays progression; however, recurrence proves common. In the US, transarterial bead embolization (TABE) has uniformly replaced TACE. With this limited armamentarium, there is need for a shift to novel strategies combining different modalities to further improve patient outcomes. Historically, HCC drug discovery concentrated on common features of HCC including its highly vascular nature and dependence on growth factors (GFs). The multikinase inhibitor sorafenib acts on angiogenesis via modulation of vascular endothelial GF expression and was the first step toward systemic targeted therapy against HCC. Sorafenib has provided clinicians with a tool to modestly improve survival by 2-6 months or longer. Despite the progress in survival provided by TACE, TABE and sorafenib independently, rigorous combination clinical trials do not consistently show significant improvement over TACE/TABE monotherapy. Other novel small molecules targeting angiogenesis such as brivanib, linifanib and everolimus have failed or are in development. Anti-HCV treatment became more feasible with the novel direct-acting antiviral agents; with the much higher and more durable treatment responses that they provide, the risk of HCC progression may be reduced. The most effective strategies in developing combination therapies are hampered by the complexities of FDA testing along with intellectual property and economic issues. To achieve significant progress, more basic science studies are necessary to help understand which novel molecules demonstrate the greatest synergy. Individual patient genomic profiling and biomarkers may help guide therapy and improve the clinician's ability to tailor treatment and to know when it could be appropriate to combine systemic therapy with transarterial embolization. Most importantly, partnerships that facilitate testing of novel therapies in intelligently designed trials based on preclinical pharmacokinetics must be established.
Collapse
Affiliation(s)
- Julio A Gutierrez
- Antiviral Research Center, Department of Infectious Disease, University of California, San Diego, La Jolla, California, USA ; Division of Hepatology, University of Miami School of Medicine, Miami, USA
| | - Robert G Gish
- Robert G. Gish Consultants, LLC; St. Joseph's Hospital and Medical Center, Phoenix, Arizona; University of Nevada, Las Vegas, Nevada, USA
| |
Collapse
|