1
|
Alves LP, Oliveira KDS, dos Santos ACG, de Melo DF, Moreira LMCDC, Oshiro Junior JA, da Silva DTC, Cavalcanti ALDM, Damasceno BPGDL. Cellulose Acetate Microparticles Synthesized from Agave sisalana Perrine for Controlled Release of Simvastatin. Polymers (Basel) 2024; 16:1898. [PMID: 39000753 PMCID: PMC11243862 DOI: 10.3390/polym16131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Simvastatin (SIM) is widely prescribed to treat hyperlipidemia, despite its limitations, such as a short half-life and low oral bioavailability. To overcome these drawbacks, the development of a controlled-release formulation is desirable. This study aims to develop a microparticulate system based on cellulose acetate (ACT) obtained from Agave sisalana Perrine to promote a controlled SIM release. SIM-loaded microparticles (SMP) were prepared using the solvent emulsification-evaporation method. Several parameters were evaluated, including particle size, surface charge, morphology, encapsulation efficiency, thermochemical characteristics, crystallinity, and in vitro release profile. ACT exhibited favorable flow properties after acetylation, with a degree of substitution values superior to 2.5, as confirmed by both the chemical route and H-NMR, indicating the formation of cellulose triacetate. The obtained SMP were spherical with an average size ranging from 1842 to 1857 nm, a zeta potential of -4.45 mV, and a high SIM incorporation efficiency (98%). Thermal and XRD analyses revealed that SIM was homogeneously dispersed into the polymeric matrix in its amorphous state. In vitro studies using dialysis bags revealed that the controlled SIM release from microparticles was higher under simulated intestinal conditions and followed the Higuchi kinetic model. Our results suggest that ACT-based microparticles are a promising system for SIM delivery, which can improve its bioavailability, and result in better patient compliance.
Collapse
Affiliation(s)
- Larissa Pereira Alves
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Kevin da Silva Oliveira
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Ana Cláudia Gonçalves dos Santos
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Demis Ferreira de Melo
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Lívia Maria Coelho de Carvalho Moreira
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - João Augusto Oshiro Junior
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
| | - Dayanne Tomaz Casimiro da Silva
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Airlla Laana de Medeiros Cavalcanti
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Graduate Program of Pharmaceutical Sciences, Paraíba State University, Campina Grande 58429-600, PB, Brazil; (L.P.A.); (K.d.S.O.); (D.F.d.M.); (L.M.C.d.C.M.); (J.A.O.J.); (D.T.C.d.S.); (B.P.G.d.L.D.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Paraíba State University, Campina Grande 58429-600, PB, Brazil;
| |
Collapse
|
2
|
Yan ZH, Dou RR, Wei F, Yang JH, Cui S, Sun MJ, Kang CY, Zhao CQ. Effects of eugenol on physicochemical properties of sturgeon skin collagen-chitosan composite membrane. J Food Sci 2024; 89:4032-4046. [PMID: 38778552 DOI: 10.1111/1750-3841.17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
In this study, a series of collagen-chitosan-eugenol (CO-CS-Eu) flow-casting composite films were prepared using collagen from sturgeon skin, chitosan, and eugenol. The physicochemical properties, mechanical properties, microstructure, as well as antioxidant and antimicrobial activities of the composite membranes were investigated by various characterization techniques. The findings revealed that the inclusion of eugenol augmented the thickness of the film, darkened its color, reduced the transparency, and enhanced the ultraviolet light-blocking capabilities, with the physicochemical properties of the CO-CS-0.25%Eu film being notably favorable. Eugenol generates increasingly intricate matrices that disperse within the system, thereby modifying the optical properties of the material. Furthermore, the tensile strength of the film decreased from 70.97 to 20.32 MPa, indicating that eugenol enhances the fluidity and ductility of the film. Added eugenol also exhibited structural impact by loosening the film cross-section and decreasing its density. The Fourier transform infrared spectroscopy results revealed the occurrence of several intermolecular interactions among collagen, chitosan, and eugenol. Moreover, the incorporation of eugenol bolstered the antioxidant and antimicrobial capabilities of the composite film. This is primarily attributed to the abundant phenolic/hydroxyl groups present in eugenol, which can react with free radicals by forming phenoxy groups and neutralizing hydroxyl groups. Consequently, inclusion of eugenol substantially enhances the freshness retention performance of the composite film. PRACTICAL APPLICATION: ● The CO-CS-Eu film utilizes collagen from sturgeon skin, improving the use of sturgeon resources.● Different concentrations of eugenol altered its synergistic effect with chitosan.● The CO-CS-Eu film is composed of natural products with safe and edible properties.
Collapse
Affiliation(s)
- Zi-Heng Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Rong-Rong Dou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Fang Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Jia-Hua Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Shan Cui
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Mei-Jun Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Chun-Yu Kang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Chun-Qing Zhao
- Department of Continuing Education, Baoding Open University, Baoding, P. R. China
| |
Collapse
|
3
|
Goudar N, Hiremani VD, D’souza OJ, Pinto JP, Masti SP, Chougale RB. Design and fabrication of polysaccharide based excellent chemical resistant and UV barrier ternary blend films for green packaging applications. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:481-490. [PMID: 38327862 PMCID: PMC10844186 DOI: 10.1007/s13197-023-05856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 02/09/2024]
Abstract
The development of green materials for active packaging applications is a research hotspot due to setbacks of petrochemical derived plastics. Thus, the present study aims to develop ternary blend films by doping different wt% of Tragacanth gum (TG) to Poly(vinyl alcohol)/Chitosan (PC) blend using solvent evaporation technique. Further, their various physicochemical properties were evaluated systematically. Differential scanning calorimetry studies revealed excellent compatibility and thermal stability of PC blend was significantly reinforced with 15 wt% of TG. UV-visible spectroscopy study demonstrated the excellent shielding efficacy of UV radiation by ternary blend films. Moreover, overall migration results confirmed the limited release of film constituents into food simulants and swelling ratio analysis indicated the good swelling resistance at higher wt% of TG. The ternary films exhibited tremendous chemical resistance against extreme acidic and basic environments and these green biofilms could be considered for active packaging applications. Graphical abstract
Collapse
Affiliation(s)
- Naganagouda Goudar
- Department of Studies in Chemistry, Karnatak University, Dharwad, 580 003 India
| | - Vishram D. Hiremani
- Department of Chemistry, Tungal School of Basic and Applied Sciences, Jamkhandi, 587301 India
| | | | - Jennifer P. Pinto
- Department of Studies in Chemistry, Karnatak University, Dharwad, 580 003 India
| | - Saraswati P. Masti
- Department of Chemistry, Karnatak Science College, Dharwad, 580 001 India
| | | |
Collapse
|
4
|
Jiang Z, Li J, Huang G, Yan L, Ma J. Efficient removal of ethidium bromide from aqueous solutions using chromatin-loaded chitosan polyvinyl alcohol composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3276-3295. [PMID: 38085489 DOI: 10.1007/s11356-023-31364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
In this work, a novel chromatin-loaded chitosan polyvinyl alcohol composite was developed as a simple, efficient and environmentally friendly adsorbent for the efficient removal of ethidium bromide (EtBr). SEM images showed that the composites were characterized by dense porous and uniformly distributed morphology. The BET analysis showed the presence of mesopores and macropores in the composites. FTIR and XRD results showed that the chromatin was uniformly dispersed in the chitosan-polyvinyl alcohol carrier through hydrogen bonding. The fluorescence microscopy images showed the change of fluorescence effect before and after the adsorption of the material, which indicated that the chromatin was uniformly distributed in the composites and had a good adsorption effect. The optimal experimental conditions were T = 30℃, t = 120 min, pH = 7.4, m = 0.2 g when the composite with only 5% chromatin content had the ability to adsorb EtBr efficiently (minimum concentration 2 mg·L-1: adsorption rate 99%; maximum concentration 20 mg·L-1: adsorption rate 90%).The adsorption kinetics and thermodynamics showed that the EtBr adsorption kinetics of the composite conformed to the pseudo-second-order kinetic model (0.995 < R2 < 0.999) and the Freundlich isothermal model, and was a spontaneous process (ΔH < 0). This study on the immobilization of chromatin will provide a new way and reference for the application of chromatin in the treatment of EtBr pollutants.
Collapse
Affiliation(s)
- Zhikang Jiang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| | - Junsheng Li
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China.
| | - Guoxia Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| | - Liujuan Yan
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| | - Ji Ma
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou, 545006, Guangxi, China
| |
Collapse
|
5
|
Kurabetta LK, Masti SP, Eelager MP, Gunaki MN, Madihalli S, Hunashyal AA, Chougale RB, Kumar S K P, Kadapure AJ. Physicochemical and antioxidant properties of tannic acid crosslinked cationic starch/chitosan based active films for ladyfinger packaging application. Int J Biol Macromol 2023; 253:127552. [PMID: 37865373 DOI: 10.1016/j.ijbiomac.2023.127552] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
In the present study, cationic starch (CS)/chitosan (CH) incorporated with tannic acid (TA)(CSCT) eco-friendly films were prepared by employing an inexpensive solvent casting technique. Influence of TA on the physicochemical and antimicrobial properties of CS/CH polymer matrix were studied. The FTIR findings and homogeneous, dense SEM micrographs confirms the effective interaction of TA with CS/CH polymer matrix. CSCT-3 active film displayed tensile strength of 26.99±1.91 MPa, which is more substantial than commercially available polyethylene (PE) (12-16 MPa) films. The active films exhibited excellent barrier properties against moisture and water, supported by increased water contact angle values (86.97±0.29°). Overall migration rate of active films was found to be below the permitted limit of 10mg/dm2. The active films showed around 56% of degradation in soil within 15 days. Besides, the active films showed concurring impact against food borne pathogens like E. coli, S. aureus and C. albicans. The CSCT-3 active film presented 90.83% of antioxidant capacity, demonstrating the effective prevention of food oxidation related deterioration. Ladyfinger packaging was inspected to examine the ability of active films as packaging material resulted in effectively resisting deterioration and extending shelf life in comparison with traditional PE packaging.
Collapse
Affiliation(s)
| | - Saraswati P Masti
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, India.
| | | | | | - Suhasini Madihalli
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, India
| | | | - Ravindra B Chougale
- P. G. Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, India
| | - Praveen Kumar S K
- Department of Biochemistry, Karnatak University, Dharwad 580 003, India
| | | |
Collapse
|
6
|
Basella alba stem extract integrated poly (vinyl alcohol)/chitosan composite films: A promising bio-material for wound healing. Int J Biol Macromol 2023; 225:673-686. [PMID: 36403767 DOI: 10.1016/j.ijbiomac.2022.11.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Natural extract-based bio-composite material for wound healing is gaining much attention due to risk of infection and high cost of commercial wound dressing film causes serious problem on the human well-being. Herein, the study outlines the preparation of Poly (vinyl alcohol)/Chitosan/Basella alba stem extract (BAE) based bio-composite film through solvent casting technique and well characterized for wound healing application. Incorporation of BAE into Poly (vinyl alcohol)/Chitosan matrix has shown existence of secondary interactions confirmed by FT-IR analysis. Good morphology, thermal stability and significant improvement in flexibility (∼63.38 %) of the films were confirmed by SEM, TGA and Mechanical test results, respectively. Hydrophilic property (∼9.04 %), water vapor transmission rate (∼70.07 %), swelling ability (∼14.7 %) and degradation rate (∼14.04 %) were enhanced with increase in BAE content. In-vitro studies have shown good antibacterial activity against foremost infectious bacterial strains S. aureus and E. coli. Additionally, BAE integrated Poly (vinyl alcohol)/Chitosan film has amplified anti-inflammatory (∼79.38 %) property, hemocompatibility and excellent biocompatibility (94.9 %) was displayed by cytotoxicity results. Moreover, in-vitro scratch assay and cell adhesion test results illustrated prominent wound healing (96.5 %) and adhesion. Overall results of the present work proclaim that developed bio-composite film could be utilized as a biomaterial in wound care applications.
Collapse
|
7
|
Fabrication of biodegradable blend plastic from konjac glucomannan/zein/ PVA and understanding its multi-scale structure and physicochemical properties. Int J Biol Macromol 2023; 225:172-184. [PMID: 36309233 DOI: 10.1016/j.ijbiomac.2022.10.199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
Abstract
Exploration and synthesis of degradable plastics can alleviate and avoid environmental pollution induced by petroleum-based plastics. In this study, a konjac glucomannan (KGM)/zein/PVA ternary blend plastic was successfully prepared by casting. The results showed that, despite the presence of particle aggregation from incompatible components in blend plastic, the addition of KGM and zein improved its compatibility which is consistent with the formation of continuous dark regions and the reduction of roughness average (Ra) results in the AFM characterization. Also, XRD and FT-IR results indicated that the addition of KGM and zein disrupted the molecular and crystalline structure of PVA, induced stretching vibration of alcohol and hydroxyl groups, and crystallinity reduction. In addition, KGM deacetylation (d-KGM) reduced the intramolecular hydroxyl groups, reduced the water absorption and water vapor transmission rate of the blend plastics, and increased the crystallization temperature (Tc) and melting temperature (Tm). Furthermore, the blended plastics exhibited the best tensile strength (TS), elongation at break (E), and elastic modulus (EM) when the proportion of KGM to zein was 9:1. Notably, the blended plastic with KGM and zein added displayed more pores and cracks after soil burial, implying that the lack of degradability of pure PVA plastic was improved.
Collapse
|
8
|
Huang B, Wu C, Hu Y, Rao L, Yang M, Zhao M, Chen H, Li Y. Osmanthus-Loaded PVP/PVA Hydrogel Inhibits the Proliferation and Migration of Oral Squamous Cell Carcinoma Cells CAL-27. Polymers (Basel) 2022; 14:polym14245399. [PMID: 36559766 PMCID: PMC9784822 DOI: 10.3390/polym14245399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Conventional medical agents for oral squamous cell carcinoma (OSCC) with some adverse effects no longer meet the needs of the public. In this study, the prognosis-related hub genes of osmanthus-targeted therapy for OSCC were predicted and analyzed by network pharmacology and molecular docking. Osmanthus was extracted using the ethanol reflux method and osmanthus-loaded PVP/PVA (OF/PVP/PVA) hydrogel was prepared by electron beam radiation. The molecular structure, crystal structure and microscopic morphology of hydrogels were observed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. OSCC cells CAL-27 were cultured with OF/PVP/PVA hydrogel at different concentrations of extract to discover cell proliferation by MTT assay. The scratching test and JC-1 staining were used to observe the migration and mitochondrial membrane potential. Through experimental exploration, we found that a total of six prognosis-related targets were predicted, which are PYGL, AURKA, SQLE, etc., and osmanthus extract had good binding activity to AURKA. In vitro, except for proliferation inhibition, OF/PVP/PVA hydrogel prevented cell migration and changed the mitochondrial membrane potential of CAL-27 cells at a concentration equal to or greater than 50 μg/mL (p < 0.05). The addition of autophagy inhibitor chloroquine and 3-methyladenine weakened the migration inhibition of hydrogel (p < 0.05).
Collapse
Affiliation(s)
- Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Chizhou Wu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuzhu Hu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Lu Rao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| | - Mingzhe Yang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengyao Zhao
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (H.C.); (Y.L.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (H.C.); (Y.L.)
| |
Collapse
|
9
|
Borah B, Dhar Dwivedi K, Chowhan LR. 4‐Hydroxycoumarin: A Versatile Substrate for Transition‐metal‐free Multicomponent Synthesis of Bioactive Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - Kartikey Dhar Dwivedi
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - L. Raju Chowhan
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| |
Collapse
|
10
|
Gasti T, Hiremani VD, Sataraddi SP, Vanjeri VN, Goudar N, Masti SP, Chougale RB, Malabadi RB. UV screening, swelling and in-vitro cytotoxicity study of novel chitosan/poly (1-vinylpyrrolidone-co-vinyl acetate) blend films. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cdc.2021.100684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Vecchi CF, Cesar GB, Souza PRD, Caetano W, Bruschi ML. Mucoadhesive polymeric films comprising polyvinyl alcohol, polyvinylpyrrolidone, and poloxamer 407 for pharmaceutical applications. Pharm Dev Technol 2020; 26:138-149. [PMID: 33183099 DOI: 10.1080/10837450.2020.1849283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) have been extensively studied for their use in film formation. Poloxamer 407 (P407) is a block copolymer that has thermo-responsive and surfactant properties when used in pharmaceutical systems. These polymers are already used in liquid or semi-solid systems for ocular and parenteral drug delivery. However, the effect of P407 presence in solid pharmaceutical films composed of different PVA:PVP ratios have not been investigated yet. Therefore, this work investigated the influence of P407 added to the binary polymer mixture of PVA and PVP for the development of solid films aiming for pharmaceutical applications. The rheological properties of dispersions were investigated, and films were prepared by solvent casting method using different P407:PVA:PVP ratios according to a factorial design 23 (plus center point). The mechanical and in vitro mucoadhesive properties of films, as well as the disintegration time were investigated. Systems presented high mechanical resistance, mucoadhesion, and disintegration timeless than 180 s. It was found that higher concentrations of PVA increase mechanical properties and decrease disintegration time, and higher proportions of PVP and P407 increased mucoadhesion. The films could be classified as fast disintegrating films and represent a promising alternative for modifying drug delivery and pharmaceutical applications.
Collapse
Affiliation(s)
- Camila Felix Vecchi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | | | | | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Maringa, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| |
Collapse
|
12
|
Aycan D, Yayla NA, Aydin YA. Chitosan polyvinyl alcohol blend films for ibuprofen encapsulation: Fabrication, characterization and kinetics. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Mechanical, optical and antioxidant properties of 7-Hydroxy-4-methyl coumarin doped polyvinyl alcohol/oxidized maize starch blend films. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03399-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
14
|
Effect of plasticizer and surfactant on the properties of poly(vinyl alcohol)/chitosan films. Int J Biol Macromol 2020; 164:2100-2107. [PMID: 32758608 DOI: 10.1016/j.ijbiomac.2020.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
The objective of this study was to develop eco-friendly films based on poly(vinyl alcohol) (PVA) and chitosan (CTS) with the addition of plasticizer (glycerol or sorbitol) and surfactant (cocamidopropyl betaine). The properties of the obtained polymeric films were determined by contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), mechanical tests, and moisture content analysis. The results indicated that four-component blends had high surface hydrophilicity and surface roughness due to the presence of the surfactant. Glycerol incorporation into PVA/CTS blends resulted in higher flexibility and greater water absorption capacity of the three- and four-component polymeric blends compared with these blends with sorbitol. By contrast, the addition of the surfactant to the materials is essential for their application in personal hygiene products as disposable wipes.
Collapse
|
15
|
Cholant CM, Rodrigues MP, Peres LL, Balboni RDC, Krüger LU, Placido DN, Flores WH, Gündel A, Pawlicka A, Avellaneda CO. Study of the conductivity of solid polymeric electrolyte based on PVA/GA blend with addition of acetic acid. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04605-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|