1
|
Senarat S, Chumee S, Kaneko G, Wandee S, Kenthao A, Kongtueng P, Uribe MC, Nganvongpanit K, Iida A, Sornying P. Histological characteristics of oocyte differentiation in the captive longnose seahorse Hippocampus trimaculatus (Leach, 1814). JOURNAL OF FISH BIOLOGY 2024; 105:858-870. [PMID: 38894610 DOI: 10.1111/jfb.15768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/21/2024]
Abstract
This study aimed to explore the reproductive histology and oocyte differentiation of the longnose seahorse Hippocampus trimaculatus (Leach, 1814) in captivity. Five mature healthy females were histologically observed. The reproductive systems of the five specimens exhibited similar morphological characteristics with a pair of saccular creamy white ovaries merging caudally into a single gonoduct. There were two germinal ridges lined with a layer of germinal epithelium (GE). The ovarian maturation of this species was considered asynchronous. The oogenic cells were classified into oogonia and oocytes at several developmental phases based on their size and characteristics. Oogonia were identified among the connective tissue in the middle area of the GE. The stromal compartment contained oocytes that were classified into four distinct phases: the primary growth (PG) phase having two steps (perinucleolar and oil droplets-cortical alveolar steps) and the secondary growth (SG) phase with three oocyte types, including early SG oocytes, late SG oocytes, and fully grown oocytes. The atretic oocytes (AO) were observed in all stages of oogenesis. Postovulatory follicles were also seen among the ovarian connective tissue. The occurrence of postovulatory follicles suggested that the specimens analysed in this study were in the spawning period. This research provides new insights into the identification of the reproductive cycles and morphological characteristics of the ovary of H. trimaculatus.
Collapse
Affiliation(s)
- Sinlapachai Senarat
- Division of Biological Science, Faculty of Science, Prince of Songkhla University, Songkhla, Thailand
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang, Thailand
| | - Supawadee Chumee
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang, Thailand
| | - Gen Kaneko
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, Texas, USA
| | - Satiya Wandee
- Ranong Coastal Aquaculture Research and Development Center, Ranong, Thailand
| | - Anan Kenthao
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Piyamat Kongtueng
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mari Carmen Uribe
- Laboratorio de Biologıa de la Reproduccion Animal, Departamento de Biologıa Comparada, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Ciudad de México, Mexico
| | - Korakot Nganvongpanit
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Atsuo Iida
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Peerapon Sornying
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
2
|
Yahiro I, Barnuevo KDE, Sato O, Mohapatra S, Toyoda A, Itoh T, Ohno K, Matsuyama M, Chakraborty T, Ohta K. Modeling the SDF-1/CXCR4 protein using advanced artificial intelligence and antagonist screening for Japanese anchovy. Front Physiol 2024; 15:1349119. [PMID: 38370015 PMCID: PMC10869568 DOI: 10.3389/fphys.2024.1349119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
SDF-1/CXCR4 chemokine signaling are indispensable for cell migration, especially the Primordial Germ Cell (PGC) migration towards the gonadal ridge during early development. We earlier found that this signaling is largely conserved in the Japanese anchovy (Engraulis japonicus, EJ), and a mere treatment of CXCR4 antagonist, AMD3100, leads to germ cell depletion and thereafter gonad sterilization. However, the effect of AMD3100 was limited. So, in this research, we scouted for CXCR4 antagonist with higher potency by employing advanced artificial intelligence deep learning-based computer simulations. Three potential candidates, AMD3465, WZ811, and LY2510924, were selected and in vivo validation was conducted using Japanese anchovy embryos. We found that seven transmembrane motif of EJ CXCR4a and EJ CXCR4b were extremely similar with human homolog while the CXCR4 chemokine receptor N terminal (PF12109, essential for SDF-1 binding) was missing in EJ CXCR4b. 3D protein analysis and cavity search predicted the cavity in EJ CXCR4a to be five times larger (6,307 ų) than that in EJ CXCR4b (1,241 ų). Docking analysis demonstrated lower binding energy of AMD3100 and AMD3465 to EJ CXCR4a (Vina score -9.6) and EJ CXCR4b (Vina score -8.8), respectively. Furthermore, we observed significant PGC mismigration in microinjected AMD3465 treated groups at 10, 100 and 1 × 105 nM concentration in 48 h post fertilized embryos. The other three antagonists showed various degrees of PGC dispersion, but no significant effect compared to their solvent control at tested concentrations was observed. Cumulatively, our results suggests that AMD3645 might be a better candidate for abnormal PGC migration in Japanese anchovy and warrants further investigation.
Collapse
Affiliation(s)
- Issei Yahiro
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | - Oga Sato
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Sipra Mohapatra
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Aqua-Bioresource Innovation Center, Kyushu University, Saga, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | - Takehiko Itoh
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Kaoru Ohno
- National Institute for Basic Biology (NIBB), Aichi, Japan
| | | | - Tapas Chakraborty
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Aqua-Bioresource Innovation Center, Kyushu University, Saga, Japan
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Aqua-Bioresource Innovation Center, Kyushu University, Saga, Japan
| |
Collapse
|
3
|
Zhang X, Xian R, Fu Y, Dai Y, Peng R. A Novel, Efficient Method to Isolate Chicken Primordial Germ Cells from Embryonic Blood Using Cell Culture Inserts. Animals (Basel) 2023; 13:3805. [PMID: 38136842 PMCID: PMC10740788 DOI: 10.3390/ani13243805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Primordial germ cells (PGCs) play a crucial role in preserving poultry genetic resources and conducting transgenic research. A system for the rapid isolation of PGCs from single chicken embryonic blood was established in this paper. We found that PGCs can migrate to the lower layer of chicken embryonic fibroblasts (CEFs) through pores smaller than their diameter, while blood cells cannot, when co-cultured with CEFs of passages two to three. Based on the characteristics of PGCs, we developed a new PGC isolation method (cell culture insert/CEF adhesion method) that utilizes a 3 μm cell culture insert and CEFs of passages two to three. Using this method, approximately 700 PGCs can be isolated from the blood of a single chicken embryo at Hamburger and Hamilton (H&H) stage 17 of development. The separation rate achieved was 87.5%, with a separation purity of 95%. The separation rate of this method was 41.4% higher than the common Percoll density gradient centrifugation method and 33.6% higher than lysis with ACK buffer. PGCs isolated from embryonic blood could proliferate 37-fold within 2 weeks when cultured in a feeder-free culture system. They also continued to express the SSEA-1 and DAZL proteins and retained the ability to migrate in vivo. Overall, PGCs separated using cell culture inserts/CEF adhesion method retain their stem cell characteristics and migration ability. PGCs also exhibit good proliferation efficiency, making them suitable for subsequent transgenic experiments or genetic resource preservation.
Collapse
Affiliation(s)
| | | | | | | | - Rui Peng
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Heikes KL, Game M, Smith FW, Goldstein B. The embryonic origin of primordial germ cells in the tardigrade Hypsibius exemplaris. Dev Biol 2023; 497:42-58. [PMID: 36893882 DOI: 10.1016/j.ydbio.2023.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Primordial germ cells (PGCs) give rise to gametes - cells necessary for the propagation and fertility of diverse organisms. Current understanding of PGC development is limited to the small number of organisms whose PGCs have been identified and studied. Expanding the field to include little-studied taxa and emerging model organisms is important to understand the full breadth of the evolution of PGC development. In the phylum Tardigrada, no early cell lineages have been identified to date using molecular markers. This includes the PGC lineage. Here, we describe PGC development in the model tardigrade Hypsibius exemplaris. The four earliest-internalizing cells (EICs) exhibit PGC-like behavior and nuclear morphology. The location of the EICs is enriched for mRNAs of conserved PGC markers wiwi1 (water bear piwi 1) and vasa. At early stages, both wiwi1 and vasa mRNAs are detectable uniformly in embryos, which suggests that these mRNAs do not serve as localized determinants for PGC specification. Only later are wiwi1 and vasa enriched in the EICs. Finally, we traced the cells that give rise to the four PGCs. Our results reveal the embryonic origin of the PGCs of H. exemplaris and provide the first molecular characterization of an early cell lineage in the tardigrade phylum. We anticipate that these observations will serve as a basis for characterizing the mechanisms of PGC development in this animal.
Collapse
Affiliation(s)
- Kira L Heikes
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Frank W Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Heikes KL, Game M, Smith FW, Goldstein B. The Embryonic Origin of Primordial Germ Cells in the Tardigrade Hypsibius exemplaris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522500. [PMID: 36824831 PMCID: PMC9948961 DOI: 10.1101/2023.01.02.522500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Primordial germ cells (PGCs) give rise to gametes â€" cells necessary for the propagation and fertility of diverse organisms. Current understanding of PGC development is limited to the small number of organisms whose PGCs have been identified and studied. Expanding the field to include little-studied taxa and emerging model organisms is important to understand the full breadth of the evolution of PGC development. In the phylum Tardigrada, no early cell lineages have been identified to date using molecular markers. This includes the PGC lineage. Here, we describe PGC development in the model tardigrade Hypsibius exemplaris . The four earliest-internalizing cells (EICs) exhibit PGC-like behavior and nuclear morphology. The location of the EICs is enriched for mRNAs of conserved PGC markers wiwi1 (water bear piwi 1) and vasa . At early stages, both wiwi1 and vasa mRNAs are detectable uniformly in embryos, which suggests that these mRNAs do not serve as localized determinants for PGC specification. Only later are wiwi1 and vasa enriched in the EICs. Finally, we traced the cells that give rise to the four PGCs. Our results reveal the embryonic origin of the PGCs of H. exemplaris and provide the first molecular characterization of an early cell lineage in the tardigrade phylum. We anticipate that these observations will serve as a basis for characterizing the mechanisms of PGC development in this animal.
Collapse
Affiliation(s)
- Kira L. Heikes
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Frank W. Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Fetal germ cell development in humans, a link with infertility. Semin Cell Dev Biol 2022; 131:58-65. [PMID: 35431137 DOI: 10.1016/j.semcdb.2022.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Gametes are cells that have the unique ability to give rise to new individuals as well as transmit (epi)genetic information across generations. Generation of functionally competent gametes, oocytes and sperm cells, depends to some extent on several fundamental processes that occur during fetal development. Direct studies on human fetal germ cells remain hindered by ethical considerations and inaccessibility to human fetal material. Therefore, the majority of our current knowledge of germ cell development still comes from an invaluable body of research performed using different mammalian species. During the last decade, our understanding of human fetal germ cells has increased due to the successful use of human pluripotent stem cells to model aspects of human early gametogenesis and advancements on single-cell omics. Together, this has contributed to determine the cell types and associated molecular signatures in the developing human gonads. In this review, we will put in perspective the knowledge obtained from several mammalian models (mouse, monkey, pig). Moreover, we will discuss the main events during human fetal (female) early gametogenesis and how the dysregulation of this highly complex and lengthy process can link to infertility later in life.
Collapse
|
7
|
Schick J, Raz E. Blebs—Formation, Regulation, Positioning, and Role in Amoeboid Cell Migration. Front Cell Dev Biol 2022; 10:926394. [PMID: 35912094 PMCID: PMC9337749 DOI: 10.3389/fcell.2022.926394] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
In the context of development, tissue homeostasis, immune surveillance, and pathological conditions such as cancer metastasis and inflammation, migrating amoeboid cells commonly form protrusions called blebs. For these spherical protrusions to inflate, the force for pushing the membrane forward depends on actomyosin contraction rather than active actin assembly. Accordingly, blebs exhibit distinct dynamics and regulation. In this review, we first examine the mechanisms that control the inflation of blebs and bias their formation in the direction of the cell’s leading edge and present current views concerning the role blebs play in promoting cell locomotion. While certain motile amoeboid cells exclusively form blebs, others form blebs as well as other protrusion types. We describe factors in the environment and cell-intrinsic activities that determine the proportion of the different forms of protrusions cells produce.
Collapse
|
8
|
Single-Cell Atlas of Adult Testis in Protogynous Hermaphroditic Orange-Spotted Grouper, Epinephelus coioides. Int J Mol Sci 2021; 22:ijms222212607. [PMID: 34830486 PMCID: PMC8618070 DOI: 10.3390/ijms222212607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 01/08/2023] Open
Abstract
Spermatogenesis is a process of self-renewal and differentiation in spermatogonial stem cells. During this process, germ cells and somatic cells interact intricately to ensure long-term fertility and accurate genome propagation. Spermatogenesis has been intensely investigated in mammals but remains poorly understood with regard to teleosts. Here, we performed single-cell RNA sequencing of ~9500 testicular cells from the male, orange-spotted grouper. In the adult testis, we divided the cells into nine clusters and defined ten cell types, as compared with human testis data, including cell populations with characteristics of male germ cells and somatic cells, each of which expressed specific marker genes. We also identified and profiled the expression patterns of four marker genes (calr, eef1a, s100a1, vasa) in both the ovary and adult testis. Our data provide a blueprint of male germ cells and supporting somatic cells. Moreover, the cell markers are candidates that could be used for further cell identification.
Collapse
|
9
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
10
|
Park KJ, Jung KM, Kim YM, Lee KH, Han JY. Production of germline chimeric quails by transplantation of cryopreserved testicular cells into developing embryos. Theriogenology 2020; 156:189-195. [PMID: 32755718 DOI: 10.1016/j.theriogenology.2020.06.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 11/26/2022]
Abstract
The germplasm is a resource and tool for the conservation of genetic diversity in animals, including birds. Securing germplasm is limited in most bird species due to difficulties in semen collection and germ cell isolation, lack of germ cell-specific markers, and in vitro culture systems. Here, we report the production of germline chimeric quails by transplant of cryopreserved testicular cells (TCs) into the developing embryo. The testicular germ cell properties were maintained after freeze-thaw, with no significant reduction in cell viability irrespective of storage length. Cryopreserved TCs were transferred into Hamburger Hamilton (HH) stage 14-17 quail embryos, and were demonstrated to migrate into the embryonic gonads with similar efficiency to freshly isolated TCs. Twenty of 81 recipient embryos yielded hatchlings from cryopreserved TCs and the germline transmission efficiency was similar to that of freshly isolated cells. In conclusion, cryopreserved adult quail TCs are capable of (de)differentiation into functional gametes in recipient quail gonads and can generate donor TCs-derived progenies. This system is feasible for the isolation of sufficient germplasm resources from various bird species for conservation purposes.
Collapse
Affiliation(s)
- Kyung Je Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Kyu Hyuk Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
11
|
Grimaldi C, Raz E. Germ cell migration-Evolutionary issues and current understanding. Semin Cell Dev Biol 2019; 100:152-159. [PMID: 31864795 DOI: 10.1016/j.semcdb.2019.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022]
Abstract
In many organisms, primordial germ cells (PGCs) are specified at a different location than where the gonad forms, meaning that PGCs must migrate toward the gonad within the early developing embryo. Following species-specific paths, PGCs can be passively carried by surrounding tissues and also perform active migration. When PGCs actively migrate through and along a variety of embryonic structures in different organisms, they adopt an ancestral robust migration mode termed "amoeboid motility", which allows cells to migrate within diverse environments. In this review, we discuss the possible significance of the PGC migration process in facilitating the evolution of animal body shape. In addition, we summarize the latest findings relevant for the molecular and cellular mechanisms controlling the movement and the directed migration of PGCs in different species.
Collapse
Affiliation(s)
- Cecilia Grimaldi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany.
| |
Collapse
|
12
|
Stévant I, Nef S. Genetic Control of Gonadal Sex Determination and Development. Trends Genet 2019; 35:346-358. [PMID: 30902461 DOI: 10.1016/j.tig.2019.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
Sex determination is the process by which the bipotential gonads develop as either testes or ovaries. With two distinct potential outcomes, the gonadal primordium offers a unique model for the study of cell fate specification and how distinct cell populations diverge from multipotent progenitors. This review focuses on recent advances in our understanding of the genetic programs and epigenetic mechanisms that regulate gonadal sex determination and the regulation of cell fate commitment in the bipotential gonads. We rely primarily on mouse data to illuminate the complex and dynamic genetic programs controlling cell fate decision and sex-specific cell differentiation during gonadal formation and gonadal sex determination.
Collapse
Affiliation(s)
- Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
13
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
14
|
Campanale JP, Hamdoun A, Wessel GM, Su YH, Oulhen N. Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs). Methods Cell Biol 2019; 150:269-292. [PMID: 30777180 PMCID: PMC6487853 DOI: 10.1016/bs.mcb.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small micromeres of the sea urchin are believed to be primordial germ cells (PGCs), fated to give rise to sperm or eggs in the adult. Sea urchin PGCs are formed at the fifth cleavage, undergo one additional division during blastulation, and migrate to the coelomic pouches of the pluteus larva. The goal of this chapter is to detail classical and modern techniques used to analyze primordial germ cell specification, gene expression programs, and cell behaviors in fixed and live embryos. The transparency of the sea urchin embryo enables both live imaging techniques and in situ RNA hybridization and immunolabeling for a detailed molecular characterization of these cells. Four approaches are presented to highlight small micromeres with fluorescent molecules for analysis by live and fixed cell microscopy: (1) small molecule dye accumulation during cleavage and blastula stages, (2) primordial germ cell targeted RNA expression using the Nanos untranslated regions, (3) fusing genes of interest with a Nanos2 targeting peptide, and (4) EdU and BrdU labeling. Applications of the live labeling techniques are discussed, including sorting by fluorescence-activated cell sorting for transcriptomic analysis, and, methods to image small micromere behavior in whole and dissociated embryos by live confocal microscopy. Finally, summary table of antibody and RNA probes as well as small molecule dyes to label small micromeres at a variety of developmental stages is provided.
Collapse
Affiliation(s)
- Joseph P Campanale
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
15
|
Spermatogonial stem cells differentiation and testicular lobules formation in a seasonal breeding teleost: The evidence from the heat-induced masculinization of genetically female Japanese flounder (Paralichthys olivaceus). Theriogenology 2018; 120:68-78. [DOI: 10.1016/j.theriogenology.2018.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 01/21/2023]
|
16
|
Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N. Successful Human Spermatogonial Stem Cells Homing in Recipient Mouse Testis after In Vitro Transplantation and Organ Culture. CELL JOURNAL 2018; 20:513-520. [PMID: 30123997 PMCID: PMC6099147 DOI: 10.22074/cellj.2019.5675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 12/27/2022]
Abstract
Objective In vitro transplantation (IVT) of spermatogonial stem cells (SSCs) is one of the most recent methods in
transplantation in recent decades. In this study, IVT and SSCs homing on seminiferous tubules of host testis in organ culture
have been studied.
Materials and Methods In this experimental study, human SSCs were isolated and their identities were confirmed by tracking
their promyelocytic leukemia zinc finger (PLZF) protein. These cells were transplanted to adult azoospermia mouse testes
using two methods, namely, IVT and in vivo transplantation as transplantation groups, and testes without transplantation of
cells were assigned in the control group. Then histomorphometric, immunohistochemical and molecular studies were done
after 2 weeks.
Results After two weeks, histomorphometric studies revealed that the number of subsided spermatogonial cells (SCs)
and the percentage of tubules with subsided SCs in IVT and in vivo groups were significantly more than those in the
control group (P<0.05). Immunohistochemical studies in the transplantation groups confirmed that the PLZF protein
was expressed in the cells subsided on the seminiferous tubule. Quantitative reverse-transcription polymerase chain
reaction (qRT-PCR) demonstrated that the PLZF gene expression was only positive in the transplantation groups, but
it was not significantly different between the IVT group and the in vivo group (P>0.05).
Conclusion Testicular tissue culture conditions after SSC transplantation can help these cells subside on the seminiferous
tubule basement membrane.
Collapse
Affiliation(s)
- Mahdi Mohaqiq
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Naser Amirjannati
- Department of Andrology and Embryology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Wear HM, Eriksson A, Yao HHC, Watanabe KH. Cell-based computational model of early ovarian development in mice. Biol Reprod 2018; 97:365-377. [PMID: 29088396 DOI: 10.1093/biolre/iox089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/09/2017] [Indexed: 11/13/2022] Open
Abstract
Despite its importance to reproduction, certain mechanisms of early ovarian development remain a mystery. To improve our understanding, we constructed the first cell-based computational model of ovarian development in mice that is divided into two phases: Phase I spans embryonic day 5.5 (E5.5) to E12.5; and Phase II spans E12.5 to postnatal day 2. We used the model to investigate four mechanisms: in Phase I, (i) whether primordial germ cells (PGCs) undergo mitosis during migration; and (ii) if the mechanism for secretion of KIT ligand from the hindgut resembles inductive cell-cell signaling or is secreted in a static manner; and in Phase II, (iii) that changes in cellular adhesion produce germ cell nest breakdown; and (iv) whether localization of primordial follicles in the cortex of the ovary is due to proliferation of granulosa cells. We found that the combination of the first three hypotheses produced results that aligned with experimental images and PGC abundance data. Results from the fourth hypothesis did not match experimental images, which suggests that more detailed processes are involved in follicle localization. Phase I and Phase II of the model reproduce experimentally observed cell counts and morphology well. A sensitivity analysis identified contact energies, mitotic rates, KIT chemotaxis strength, and diffusion rate in Phase I and oocyte death rate in Phase II as parameters with the greatest impact on model predictions. The results demonstrate that the computational model can be used to understand unknown mechanisms, generate new hypotheses, and serve as an educational tool.
Collapse
Affiliation(s)
- Hannah M Wear
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
| | - Annika Eriksson
- Division of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Portland, OR, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Karen H Watanabe
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA.,School of Public Health, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
18
|
Heckmann L, Pock T, Tröndle I, Neuhaus N. The C-X-C signalling system in the rodent vs primate testis: impact on germ cell niche interaction. Reproduction 2018; 155:R211-R219. [DOI: 10.1530/rep-17-0617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
In zebrafish, action of the chemokine Cxcl12 is mediated through its G-protein-coupled seven-transmembrane domain receptor Cxcr4 and the atypical receptor Cxcr7. Employing this animal model, it was revealed that this Cxcl12 signalling system plays a crucial role for directed migration of primordial germ cells (PGC) during early testicular development. Importantly, subsequent studies indicated that this regulatory mechanism is evolutionarily conserved also in mice. What is more, the functional role of the CXCL12 system does not seem to be limited to early phases of testicular development. Data from mouse studies rather demonstrate that CXCL12 and its receptors are also involved in the homing process of gonocytes into their niches at the basal membrane of the seminiferous tubules. Intriguingly, even the spermatogonial stem cells (SSCs) present in the adult mouse testis appear to maintain the ability to migrate towards a CXCL12 gradient as demonstrated by functional in vitro migration assays and in vivo germ cell transplantation assays. These findings not only indicate a role of the CXCL12 system throughout male germ cell development in mice but also suggest that this system may be evolutionarily conserved. In this review, we take into account the available literature focusing on the localization patterns of the CXCL12 system not only in rodents but also in primates, including the human. Based on these data, we discuss whether the CXCL12 system is also conserved between rodents and primates and discuss the known and potential functional consequences.
Collapse
|
19
|
Han K, Chen S, Cai M, Jiang Y, Zhang Z, Wang Y. Nanos3 not nanos1 and nanos2 is a germ cell marker gene in large yellow croaker during embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 2018; 218:13-22. [PMID: 29331522 DOI: 10.1016/j.cbpb.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 11/15/2022]
Abstract
In this study, three nanos gene subtypes (Lcnanos1, Lcnanos2 and Lcnanos3) from Larimichthys crocea, were cloned and characterized. We determined the spatio-temporal expression patterns of each subtype in tissues as well as the cellular localization of mRNA in embryos. Results showed that deduced Nanos proteins have two main homology domains: N-terminal CCR4/NOT1 deadenylase interaction domain and highly conserved carboxy-terminal region bearing two conserved CCHC zinc-finger motifs. The expression levels of Lcnanos1 in testis were significantly higher than other tissues, followed by heart, brain, eye, and ovary. Nevertheless, both Lcnanos2 and Lcnanos3 were restrictedly expressed in testis and ovary, respectively. No signals of Lcnanos1 and Lcnanos2 expression were detected at any developmental stages during embryogenesis. On the contrary, the signals of Lcnanos3 were detected in all stages examined. Lcnanos3 transcripts were firstly localized to the distal end of cleavage furrow at the 2-cell stage. Subsequently, mounting positive signals started to appear in a small number of cells as the embryo developed to blastula stage and early-gastrula stage. As development proceeded, positive signals were found in the primitive gonadal ridge. These cells of Lcnanos3 positive signals implied the specification of the future PGCs at this stage. It also suggested that PGCs of croaker originate from four clusters of cells which inherit maternal germ plasm at blastula stage. Furthermore, we preliminarily analyzed the migration route of PGCs in embryos of L. crocea. In short, this study laid the foundation for studies on specification and development of germ cell from L. crocea during embryogenesis.
Collapse
Affiliation(s)
- Kunhuang Han
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shihai Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Mingyi Cai
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ziping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China; College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yilei Wang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
20
|
Kuo YC, Au HK, Hsu JL, Wang HF, Lee CJ, Peng SW, Lai SC, Wu YC, Ho HN, Huang YH. IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase + Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia. Stem Cell Reports 2018; 10:524-537. [PMID: 29307582 PMCID: PMC5830933 DOI: 10.1016/j.stemcr.2017.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Hypoxia cooperates with endocrine signaling to maintain the symmetric self-renewal proliferation and migration of embryonic germline stem cells (GSCs). However, the lack of an appropriate in vitro cell model has dramatically hindered the understanding of the mechanism underlying this cooperation. Here, using a serum-free system, we demonstrated that hypoxia significantly induced the GSC mesenchymal transition, increased the expression levels of the pluripotent transcription factor OCT4 and migration-associated proteins (SDF-1, CXCR4, IGF-1, and IGF-1R), and activated the cellular expression and translocalization of the CXCR4-downstream proteins ARP3/pFAK. The underlying mechanism involved significant IGF-1/IGF-1R activation of OCT4/CXCR4 expression through HIF-2α regulation. Picropodophyllin-induced inhibition of IGF-1R phosphorylation significantly suppressed hypoxia-induced SDF-1/CXCR4 expression and cell migration. Furthermore, transactivation between IGF-1R and CXCR4 was involved. In summary, we demonstrated that niche hypoxia synergistically cooperates with its associated IGF-1R signaling to regulate the symmetric division (self-renewal proliferation) and cell migration of alkaline phosphatase-positive GSCs through HIF-2α-OCT4/CXCR4 during embryogenesis. Hypoxia regulated AP+GSC self-renewal and cell migration via IGF-1R and CXCR4 Hypoxia increased IGF1/IGF-1R and SDF-1/CXCR4 to promote AP+GSC migration Crosstalk of IGF-1/IGF-1R and SDF-1/CXCR4 signaling in AP+GSCs under hypoxia Inhibition of IGF-1R phosphorylation suppressed hypoxia-induced cell migration
Collapse
Affiliation(s)
- Yung-Che Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan; Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 11031 Taipei, Taiwan
| | - Heng-Kien Au
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan; Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, 11031 Taipei, Taiwan; Department of Obstetrics and Gynecology, Taipei Medical University Hospital, 11031 Taipei, Taiwan
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, 91201 Pingtung, Taiwan
| | - Hsiao-Feng Wang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan; Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 11031 Taipei, Taiwan
| | - Chiung-Ju Lee
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
| | - Syue-Wei Peng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
| | - Ssu-Chuan Lai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
| | - Yu-Chih Wu
- Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 11031 Taipei, Taiwan
| | - Hong-Nerng Ho
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, 10002 Taipei, Taiwan; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, National Taiwan University and Hospital, 10041 Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan; International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan; Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 11031 Taipei, Taiwan; Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, 11031 Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan; Comprehensive Cancer Center of Taipei Medical University, 10031 Taipei, Taiwan; The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 10031 Taipei, Taiwan.
| |
Collapse
|
21
|
A pilgrim's progress: Seeking meaning in primordial germ cell migration. Stem Cell Res 2017; 24:181-187. [PMID: 28754603 DOI: 10.1016/j.scr.2017.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/08/2017] [Accepted: 07/15/2017] [Indexed: 01/08/2023] Open
Abstract
Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis.
Collapse
|
22
|
Paksa A, Raz E. Zebrafish germ cells: motility and guided migration. Curr Opin Cell Biol 2015; 36:80-5. [PMID: 26232877 DOI: 10.1016/j.ceb.2015.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/18/2015] [Accepted: 07/15/2015] [Indexed: 10/24/2022]
Abstract
In the course of embryonic development, the process of cell migration is critical for establishment of the embryonic body plan, for morphogenesis and for organ function. Investigating the molecular mechanisms underlying cell migration is thus crucial for understanding developmental processes and clinical conditions resulting from abnormal cell migration such as cancer metastasis. The long-range migration of primordial germ cells toward the region at which the gonad develops occurs in embryos of various species and thus constitutes a useful in vivo model for single-cell migration. Recent studies employing zebrafish embryos have greatly contributed to the understanding of the mechanisms facilitating the migration of these cells en route to their target.
Collapse
Affiliation(s)
- Azadeh Paksa
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, Von-Esmarch-Str. 56, 48149 Muenster, Germany.
| |
Collapse
|
23
|
Wnt signaling in testis development: Unnecessary or essential? Gene 2015; 565:155-65. [DOI: 10.1016/j.gene.2015.04.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/29/2015] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
|
24
|
Fernández JA, Bubner EJ, Takeuchi Y, Yoshizaki G, Wang T, Cummins SF, Elizur A. Primordial germ cell migration in the yellowtail kingfish (Seriola lalandi) and identification of stromal cell-derived factor 1. Gen Comp Endocrinol 2015; 213:16-23. [PMID: 25708429 DOI: 10.1016/j.ygcen.2015.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/07/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
Primordial germ cells (PGCs) are progenitors of the germ cell lineage, giving rise to either spermatogonia or oogonia after the completion of gonadal differentiation. Currently, there is little information on the mechanism of PGCs migration leading to the formation of the primordial gonad in perciform fish. Yellowtail kingfish (Seriola lalandi) (YTK) (order Perciforms) inhabit tropical and temperate waters in the southern hemisphere. Fundamental details into the molecular basis of larval development in this species can be easily studied in Australia, as they are commercially cultured and readily available. In this study, histological analysis of YTK larvae revealed critical time points for the migration of PGCs to the genital ridge, resulting in the subsequent development of the primordial gonad. In YTK larvae at 3, 5, 7 and 10 days post hatch (DPH), PGCs were not yet enclosed by somatic cells, indicating the primordial gonad had not yet started to form. While at 15, 18 and 20 DPH PGCs had already settled at the genital ridge and started to become enclosed by somatic cells indicating the primordial gonad had started to develop. A higher number of PGCs were observed in the larvae at 15 and 18 DPH indicating PGCs proliferation, which corresponds with them becoming enclosed by the somatic cells. Directional migration of PGCs toward the genital ridge is a critical event in the subsequent development of a gonad. In zebrafish, mouse and chicken, stromal-cell derived factor (SDF1) signalling is one of the key molecules for PGC migration. We subsequently isolated from YTK the SDF1 (Slal-SDF1) gene, which encodes for a 98-residue precursor protein with a signal peptide at the N-terminus. There is spatial conservation between fish species of four cysteine residues at positions C9, C11, C34 and C49, expected to form disulphide bonds and stabilize the SDF structure. In YTK, Slal-SDF1 gene expression analyses shows that this gene is expressed in larvae from 1 to 22 DPH and demonstrates distinct spatial localisation in the larvae at 7 DPH. These results provide a platform for further studies into the molecular machinery of PGC migration in yellowtail kingfish, as well as other perciform fish species.
Collapse
Affiliation(s)
- J A Fernández
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - E J Bubner
- School of Biological Science, Lincoln Marine Science Centre, Flinders University, Port Lincoln, South Australia, Australia; Australia Seafood Corporative Research Centre, Bedford Park, South Australia, Australia
| | - Y Takeuchi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - G Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - T Wang
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - S F Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - A Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia.
| |
Collapse
|
25
|
Stukenborg JB, Kjartansdóttir KR, Reda A, Colon E, Albersmeier JP, Söder O. Male germ cell development in humans. Horm Res Paediatr 2015; 81:2-12. [PMID: 24356336 DOI: 10.1159/000355599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Germ cells are unique cells that possess the ability to transmit genetic information between generations. Detailed knowledge about the molecular and cellular mechanisms determining the fate of human male germ cells still remains sparse. This is partially due to ethical issues limiting the access to research material. Therefore, the mechanisms of proliferation, differentiation and apoptosis of human male germ cells still remain challenging study objectives. METHODS This review focuses on using English articles accessible in PubMed as well as personal files on the current knowledge of the molecular and cellular mechanisms connected with human testicular germ cell development, maturation failure and the possibility of fertility preservation in patients in whom there is a risk of gonadal failure. However, since rodents, particularly mice, offer the possibility of studying germ cell development by use of genetic modification techniques, some studies using animal models are also discussed. CONCLUSION This mini review focuses on the current knowledge about male germ cells. However, the reader is referred to two previous mini reviews focusing on testicular somatic cells, i.e. on Sertoli cells and Leydig cells.
Collapse
Affiliation(s)
- Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Kishi K, Onuma TA, Nishida H. Long-distance cell migration during larval development in the appendicularian, Oikopleura dioica. Dev Biol 2014; 395:299-306. [DOI: 10.1016/j.ydbio.2014.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/30/2014] [Accepted: 09/07/2014] [Indexed: 02/04/2023]
|
27
|
Campanale JP, Gökirmak T, Espinoza JA, Oulhen N, Wessel GM, Hamdoun A. Migration of sea urchin primordial germ cells. Dev Dyn 2014; 243:917-27. [PMID: 24677545 PMCID: PMC4164171 DOI: 10.1002/dvdy.24133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Small micromeres are produced at the fifth cleavage of sea urchin development. They express markers of primordial germ cells (PGCs), and are required for the production of gametes. In most animals, PGCs migrate from sites of formation to the somatic gonad. Here, we investigated whether they also exhibit similar migratory behaviors using live-cell imaging of small micromere plasma membranes. RESULTS Early in gastrulation, small micromeres transition from non-motile epithelial cells, to motile quasi-mesenchymal cells. Late in gastrulation, at 43 hr post fertilization (HPF), they are embedded in the tip of the archenteron, but remain motile. From 43-49 HPF, they project numerous cortical blebs into the blastocoel, and filopodia that contact ectoderm. By 54 HPF, they begin moving in the plane of the blastoderm, often in a directed fashion, towards the coelomic pouches. Isolated small micromeres also produced blebs and filopodia. CONCLUSIONS Previous work suggested that passive translocation governs some of the movement of small micromeres during gastrulation. Here we show that small micromeres are motile cells that can traverse the archenteron, change position along the left-right axis, and migrate to coelomic pouches. These motility mechanisms are likely to play an important role in their left-right segregation.
Collapse
Affiliation(s)
- Joseph P. Campanale
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Tufan Gökirmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Jose A. Espinoza
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | - Nathalie Oulhen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| |
Collapse
|
28
|
Zheng QS, Wang XN, Wen Q, Zhang Y, Chen SR, Zhang J, Li XX, Sha RN, Hu ZY, Gao F, Liu YX. Wt1 deficiency causes undifferentiated spermatogonia accumulation and meiotic progression disruption in neonatal mice. Reproduction 2014; 147:45-52. [DOI: 10.1530/rep-13-0299] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogenesis is a complex process involving the regulation of multiple cell types. As the only somatic cell type in the seminiferous tubules, Sertoli cells are essential for spermatogenesis throughout the spermatogenic cycle. The Wilms tumor gene, Wt1, is specifically expressed in the Sertoli cells of the mouse testes. In this study, we demonstrated that Wt1 is required for germ cell differentiation in the developing mouse testes. At 10 days post partum, Wt1-deficient testes exhibited clear meiotic arrest and undifferentiated spermatogonia accumulation in the seminiferous tubules. In addition, the expression of claudin11, a marker and indispensable component of Sertoli cell integrity, was impaired in Wt1−/flox; Cre-ERTM testes. This observation was confirmed in in vitro testis cultures. However, the basal membrane of the seminiferous tubules in Wt1-deficient testes was not affected. Based on these findings, we propose that Sertoli cells' status is affected in Wt1-deficient mice, resulting in spermatogenesis failure.
Collapse
|
29
|
Mei J, Yue HM, Li Z, Chen B, Zhong JX, Dan C, Zhou L, Gui JF. C1q-like factor, a target of miR-430, regulates primordial germ cell development in early embryos of Carassius auratus. Int J Biol Sci 2013; 10:15-24. [PMID: 24391447 PMCID: PMC3879587 DOI: 10.7150/ijbs.7490] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/13/2013] [Indexed: 02/05/2023] Open
Abstract
C1q-like is a significant maternal factor of TNF/C1q super-family, and the abundant protein has been observed in both mature eggs of Carassius auratus and Carassius auratus gibelio, but its biological function in early embryo development has remained unclear. In this study, we firstly revealed a high level of maternal C1q-like transcript existence only in mature eggs of Carassius auratus, whereas no any maternal C1q-like transcript was observed in that of Carassius auratus gibelio. During embryonic development, the C1q-like zygotic expression begins around cardiopalmus stage in embryos of both Carassius auratus and Carassius auratus gibelio. Then, we examined the biological role of C1q-like by morpholino-mediated knockdown in early embryo development. Knockdown of CaOC1q resulted in a significant reduction of primordial germ cells (PGCs) in Carassius auratus, as shown by whole mount in situ hybridization with vasa-specific RNA probe, fluorescence immunostaining of vasa protein, and GFP imaging of the GFP-nanos1-3'UTR mRNA reporter. In vitro and in vivo evidence indicated that a microRNA, miR-430 could repress the C1q-like expression and PGC development. These data suggest that C1q-like should be a direct target of miR-430 and play an essential role in PGC development of Carassius auratus.
Collapse
Affiliation(s)
- Jie Mei
- 1. College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua-Mei Yue
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Zhi Li
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Bo Chen
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Jian-Xiang Zhong
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Cheng Dan
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Li Zhou
- 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Jian-Fang Gui
- 1. College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China. ; 2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| |
Collapse
|
30
|
Glover JD, Taylor L, Sherman A, Zeiger-Poli C, Sang HM, McGrew MJ. A novel piggyBac transposon inducible expression system identifies a role for AKT signalling in primordial germ cell migration. PLoS One 2013; 8:e77222. [PMID: 24223709 PMCID: PMC3817190 DOI: 10.1371/journal.pone.0077222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/09/2013] [Indexed: 01/15/2023] Open
Abstract
In this work, we describe a single piggyBac transposon system containing both a tet-activator and a doxycycline-inducible expression cassette. We demonstrate that a gene product can be conditionally expressed from the integrated transposon and a second gene can be simultaneously targeted by a short hairpin RNA contained within the transposon, both in vivo and in mammalian and avian cell lines. We applied this system to stably modify chicken primordial germ cell (PGC) lines in vitro and induce a reporter gene at specific developmental stages after injection of the transposon-modified germ cells into chicken embryos. We used this vector to express a constitutively-active AKT molecule during PGC migration to the forming gonad. We found that PGC migration was retarded and cells could not colonise the forming gonad. Correct levels of AKT activation are thus essential for germ cell migration during early embryonic development.
Collapse
Affiliation(s)
- James D Glover
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Chen SR, Zheng QS, Zhang Y, Gao F, Liu YX. Disruption of genital ridge development causes aberrant primordial germ cell proliferation but does not affect their directional migration. BMC Biol 2013; 11:22. [PMID: 23497137 PMCID: PMC3652777 DOI: 10.1186/1741-7007-11-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/05/2013] [Indexed: 11/13/2022] Open
Abstract
Background The directional migration and the following development of primordial germ cells (PGCs) during gonad formation are key steps for germline development. It has been proposed that the interaction between germ cells and genital ridge (GR) somatic cells plays essential roles in this process. However, the in vivo functional requirements of GR somatic cells in germ cell development are largely unknown. Results Wt1 mutation (Wt1R394W/R394W) results in GR agenesis through mitotic arrest of coelomic epitheliums. In this study, we employed the GR-deficient mouse model, Wt1R394W/R394W, to investigate the roles of GR somatic cells in PGC migration and proliferation. We found that the number of PGCs was dramatically reduced in GR-deficient embryos at embryonic day (E) 11.5 and E12.5 due to decreased proliferation of PGCs, involving low levels of BMP signaling. In contrast, the germ cells in Wt1R394W/R394W embryos were still mitotically active at E13.5, while all the germ cells in control embryos underwent mitotic arrest at this stage. Strikingly, the directional migration of PGCs was not affected by the absence of GR somatic cells. Most of the PGCs reached the mesenchyme under the coelomic epithelium at E10.5 and no ectopic PGCs were noted in GR-deficient embryos. However, the precise positioning of PGCs was disrupted. Conclusions Our work provides in vivo evidence that the proliferation of germ cells is precisely regulated by GR somatic cells during different stages of gonad development. GR somatic cells are probably dispensable for the directional migration of PGCs, but they are required for precise positioning of PGCs at the final step of migration.
Collapse
Affiliation(s)
- Su-Ren Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
32
|
Yoshizaki G, Okutsu T, Morita T, Terasawa M, Yazawa R, Takeuchi Y. Biological Characteristics of Fish Germ Cells and their Application to Developmental Biotechnology. Reprod Domest Anim 2012; 47 Suppl 4:187-92. [DOI: 10.1111/j.1439-0531.2012.02074.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Goudarzi M, Banisch T, Mobin M, Maghelli N, Tarbashevich K, Strate I, van den Berg J, Blaser H, Bandemer S, Paluch E, Bakkers J, Tolić-Nørrelykke I, Raz E. Identification and Regulation of a Molecular Module for Bleb-Based Cell Motility. Dev Cell 2012; 23:210-8. [DOI: 10.1016/j.devcel.2012.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 04/21/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
|
34
|
Biajoux V, Bignon A, Bouchet-Delbos L, Emilie D, Balabanian K. [Dysfunctions of the CXCL12 (SDF-1)/CXCR4 signaling axis in the WHIM syndrome and the idiopathic CD4(+) T-cell lymphocytopenia]. Biol Aujourdhui 2011; 204:273-284. [PMID: 21215244 DOI: 10.1051/jbio/2010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Indexed: 05/30/2023]
Abstract
Chemokines are small cytokine-like secreted proteins that govern migration of leukocytes to their specific niches in lymphoid organs and to inflammatory sites. They mediate their functions by binding to and activating chemokine receptors, which belong to the heptahelical G protein-coupled receptor family. The CXC chemokine Stromal cell Derived Factor-1 (SDF-1/CXCL12) is the sole natural ligand for the broadly expressed CXCR4 receptor and acts as a chemoattractant for many leukocyte subsets. The CXCL12/CXCR4 axis exerts critical activities in homeostatic processes such as organogenesis, hematopoiesis and leukocyte trafficking. Dysregulations of CXCR4 signaling and/or expression are associated with several infectious, inflammatory, autoimmune and malignant conditions. In light of recent data, we review here CXCR4 dysfunctions unveiled in two rare human immunodeficiency disorders, one characterized by a gain of CXCR4 function, the WHIM syndrome, and the other by a loss of CXCR4 function, the idiopathic CD4(+) T-cell lymphocytopenia.
Collapse
Affiliation(s)
- Vincent Biajoux
- Université Paris-Sud, Laboratoire Cytonkin, Chimiokines et Immunopathologies, UMR S996, 32 rue des Carnets, 92140 Clamart, France - INSERM, 92140 Clamart, France
| | | | | | | | | |
Collapse
|
35
|
Characterization, isolation and culture of primordial germ cells in domestic animals: recent progress and insights from the ovine species. Theriogenology 2010; 74:534-43. [DOI: 10.1016/j.theriogenology.2010.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 02/08/2023]
|
36
|
Yoshizaki G, Fujinuma K, Iwasaki Y, Okutsu T, Shikina S, Yazawa R, Takeuchi Y. Spermatogonial transplantation in fish: A novel method for the preservation of genetic resources. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 6:55-61. [PMID: 20541987 DOI: 10.1016/j.cbd.2010.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/08/2010] [Accepted: 05/08/2010] [Indexed: 11/24/2022]
Abstract
Recent progress in genome-based breeding has created various fish strains carrying desirable genetic traits; however, methods for the long-term preservation of their genetic resources have not yet been developed, mainly due to the lack of cryopreservation techniques for fish eggs and embryos. Recently, we established an alternative cryopreservation technique for fish spermatogonia using a slow-freezing method. Furthermore, we developed a transplantation system to produce functional eggs and sperm derived from spermatogonia. Spermatogonia isolated from the testes of vasa-green fluorescent protein (Gfp) transgenic rainbow trout (Oncorhynchus mykiss) were transplanted into the peritoneal cavity of triploid masu salmon (Oncorhynchus masou) hatchlings of both genders. The transplanted trout spermatogonia migrated towards the gonadal anlagen of the recipient salmon, into which they were subsequently incorporated. We confirmed that the donor-derived spermatogonia resumed gametogenesis, and produced sperm and eggs in male and female recipient salmon, respectively. Fertilization of the resultant eggs and sperm produced only rainbow trout in the first filial (F₁) generation, suggesting that the sterile triploid recipient salmon produced functional eggs and sperm derived from the trout donors. A combination of spermatogonial transplantation and cryopreservation could be a powerful tool for preserving valuable fish strains with desirable genetic traits and endangered species.
Collapse
Affiliation(s)
- Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010; 341:126-40. [PMID: 19854168 PMCID: PMC2854274 DOI: 10.1016/j.ydbio.2009.10.026] [Citation(s) in RCA: 926] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
39
|
Richardson BE, Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 2010; 11:37-49. [PMID: 20027186 PMCID: PMC4521894 DOI: 10.1038/nrm2815] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regulated migration of cells is essential for development and tissue homeostasis, and aberrant cell migration can lead to an impaired immune response and the progression of cancer. Primordial germ cells (PGCs), precursors to sperm and eggs, have to migrate across the embryo to reach somatic gonadal precursors, where they carry out their function. Studies of model organisms have revealed that, despite important differences, several features of PGC migration are conserved. PGCs require an intrinsic motility programme and external guidance cues to survive and successfully migrate. Proper guidance involves both attractive and repulsive cues and is mediated by protein and lipid signalling.
Collapse
Affiliation(s)
- Brian E Richardson
- Howard Hughes Medical Institute, Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York University, New York, 10016, USA
| | | |
Collapse
|
40
|
Role of chemokine network in the development and progression of ovarian cancer: a potential novel pharmacological target. JOURNAL OF ONCOLOGY 2009; 2010:426956. [PMID: 20049170 PMCID: PMC2798669 DOI: 10.1155/2010/426956] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/28/2009] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development.
Collapse
|
41
|
Analysis of SDF-1/CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis. Mech Dev 2009; 127:146-58. [PMID: 19770040 DOI: 10.1016/j.mod.2009.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 01/08/2023]
Abstract
Directional migration of primordial germ cells (PGCs) toward future gonads is a common feature in many animals. In zebrafish, mouse and chicken, SDF-1/CXCR4 chemokine signaling has been shown to have an important role in PGC migration. In Xenopus, SDF-1 is expressed in several regions in embryos including dorsal mesoderm, the target region that PGCs migrate to. CXCR4 is known to be expressed in PGCs. This relationship is consistent with that of more well-known animals. Here, we present experiments that examine whether chemokine signaling is involved in PGC migration of Xenopus. We investigate: (1) Whether injection of antisense morpholino oligos (MOs) for CXCR4 mRNA into vegetal blastomere containing the germ plasm or the precursor of PGCs disturbs the migration of PGCs? (2) Whether injection of exogenous CXCR4 mRNA together with MOs can restore the knockdown phenotype? (3) Whether the migratory behavior of PGCs is disturbed by the specific expression of mutant CXCR4 mRNA or SDF-1 mRNA in PGCs? We find that the knockdown of CXCR4 or the expression of mutant CXCR4 in PGCs leads to a decrease in the PGC number of the genital ridges, and that the ectopic expression of SDF-1 in PGCs leads to a decrease in the PGC number of the genital ridges and an increase in the ectopic PGC number. These results suggest that SDF-1/CXCR4 chemokine signaling is involved in the migration and survival or in the differentiation of PGCs in Xenopus.
Collapse
|
42
|
Jørgensen A, Nielsen JE, Morthorst JE, Bjerregaard P, Leffers H. Laser capture microdissection of gonads from juvenile zebrafish. Reprod Biol Endocrinol 2009; 7:97. [PMID: 19747405 PMCID: PMC2755477 DOI: 10.1186/1477-7827-7-97] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 09/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Investigating gonadal gene expression is important in attempting to elucidate the molecular mechanism of sex determination and differentiation in the model species zebrafish. However, the small size of juvenile zebrafish and correspondingly their gonads complicates this type of investigation. Furthermore, the lack of a genetic sex marker in juvenile zebrafish prevents pooling gonads from several individuals. The aim of this study was to establish a method to isolate the gonads from individual juvenile zebrafish allowing future investigations of gonadal gene expression during sex determination and differentiation. METHODS The laser capture microdissection technique enables isolation of specific cells and tissues and thereby removes the noise of gene expression from other cells or tissues in the gene expression profile. A protocol developed for laser microdissection of human gonocytes was adjusted and optimised to isolate juvenile zebrafish gonads. RESULTS The juvenile zebrafish gonad is not morphologically distinguishable when using dehydrated cryosections on membrane slides and a specific staining method is necessary to identify the gonads. The protocol setup in this study allows staining, identification, isolation and subsequent RNA purification and amplification of gonads from individual juvenile zebrafish thereby enabling gonadal gene expression profiling. CONCLUSION The study presents a protocol for isolation of individual juvenile zebrafish gonads, which will enable future investigations of gonadal gene expression during the critical period of sex differentiation. Furthermore, the presented staining method is applicable to other species as it is directed towards alkaline phosphatase that is expressed in gonocytes and embryonic stem cells, which is conserved among vertebrate species.
Collapse
Affiliation(s)
- Anne Jørgensen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - John E Nielsen
- University Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen ∅, Denmark
| | - Jane E Morthorst
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Poul Bjerregaard
- Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Henrik Leffers
- University Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen ∅, Denmark
| |
Collapse
|
43
|
Disanza A, Frittoli E, Palamidessi A, Scita G. Endocytosis and spatial restriction of cell signaling. Mol Oncol 2009; 3:280-96. [PMID: 19570732 DOI: 10.1016/j.molonc.2009.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 02/06/2023] Open
Abstract
Endocytosis and recycling are essential components of the wiring enabling cells to perceive extracellular signals and transduce them in a temporally and spatially controlled fashion, directly influencing not only the duration and intensity of the signaling output, but also their correct location. Here, we will discuss key experimental evidence that support how different internalization routes, the generation of diverse endomembrane platforms, and cycles of internalization and recycling ensure polarized compartmentalization of signals, regulating a number of physiological and pathologically-relevant processes in which the resolution of spatial information is vital for their execution.
Collapse
Affiliation(s)
- Andrea Disanza
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | | | | | | |
Collapse
|
44
|
Park PJ, Colletti E, Ozturk F, Wood JA, Tellez J, Almeida-Porada G, Porada C. Factors determining the risk of inadvertent retroviral transduction of male germ cells after in utero gene transfer in sheep. Hum Gene Ther 2009; 20:201-15. [PMID: 19301473 DOI: 10.1089/hum.2007.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The possibility of permanent genetic changes to the germline is central to the bioethics of in utero gene therapy (IUGT) because of the concern of inadvertent potentially deleterious alterations to the gene pool. Despite presumed protection of the male germline due to early germ cell (GC) compartmentalization, we reported that GCs within the developing ovine testes are transduced at low levels after retrovirus-mediated IUGT, thus underscoring the need for a thorough understanding of GC development in clinically predictive models to determine the optimal time to perform IUGT and avoid germline modification. In the present studies, we used the fetal sheep model to analyze GCs for phenotype, location, proliferation, and incidence of transduction after IUGT at various fetal ages to learn when during development the nascent germline is likely to be at greatest risk of retrovirus-mediated alteration. Our studies show that although GCs were transduced at all injection ages, the levels of transduction varied by nearly 700-fold as a function of the age at transfer. After remaining largely quiescent as they migrated to/settled within nascent sex cords, GCs began active cycling before cord closure was complete, suggesting this is likely the point at which they would be most susceptible to retroviral transduction.Furthermore, we observed that compartmentalization of GCs continued into early postnatal life, suggesting the male germline may be vulnerable to low-level inadvertent retroviral vector modification throughout fetal life, but that this risk can be minimized by performing IUGT later in gestation.
Collapse
Affiliation(s)
- Paul J Park
- Department of Animal Biotechnology, School of Veterinary Medicine, University of Nevada, Reno, NV 89557, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin. Cell Stem Cell 2009; 3:533-42. [PMID: 18983968 DOI: 10.1016/j.stem.2008.08.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/11/2008] [Accepted: 08/05/2008] [Indexed: 12/14/2022]
Abstract
Spermatogonial stem cells (SSCs) provide the foundation for spermatogenesis. In a manner comparable to hematopoietic stem cell transplantation, SSCs colonize the niche of recipient testes and reinitiate spermatogenesis following microinjection into the seminiferous tubules. However, little is known about the homing mechanism of SSCs. Here we examined the role of adhesion molecules in SSC homing. SSCs isolated from mice carrying loxP-tagged beta1-integrin alleles were ablated for beta1-integrin expression by in vitro adenoviral cre transduction. The beta1-integrin mutant SSCs showed significantly reduced ability to recolonize recipient testes in vivo and to attach to laminin molecules in vitro. In contrast, genetic ablation of E-cadherin did not impair homing, and E-cadherin mutant SSCs completed normal spermatogenesis. In addition, the deletion of beta1-integrin on Sertoli cells reduced SSC homing. These results identify beta1-integrin as an essential adhesion receptor for SSC homing and its association with laminin is critical in multiple steps of SSC homing.
Collapse
|
46
|
Herpin A, Nakamura S, Wagner TU, Tanaka M, Schartl M. A highly conserved cis-regulatory motif directs differential gonadal synexpression of Dmrt1 transcripts during gonad development. Nucleic Acids Res 2009; 37:1510-20. [PMID: 19139075 PMCID: PMC2655695 DOI: 10.1093/nar/gkn1065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Differential gene expression largely accounts for the coordinated manifestation of the genetic programme underlying embryonic development and cell differentiation. The 3′ untranslated region (3′-UTR) of eukaryotic genes can contain motifs involved in regulation of gene expression at the post-transcriptional level. In the 3′-UTR of dmrt1, a key gene that functions in gonad development and differentiation, an 11-bp protein-binding motif was identified that mediates gonad-specific mRNA localization during embryonic and larval development of fish. Mutations that disrupt the 11-bp motif leading to in vitro protein-binding loss and selective transcript stabilization failure indicate a role for this motif in RNA stabilization through protein binding. The sequence motif was found to be conserved in most of the dmrt1 homologous genes from flies to humans suggesting a widespread conservation of this specific mechanism.
Collapse
Affiliation(s)
- Amaury Herpin
- Physiological Chemistry I, University of Würzburg, Biozentrum, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
47
|
Park PJ, Colletti E, Ozturk F, Wood JA, Tellez J, Almeida-Porada G, Porada C. Factors Determining the Risk of Inadvertent Retroviral Transduction of Male Germ Cells Following in Utero Gene Transfer in Sheep. Hum Gene Ther 2008. [DOI: 10.1089/hgt.2007.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
48
|
Abstract
Directed cell movements during gastrulation establish the germ layers of the vertebrate embryo and coordinate their contributions to different tissues and organs. Anterior migration of the mesoderm and endoderm has largely been interpreted to result from epiboly and convergent-extension movements that drive body elongation. We show that the chemokine Cxcl12b and its receptor Cxcr4a restrict anterior migration of the endoderm during zebrafish gastrulation, thereby coordinating its movements with those of the mesoderm. Depletion of either gene product causes disruption of integrin-dependent cell adhesion, resulting in separation of the endoderm from the mesoderm; the endoderm then migrates farther anteriorly than it normally would, resulting in bilateral duplication of endodermal organs. This process may have relevance to human gastrointestinal bifurcations and other organ defects.
Collapse
Affiliation(s)
- Sreelaja Nair
- Department of Developmental and Cell Biology University of California, Irvine 92697-2300 USA
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology University of California, Irvine 92697-2300 USA
| |
Collapse
|
49
|
Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 2008; 134:135-47. [PMID: 18614017 DOI: 10.1016/j.cell.2008.05.034] [Citation(s) in RCA: 397] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Revised: 03/31/2008] [Accepted: 05/09/2008] [Indexed: 12/14/2022]
Abstract
The small GTPases, Rab5 and Rac, are essential for endocytosis and actin remodeling, respectively. Coordination of these processes is critical to achieve spatial restriction of intracellular signaling, which is essential for a variety of polarized functions. Here, we show that clathrin- and Rab5-mediated endocytosis are required for the activation of Rac induced by motogenic stimuli. Rac activation occurs on early endosomes, where the RacGEF Tiam1 is also recruited. Subsequent recycling of Rac to the plasma membrane ensures localized signaling, leading to the formation of actin-based migratory protrusions. Thus, membrane trafficking of Rac is required for the spatial resolution of Rac-dependent motogenic signals. We further demonstrate that a Rab5-to-Rac circuitry controls the morphology of motile mammalian tumor cells and primordial germinal cells during zebrafish development, suggesting that this circuitry is relevant for the regulation of migratory programs in various cells, in both in vitro settings and whole organisms.
Collapse
|
50
|
Sasado T, Yasuoka A, Abe K, Mitani H, Furutani-Seiki M, Tanaka M, Kondoh H. Distinct contributions of CXCR4b and CXCR7/RDC1 receptor systems in regulation of PGC migration revealed by medaka mutants kazura and yanagi. Dev Biol 2008; 320:328-39. [PMID: 18602095 DOI: 10.1016/j.ydbio.2008.05.544] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 05/15/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
Abstract
Migratory pathways of PGCs to the gonad vary depending on the vertebrate species, yet the underlying regulatory mechanisms guiding PGCs are believed to be largely common. In teleost medaka embryo, PGC migration follows two major steps before colonizing in gonadal areas: (1) bilateral lineup in the trunk and (2) posterior drift of PGCs. kazura (kaz) and yanagi (yan) mutants of medaka isolated in mutagenesis screening were defective in the first and second steps, respectively. kaz(j2-15D) was identified as a missense mutation in chemokine receptor gene cxcr4b expressed in PGCs. Embryonic injection of cxcr4b mRNA with vasa 3' UTR rescued the PGC phenotype of kaz mutant, indicating a cell-autonomous function of cxcr4b in PGCs. yan(j6-29C) was identified as a nonsense mutation in the cxcr7/rdc1 gene encoding another chemokine receptor. cxcr7 transgene with genomic flanking sequences rescued the yan mutant phenotype efficiently at the G0 generation. cxcr7 was expressed in somites rather than PGCs. cxcr7-expressing somitic domain expanded posteriorly with its margin immediately anterior of posteriorly drifting PGCs, as if PGCs were thrusted toward the gonadal area. kaz and yan mutants are also defective in lateral line positioning, suggesting combined employment of these receptor systems in various cell migratory processes.
Collapse
Affiliation(s)
- Takao Sasado
- Solution Oriented Research for Science and Technology (SORST) Kondoh Research Team, Japan Science and Technology Agency (JST), 14 Yoshida-Kawaracho, Sakyo-ku, Kyoto 606-8305, Japan
| | | | | | | | | | | | | |
Collapse
|