1
|
Lassén E, Daehn IS. Molecular Mechanisms in Early Diabetic Kidney Disease: Glomerular Endothelial Cell Dysfunction. Int J Mol Sci 2020; 21:ijms21249456. [PMID: 33322614 PMCID: PMC7764016 DOI: 10.3390/ijms21249456] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), with prevalence increasing at an alarming rate worldwide and today, there are no known cures. The pathogenesis of DKD is complex, influenced by genetics and the environment. However, the underlying molecular mechanisms that contribute to DKD risk in about one-third of diabetics are still poorly understood. The early stage of DKD is characterized by glomerular hyperfiltration, hypertrophy, podocyte injury and depletion. Recent evidence of glomerular endothelial cell injury at the early stage of DKD has been suggested to be critical in the pathological process and has highlighted the importance of glomerular intercellular crosstalk. A potential mechanism may include reactive oxygen species (ROS), which play a direct role in diabetes and its complications. In this review, we discuss different cellular sources of ROS in diabetes and a new emerging paradigm of endothelial cell dysfunction as a key event in the pathogenesis of DKD.
Collapse
|
2
|
Patil AA, Bhor SA, Rhee WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Naumova N, Šachl R. Regulation of Cell Death by Mitochondrial Transport Systems of Calcium and Bcl-2 Proteins. MEMBRANES 2020; 10:E299. [PMID: 33096926 PMCID: PMC7590060 DOI: 10.3390/membranes10100299] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria represent the fundamental system for cellular energy metabolism, by not only supplying energy in the form of ATP, but also by affecting physiology and cell death via the regulation of calcium homeostasis and the activity of Bcl-2 proteins. A lot of research has recently been devoted to understanding the interplay between Bcl-2 proteins, the regulation of these interactions within the cell, and how these interactions lead to the changes in calcium homeostasis. However, the role of Bcl-2 proteins in the mediation of mitochondrial calcium homeostasis, and therefore the induction of cell death pathways, remain underestimated and are still not well understood. In this review, we first summarize our knowledge about calcium transport systems in mitochondria, which, when miss-regulated, can induce necrosis. We continue by reviewing and analyzing the functions of Bcl-2 proteins in apoptosis. Finally, we link these two regulatory mechanisms together, exploring the interactions between the mitochondrial Ca2+ transport systems and Bcl-2 proteins, both capable of inducing cell death, with the potential to determine the cell death pathway-either the apoptotic or the necrotic one.
Collapse
Affiliation(s)
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic;
| |
Collapse
|
4
|
Macasoi I, Mioc A, Mioc M, Racoviceanu R, Soica I, Chevereșan A, Dehelean C, Dumitrașcu V. Targeting Mitochondria through the Use of Mitocans as Emerging Anticancer Agents. Curr Med Chem 2020; 27:5730-5757. [DOI: 10.2174/0929867326666190712150638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
Mitochondria are key players with a multi-functional role in many vital cellular processes,
such as energy metabolism, redox regulation, calcium homeostasis, Reactive Oxygen Species
(ROS) as well as in cell signaling, survival and apoptosis. These functions are mainly regulated
through important enzyme signaling cascades, which if altered may influence the outcome of cell
viability and apoptosis. Therefore some of the key enzymes that are vital for these signaling pathways
are emerging as important targets for new anticancer agent development. Mitocans are compounds
aimed at targeting mitochondria in cancer cells by altering mitochondrial functions thus
causing cell growth inhibition or apoptosis. This review summarizes the till present known classes
of mitocans, their mechanism of action and potential therapeutic use in different forms of cancer.
Collapse
Affiliation(s)
- Ioana Macasoi
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Irina Soica
- Earlscliffe Sixth Form, Earlscliffe, 29 Shorncliffe Road, Folkestone, CT20 2NB, United Kingdom
| | - Adelina Chevereșan
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Victor Dumitrașcu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| |
Collapse
|
5
|
Shahin-Shamsabadi A, Selvaganapathy PR. π-SACS: pH Induced Self-Assembled Cell Sheets Without the Need for Modified Surfaces. ACS Biomater Sci Eng 2020; 6:5346-5356. [PMID: 33455283 DOI: 10.1021/acsbiomaterials.0c01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to form tissue-like constructs that have high cell density with proper cell-cell and cell-ECM interactions is critical for many applications including tissue models for drug discovery and tissue regeneration. Newly emerging bioprinting methods sometimes lack the high cellular density needed to provide biophysical cues to orchestrate cellular behavior to recreate tissue architecture and function. Alternate methods using self-assembly can be used to create tissue-like constructs with high cellular density and well-defined microstructure in the form of spheroids, organoids, or cell sheets. Cell sheets have a particularly interesting architecture in the context of tissue regeneration and repair as they can be applied as patches to integrate with surrounding tissues. Until now, the preparation of these sheets has involved culturing on specialized substrates that can be triggered by temperature or phase change (hydrophobic to hydrophilic) to release cells growing on them and form sheets. Here a new technique is proposed that allows delamination of cells and secreted ECM and rapid self-assembly into a cell sheet using a simple pH trigger and without the need to use responsive surfaces or applying external stimuli such as electrical and magnetic fields, only with routine tissue culture plates. This technique can be used with cells that are capable of syncytialization and fusion such as skeletal muscle cells and placenta cells. Using C2C12 myoblast cells we show that the pH trigger induces a rapid delamination of the cells as a continuous layer that self-assembles into a thick dense sheet. The delamination process has little effect on cell viability and maturation and preserves the ECM components that allow sheets to adhere to each other within a short incubation time enabling formation of thicker constructs when multiple sheets are stacked (double- and quadruple-layer constructs are formed here). These thick grafts can be used for regeneration purposes or as in vitro models.
Collapse
Affiliation(s)
| | - P Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Ontario L8S4K1, Canada.,Department of Mechanical Engineering, McMaster University, Ontario L8S4L7, Canada
| |
Collapse
|
6
|
Asadzadeh Z, Safarzadeh E, Safaei S, Baradaran A, Mohammadi A, Hajiasgharzadeh K, Derakhshani A, Argentiero A, Silvestris N, Baradaran B. Current Approaches for Combination Therapy of Cancer: The Role of Immunogenic Cell Death. Cancers (Basel) 2020; 12:E1047. [PMID: 32340275 PMCID: PMC7226590 DOI: 10.3390/cancers12041047] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cell death resistance is a key feature of tumor cells. One of the main anticancer therapies is increasing the susceptibility of cells to death. Cancer cells have developed a capability of tumor immune escape. Hence, restoring the immunogenicity of cancer cells can be suggested as an effective approach against cancer. Accumulating evidence proposes that several anticancer agents provoke the release of danger-associated molecular patterns (DAMPs) that are determinants of immunogenicity and stimulate immunogenic cell death (ICD). It has been suggested that ICD inducers are two different types according to their various activities. Here, we review the well-characterized DAMPs and focus on the different types of ICD inducers and recent combination therapies that can augment the immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Elham Safarzadeh
- Department of Immunology and Microbiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran;
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Ali Baradaran
- Research & Development Lab, BSD Robotics, 4500 Brisbane, Australia;
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | | | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
7
|
Intertwined Functions of Separase and Caspase in Cell Division and Programmed Cell Death. Sci Rep 2020; 10:6159. [PMID: 32273538 PMCID: PMC7145830 DOI: 10.1038/s41598-020-63081-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Timely sister chromatid separation, promoted by separase, is essential for faithful chromosome segregation. Separase is a member of the CD clan of cysteine proteases, which also includes the pro-apoptotic enzymes known as caspases. We report a role for the C. elegans separase SEP-1, primarily known for its essential activity in cell division and cortical granule exocytosis, in developmentally programmed cell death when the predominant pro-apoptotic caspase CED-3 is compromised. Loss of SEP-1 results in extra surviving cells in a weak ced-3(-) mutant, and suppresses the embryonic lethality of a mutant defective for the apoptotic suppressor ced-9/Bcl-2 implicating SEP-1 in execution of apoptosis. We also report apparent non-apoptotic roles for CED-3 in promoting germ cell proliferation, meiotic chromosome disjunction, egg shell formation, and the normal rate of embryonic development. Moreover, loss of the soma-specific (CSP-3) and germline-specific (CSP-2) caspase inhibitors result in CED-3-dependent suppression of embryonic lethality and meiotic chromosome non-disjunction respectively, when separase function is compromised. Thus, while caspases and separases have evolved different substrate specificities associated with their specialized functions in apoptosis and cell division respectively, they appear to have retained the residual ability to participate in both processes, supporting the view that co-option of components in cell division may have led to the innovation of programmed cell suicide early in metazoan evolution.
Collapse
|
8
|
Gal AF, Ruxanda F, Rus V, Andrei S, Miclăuş V. A novel mitochondria-targeting method using special staining for the detection of apoptotic hepatocytes. J Histotechnol 2020; 43:97-101. [PMID: 32167033 DOI: 10.1080/01478885.2020.1721767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Early detection of apoptotic cells on histological slides is of major importance for both diagnostic and research areas. In the current study, the aim was to propose a convenient method to stain the mitochondria and establish whether hepatocytes undergoing apoptosis can be identified in tissue sections using the proposed method. Liver tissue from five adult chinchillas was fixed with 10% neutral buffered formalin for Goldner's trichrome (GT) and Groat's iron hematoxylin and eosin (HE) stains and with Kolster's fixative for the Heidenhain's iron hematoxylin procedure. The HE and GT-stained sections showed the morphological features consistent with apoptosis i.e., homogenous intensely acidophilic cytoplasm, cell shrinkage with an irregular outline, nuclear shrinkage with cloudy karyoplasm, and karyopyknosis in the late stage. Sections stained with Heidenhain's iron hematoxylin method was used to pinpoint mitochondria and revealed cells which were undergoing the first stages of the apoptosis process i.e., disappearance of mitochondria from the cell, chromatin condensation and margination, paracentral localization of nucleoli, and vacuolated nuclei. In more advanced stages of apoptosis, cells presented significant nuclear and cytoplasmic changes. It was concluded that this is the first report targeting the mitochondria, by performing inexpensive histological staining techniques, in order to assess dead cells in situ.
Collapse
Affiliation(s)
- Adrian Florin Gal
- Department of Histology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca , Cluj-Napoca, Romania
| | - Flavia Ruxanda
- Department of Histology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca , Cluj-Napoca, Romania
| | - Vasile Rus
- Department of Histology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca , Cluj-Napoca, Romania
| | - Sanda Andrei
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca , Cluj-Napoca, Romania
| | - Viorel Miclăuş
- Department of Histology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca , Cluj-Napoca, Romania
| |
Collapse
|
9
|
Cidado J, Boiko S, Proia T, Ferguson D, Criscione SW, San Martin M, Pop-Damkov P, Su N, Roamio Franklin VN, Sekhar Reddy Chilamakuri C, D'Santos CS, Shao W, Saeh JC, Koch R, Weinstock DM, Zinda M, Fawell SE, Drew L. AZD4573 Is a Highly Selective CDK9 Inhibitor That Suppresses MCL-1 and Induces Apoptosis in Hematologic Cancer Cells. Clin Cancer Res 2019; 26:922-934. [DOI: 10.1158/1078-0432.ccr-19-1853] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
|
10
|
Kozako T, Aikawa A, Ohsugi T, Uchida YI, Kato N, Sato K, Ishitsuka K, Yoshimitsu M, Honda SI. High expression of NAMPT in adult T-cell leukemia/lymphoma and anti-tumor activity of a NAMPT inhibitor. Eur J Pharmacol 2019; 865:172738. [PMID: 31614144 DOI: 10.1016/j.ejphar.2019.172738] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 11/28/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature T lymphocytes induced by human T-cell leukemia virus-1 and has a poor outcome. New molecular targets for the prevention and treatment of ATL are needed urgently. We previously reported high expression of Sirtuin 1, a nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylase, in primary acute-type ATL cells. NAD+ biosynthesis via nicotinamide phosphoribosyltransferase (NAMPT) modulates Sirtuin 1 activity. Here, we examined the expression and effects of inhibiting NAMPT, a rate-limiting enzyme in NAD+ biosynthesis, in ATL cells. We found that peripheral blood mononuclear cells from patients with acute-type ATL expressed significantly higher levels of NAMPT protein than cells from healthy subjects. FK866, a NAMPT inhibitor, induced apoptosis of freshly isolated ATL cells ex vivo and HTLV-1-infected T-cell lines in vitro, which was accompanied by activation of caspases, DNA fragmentation, and disruption of mitochondrial transmembrane potential. However, a pan-caspase inhibitor failed to prevent this FK866-induced cell death, while FK866 increased the caspase-independent cell death mediator endonuclease G. Intriguingly, FK866 also activated autophagy, as demonstrated by increases in protein levels of autophagosome marker LC3-II. Thus, FK866 simultaneously activated apoptosis and autophagy. Finally, FK866 treatment markedly decreased the growth of human ATL tumor xenografts in immunodeficient mice. We showed that NAMPT is highly expressed in primary ATL cells ex vivo, and that FK866 induces autophagy and caspase-dependent and -independent cell death pathways in vitro and has an anti-tumor activity in vivo. These results suggest a novel therapeutic strategy for patients with this fatal disease.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Akiyoshi Aikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Takeo Ohsugi
- Department of Hematology and Immunology, Rakuno Gakuen University, Hokkaido, Japan
| | - Yu-Ichiro Uchida
- Division of Hematology and Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naho Kato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Keisuke Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kenji Ishitsuka
- Division of Hematology and Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Division of Hematology and Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| | - Shin-Ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
11
|
Mathews JC, Pouryahya M, Moosmüller C, Kevrekidis YG, Deasy JO, Tannenbaum A. Molecular phenotyping using networks, diffusion, and topology: soft tissue sarcoma. Sci Rep 2019; 9:13982. [PMID: 31562358 PMCID: PMC6764992 DOI: 10.1038/s41598-019-50300-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 09/06/2019] [Indexed: 11/24/2022] Open
Abstract
Many biological datasets are high-dimensional yet manifest an underlying order. In this paper, we describe an unsupervised data analysis methodology that operates in the setting of a multivariate dataset and a network which expresses influence between the variables of the given set. The technique involves network geometry employing the Wasserstein distance, global spectral analysis in the form of diffusion maps, and topological data analysis using the Mapper algorithm. The prototypical application is to gene expression profiles obtained from RNA-Seq experiments on a collection of tissue samples, considering only genes whose protein products participate in a known pathway or network of interest. Employing the technique, we discern several coherent states or signatures displayed by the gene expression profiles of the sarcomas in the Cancer Genome Atlas along the TP53 (p53) signaling network. The signatures substantially recover the leiomyosarcoma, dedifferentiated liposarcoma (DDLPS), and synovial sarcoma histological subtype diagnoses, and they also include a new signature defined by activation and inactivation of about a dozen genes, including activation of serine endopeptidase inhibitor SERPINE1 and inactivation of TP53-family tumor suppressor gene TP73.
Collapse
Affiliation(s)
- James C Mathews
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, USA.
| | - Maryam Pouryahya
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Caroline Moosmüller
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Yannis G Kevrekidis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Allen Tannenbaum
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, USA
| |
Collapse
|
12
|
Borrajo A, Ranazzi A, Pollicita M, Bellocchi MC, Salpini R, Mauro MV, Ceccherini-Silberstein F, Perno CF, Svicher V, Aquaro S. Different Patterns of HIV-1 Replication in MACROPHAGES is Led by Co-Receptor Usage. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E297. [PMID: 31234437 PMCID: PMC6630780 DOI: 10.3390/medicina55060297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Background and objectives: To enter the target cell, HIV-1 binds not only CD4 but also a co-receptor β-chemokine receptor 5 (CCR5) or α chemokine receptor 4 (CXCR4). Limited information is available on the impact of co-receptor usage on HIV-1 replication in monocyte-derived macrophages (MDM) and on the homeostasis of this important cellular reservoir. Materials and Methods: Replication (measured by p24 production) of the CCR5-tropic 81A strain increased up to 10 days post-infection and then reached a plateau. Conversely, the replication of the CXCR4-tropic NL4.3 strain (after an initial increase up to day 7) underwent a drastic decrease becoming almost undetectable after 10 days post-infection. The ability of CCR5-tropic and CXCR4-tropic strains to induce cell death in MDM was then evaluated. While for CCR5-tropic 81A the rate of apoptosis in MDM was comparable to uninfected MDM, the infection of CXCR4-tropic NL4.3 in MDM was associated with a rate of 14.3% of apoptotic cells at day 6 reaching a peak of 43.5% at day 10 post-infection. Results: This suggests that the decrease in CXCR4-tropic strain replication in MDM can be due to their ability to induce cell death in MDM. The increase in apoptosis was paralleled with a 2-fold increase in the phosphorylated form of p38 compared to WT. Furthermore, microarray analysis showed modulation of proapoptotic and cancer-related genes induced by CXCR4-tropic strains starting from 24 h after infection, whereas CCR5 viruses modulated the expression of genes not correlated with apoptotic-pathways. Conclusions: In conclusion, CXCR4-tropic strains can induce a remarkable depletion of MDM. Conversely, MDM can represent an important cellular reservoir for CCR5-tropic strains supporting the role of CCR5-usage in HIV-1 pathogenesis and as a pharmacological target to contribute to an HIV-1 cure.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, 36312 Vigo, Spain.
| | - Alessandro Ranazzi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Michela Pollicita
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Maria Concetta Bellocchi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Romina Salpini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Maria Vittoria Mauro
- Department of Microbiology and Virology, Complex Operative Unit (UOC), Hospital of Cosenza, 87100 Cosenza, Italy.
| | | | - Carlo Federico Perno
- Department of Microbiology and Clinic Microbiology, University of Milan, 20162 Milan, Italy.
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
13
|
Bae SJ, Shin MW, Son T, Lee HS, Chae JS, Jeon S, Oh GT, Kim KW. Ninjurin1 positively regulates osteoclast development by enhancing the survival of prefusion osteoclasts. Exp Mol Med 2019; 51:1-16. [PMID: 30700695 PMCID: PMC6353902 DOI: 10.1038/s12276-018-0201-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 01/20/2023] Open
Abstract
Osteoclasts (OCs) are bone-resorbing cells that originate from hematopoietic stem cells and develop through the fusion of mononuclear myeloid precursors. Dysregulation of OC development causes bone disorders such as osteopetrosis, osteoporosis, and rheumatoid arthritis. Although the molecular mechanisms underlying osteoclastogenesis have been well established, the means by which OCs maintain their survival during OC development remain unknown. We found that Ninjurin1 (Ninj1) expression is dynamically regulated during osteoclastogenesis and that Ninj1-/- mice exhibit increased trabecular bone volume owing to impaired OC development. Ninj1 deficiency did not alter OC differentiation, transmigration, fusion, or actin ring formation but increased Caspase-9-dependent intrinsic apoptosis in prefusion OCs (preOCs). Overexpression of Ninj1 enhanced the survival of mouse macrophage/preOC RAW264.7 cells in osteoclastogenic culture, suggesting that Ninj1 is important for the survival of preOCs. Finally, analysis of publicly available microarray data sets revealed a potent correlation between high NINJ1 expression and destructive bone disorders in humans. Our data indicate that Ninj1 plays an important role in bone homeostasis by enhancing the survival of preOCs.
Collapse
Affiliation(s)
- Sung-Jin Bae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.,Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, 50612, Korea
| | - Min Wook Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.,RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Taekwon Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hye Shin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ji Soo Chae
- Department of Life Sciences and Technology, PerkinElmer, Seoul, 06702, Korea
| | - Sejin Jeon
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea. .,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea.
| |
Collapse
|
14
|
Chen Q, Kang J, Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther 2018; 3:18. [PMID: 29967689 PMCID: PMC6026494 DOI: 10.1038/s41392-018-0018-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cell death is an essential biological process for physiological growth and development. Three classical forms of cell death-apoptosis, autophagy, and necrosis-display distinct morphological features by activating specific signaling pathways. With recent research advances, we have started to appreciate that these cell death processes can cross-talk through interconnecting, even overlapping, signaling pathways, and the final cell fate is the result of the interplay of different cell death programs. This review provides an insight into the independence of and associations among these three types of cell death and explores the significance of cell death under the specific conditions of human diseases, particularly neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Qi Chen
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China
| | - Jian Kang
- 3Cancer Signalling Laboratory, Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan street, Melbourne, VIC 3000 Australia
| | - Caiyun Fu
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China.,4Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA 94158 USA.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014 China
| |
Collapse
|
15
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|
16
|
Ancestral State Reconstruction of the Apoptosis Machinery in the Common Ancestor of Eukaryotes. G3-GENES GENOMES GENETICS 2018; 8:2121-2134. [PMID: 29703784 PMCID: PMC5982838 DOI: 10.1534/g3.118.200295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptotic cell death is a type of eukaryotic cell death. In animals, it regulates development, is involved in cancer suppression, and causes cell death during pathological aging of neuronal cells in neurodegenerative diseases such as Alzheimer's. Mitochondrial apoptotic-like cell death, a form of primordial apoptosis, also occurs in unicellular organisms. Here, we ask the question why the apoptosis machinery has been acquired and maintained in unicellular organisms and attempt to answer it by performing ancestral state reconstruction. We found indications of an ancient evolutionary arms race between protomitochondria and host cells, leading to the establishment of the currently existing apoptotic pathways. According to this reconstruction, the ancestral protomitochondrial apoptosis machinery contained both caspases and metacaspases, four types of apoptosis induction factors (AIFs), both fungal and animal OMI/HTR proteases, and various apoptotic DNases. This leads to the prediction that in extant unicellular eukaryotes, the apoptotic factors are involved in mitochondrial respiration and their activity is needed exclusively in aerobic conditions. We test this prediction experimentally using yeast and find that a loss of the main apoptotic factors is beneficial under anaerobic conditions yet deleterious under aerobic conditions in the absence of lethal stimuli. We also point out potential medical implications of these findings.
Collapse
|
17
|
Yu Q, Liu ZY, Chen Q, Lin JS. Mcl-1 as a potential therapeutic target for human hepatocelluar carcinoma. ACTA ACUST UNITED AC 2016; 36:494-500. [DOI: 10.1007/s11596-016-1614-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
|
18
|
Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep 2016; 6:30314. [PMID: 27444754 PMCID: PMC4957209 DOI: 10.1038/srep30314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/04/2016] [Indexed: 01/06/2023] Open
Abstract
This study presents human placenta-derived multipotent cells (PDMCs) as a source from which functional glutamatergic neurons can be derived. We found that the small heat-shock protein 27 (HSP27) was downregulated during the neuronal differentiation process. The in vivo temporal and spatial profiles of HSP27 expression were determined and showed inverted distributions with neuronal proteins during mouse embryonic development. Overexpression of HSP27 in stem cells led to the arrest of neuronal differentiation; however, the knockdown of HSP27 yielded a substantially enhanced ability of PDMCs to differentiate into neurons. These neurons formed synaptic networks and showed positive staining for multiple neuronal markers. Additionally, cellular phenomena including the absence of apoptosis and rare proliferation in HSP27-silenced PDMCs, combined with molecular events such as cleaved caspase-3 and the loss of stemness with cleaved Nanog, indicated that HSP27 is located upstream of neuronal differentiation and constrains that process. Furthermore, the induced neurons showed increasing intracellular calcium concentrations upon glutamate treatment. These differentiated cells co-expressed the N-methyl-D-aspartate receptor, vesicular glutamate transporter, and synaptosomal-associated protein 25 but did not show expression of tyrosine hydroxylase, choline acetyltransferase or glutamate decarboxylase 67. Therefore, we concluded that HSP27-silenced PDMCs differentiated into neurons possessing the characteristics of functional glutamatergic neurons.
Collapse
|
19
|
Kaczanowski S. Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 2016; 13:031001. [DOI: 10.1088/1478-3975/13/3/031001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Talarczyk-Desole J, Kotwicka M, Jendraszak M, Pawelczyk L, Murawski M, Jędrzejczak P. Sperm midpiece apoptotic markers: impact on fertilizing potential in in vitro fertilization and intracytoplasmic sperm injection. Hum Cell 2016; 29:67-75. [PMID: 26791536 PMCID: PMC4819544 DOI: 10.1007/s13577-015-0129-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/01/2015] [Indexed: 11/24/2022]
Abstract
The aim of this study was to investigate the relationship between apoptotic markers present in human spermatozoa, namely phosphatidylserine translocation (PST) from the inner to the outer layer of the cytomembrane and the active form of caspase-3 (c3) versus the fertilizing potential of male gametes in conventional in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) models. A total of 116 male patients treated with their partners for infertility underwent basic semen analysis and an assessment of the presence of PST and the active c3 in sperm using flow cytometry. Forty patients underwent IVF, group A, while 76 patients underwent ICSI, group B. The fertilizing potential of the gametes was measured as the percentage of oocytes with pronuclei present after either procedure. PST and active c3 were identified in vital gametes, mainly in the midpiece area. Concentration, motility, morphology, and viability of spermatozoa strongly negatively correlated with both markers. In group A, a negative correlation between both markers and the success rate of conventional IVF was observed (r = -0.4, p = 0.04 for PST; r = -0.4, p = 0.02 for active c3, respectively). In group B, the success rate of ICSI did not correlate with either marker (r = -0.2, p = 0.85 for PST and r = 0.1, p = 0.51 for active c3). The two apoptotic markers localized in the sperm midpiece area may affect their function not only by decreasing basic andrologic parameters but also by reducing the probability of conception. Therefore, analysis of PST and active c3 in the sperm of patients undergoing infertility treatment should be recommended.
Collapse
Affiliation(s)
- Joanna Talarczyk-Desole
- Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, Polna 33, 60-535, Poznan, Poland.
| | - Małgorzata Kotwicka
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5d, 60-806, Poznan, Poland
| | - Magdalena Jendraszak
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5d, 60-806, Poznan, Poland
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, Polna 33, 60-535, Poznan, Poland
| | - Marek Murawski
- 1st Department and Clinic of Gynaecology and Obstetrics, Wrocław Medical University, T. Chałubińskiego 3, 50-368, Wrocław, Poland
| | - Piotr Jędrzejczak
- Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, Polna 33, 60-535, Poznan, Poland
| |
Collapse
|
21
|
Abstract
The mitochondrion descends from a bacterium that, about two billion years ago, became endosymbiotic. This organelle represents a Pandora’s box whose opening triggers cytochrome-c release and apoptosis of cells from multicellular animals, which evolved much later, about six hundred million years ago. BCL-2 proteins, which are critical apoptosis regulators, were recruited at a certain time point in evolution to either lock or unlock this mitochondrial Pandora’s box. Hence, particularly intriguing is the issue of when and how the “BCL-2 proteins–mitochondria–apoptosis” triptych emerged. This chapter explains what it takes from an evolutionary perspective to evolve a BCL-2-regulated apoptotic pathway, by focusing on the events occurring upstream of mitochondria.
Collapse
|
22
|
Novel small-molecule SIRT1 inhibitors induce cell death in adult T-cell leukaemia cells. Sci Rep 2015; 5:11345. [PMID: 26091232 PMCID: PMC4473680 DOI: 10.1038/srep11345] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/05/2015] [Indexed: 01/07/2023] Open
Abstract
Adult T-cell leukaemia/lymphoma (ATL) is an aggressive T-cell malignancy that develops after long-term infection with human T-cell leukaemia virus (HTLV)-1. The identification of new molecular targets for ATL prevention and treatment is desired. SIRT1, a nicotinamide adenine dinucleotide(+) -dependent histone/protein deacetylase, plays crucial roles in various physiological processes, including aging and apoptosis. We previously reported that ATL patients had significantly higher SIRT1 protein levels than healthy controls. Here, we demonstrate that two novel small-molecule SIRT1 inhibitors, NCO-01/04, reduced cell viability and enhanced apoptotic cells in peripheral blood monocyte cells of patients with acute ATL, which has a poor prognosis. NCO-01/04 also reduced the cell viability with DNA fragmentation, Annexin V-positive cells, and caspase activation. However, a caspase inhibitor did not inhibit this caspase-dependent cell death. NCO-01/04 enhanced the endonuclease G level in the nucleus with loss of the mitochondrial transmembrane potential, which can promote caspase-independent death. Interestingly, NCO-01/04 increased the LC3-II-enriched protein fraction, indicating autophagosome accumulation as well as autophagy. Thus, NCO-01/04 simultaneously caused caspase activation and autophagy. These results suggest that NCO-01/04 is highly effective against ATL cells in caspase-dependent or -independent manners with autophagy, and that its clinical application might improve the prognosis of patients with this fatal disease.
Collapse
|
23
|
Bloemberg D, Quadrilatero J. Mitochondrial pro-apoptotic indices do not precede the transient caspase activation associated with myogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2926-36. [PMID: 25205454 DOI: 10.1016/j.bbamcr.2014.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 12/24/2022]
Abstract
Skeletal muscle differentiation requires activity of the apoptotic protease caspase-3. We attempted to identify the source of caspase activation in differentiating C2C12 skeletal myoblasts. In addition to caspase-3, caspase-2 was transiently activated during differentiation; however, no changes were observed in caspase-8 or -9 activity. Although mitochondrial Bax increased, this was matched by Bcl-2, resulting in no change to the mitochondrial Bax:Bcl-2 ratio early during differentiation. Interestingly, mitochondrial membrane potential increased on a timeline similar to caspase activation and was accompanied by an immediate, temporary reduction in cytosolic Smac and cytochrome c. Since XIAP protein expression dramatically declined during myogenesis, we investigated whether this contributes to caspase-3 activation. Despite reducing caspase-3 activity by up to 57%, differentiation was unaffected in cells overexpressing normal or E3-mutant XIAP. Furthermore, a XIAP mutant which can inhibit caspase-9 but not caspase-3 did not reduce caspase-3 activity or affect differentiation. Administering a chemical caspase-3 inhibitor demonstrated that complete enzyme inhibition was required to impair myogenesis. These results suggest that neither mitochondrial apoptotic signaling nor XIAP degradation is responsible for transient caspase-3 activation during C2C12 differentiation.
Collapse
|
24
|
Investigation of the effects of 2.1 GHz microwave radiation on mitochondrial membrane potential (ΔΨm), apoptotic activity and cell viability in human breast fibroblast cells. Cell Biochem Biophys 2014; 67:1371-8. [PMID: 23723005 DOI: 10.1007/s12013-013-9669-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the present study we aimed to investigate the effects of 2.1 GHz Wideband Code Division Multiple Access (W-CDMA) modulated Microwave (MW) Radiation on cell survival and apoptotic activity of human breast fibroblast cells. The cell cultures were exposed to W-CDMA modulated MW at 2.1 GHz at a SAR level of 0.607 W/kg for 4 and 24 h. The cell viability was assessed by MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method. The percentage of apoptotic cells was analyzed by Annexin V-FITC and PI staining. 5,5',6,6'-Tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide (JC-1) was used to measure Mitochondrial Membrane Potential (ΔΨm). sFasL and Fas/APO-1 protein levels were determined by ELISA method. 2.1 GHz MW radiation was shown to be able to inhibit cell proliferation and induce apoptosis in human breast fibroblast cells. The cell viability of MW-exposed cells was decreased significantly. The percentages of Annexin V-FITC positive cells were higher in MW groups. ΔΨm was decreased significantly due to MW radiation exposure. However, neither sFas nor FasL level was significantly changed in MW-exposed fibroblast cells. The results of this study showed that 2.1 GHz W-CDMA modulated MW radiation-induced apoptotic cell death via the mitochondrial pathway.
Collapse
|
25
|
Rana A, Rana B, Mishra R, Sondarva G, Rangasamy V, Das S, Viswakarma N, Kanthasamy A. Mixed Lineage Kinase-c-Jun N-Terminal Kinase Axis: A Potential Therapeutic Target in Cancer. Genes Cancer 2014; 4:334-41. [PMID: 24349631 DOI: 10.1177/1947601913485415] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mixed lineage kinases (MLKs) are members of the mitogen-activated protein kinase kinase kinase (MAP3K) family and are reported to activate MAP kinase pathways. There have been at least 9 members of the MLK family identified to date, although the physiological functions of all the family members are yet unknown. However, MLKs in general have been implicated in neurodegenerative diseases, including Parkinson and Alzheimer diseases. Recent reports suggest that some of the MLK members could play a role in cancer via modulating cell migration, invasion, cell cycle, and apoptosis. This review article will first describe the biology of MLK members and then discuss the current progress that relates to their functions in cancer.
Collapse
Affiliation(s)
- Ajay Rana
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA ; Hines Veterans Affairs Medical Center, Hines, IL, USA
| | - Basabi Rana
- Hines Veterans Affairs Medical Center, Hines, IL, USA ; Division of Gastroenterology, Department of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Rajakishore Mishra
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA ; Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, India
| | - Gautam Sondarva
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Velusamy Rangasamy
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA ; Department of Veterinary Parasitology, Veterinary College and Research Institute, Namakkal, India
| | - Subhasis Das
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Navin Viswakarma
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Anumantha Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
26
|
Edwardsiella tarda-Induced cytotoxicity depends on its type III secretion system and flagellin. Infect Immun 2014; 82:3436-45. [PMID: 24891103 DOI: 10.1128/iai.01065-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many Gram-negative bacteria utilize a type III secretion system (T3SS) to translocate virulence proteins into host cells to cause diseases. In responding to infection, macrophages detect some of the translocated proteins to activate caspase-1-mediated cell death, called pyroptosis, and secretion of proinflammatory cytokines to control the infection. Edwardsiella tarda is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and both gastrointestinal and extraintestinal infections in humans. In this study, we report that the T3SS of E. tarda facilitates its survival and replication in murine bone marrow-derived macrophages, and E. tarda infection triggers pyroptosis of infected macrophages from mice and fish and increased secretion of the cytokine interleukin 1β in a T3SS-dependent manner. Deletion of the flagellin gene fliC of E. tarda results in decreased cytotoxicity for infected macrophages and does not attenuate its virulence in a fish model of infection, whereas upregulated expression of FliC in the fliC mutant strain reduces its virulence. We propose that the host controls E. tarda infection partially by detecting FliC translocated by the T3SS, whereas the bacteria downregulate the expression of FliC to evade innate immunity.
Collapse
|
27
|
Cilenti L, Ambivero CT, Ward N, Alnemri ES, Germain D, Zervos AS. Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1295-307. [PMID: 24709290 DOI: 10.1016/j.bbamcr.2014.03.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022]
Abstract
Omi/HtrA2 is a nuclear encoded mitochondrial serine protease with dual and opposite functions that depend entirely on its subcellular localization. During apoptosis, Omi/HtrA2 is released into the cytoplasm where it participates in cell death. While confined in the inter-membrane space of the mitochondria, Omi/HtrA2 has a pro-survival function that may involve the regulation of protein quality control (PQC) and mitochondrial homeostasis. Loss of Omi/HtrA2's protease activity causes the neuromuscular disorder of the mnd2 (motor neuron degeneration 2) mutant mice. These mice develop multiple defects including neurodegeneration with parkinsonian features. Loss of Omi/HtrA2 in non-neuronal tissues has also been shown to cause premature aging. The normal function of Omi/HtrA2 in the mitochondria and how its deregulation causes neurodegeneration or premature aging are unknown. Here we report that the mitochondrial Mulan E3 ubiquitin ligase is a specific substrate of Omi/HtrA2. During exposure to H(2)O(2), Omi/HtrA2 degrades Mulan, and this regulation is lost in cells that carry the inactive protease. Furthermore, we show accumulation of Mulan protein in various tissues of mnd2 mice as well as in Omi/HtrA2(-/-) mouse embryonic fibroblasts (MEFs). This causes a significant decrease of mitofusin 2 (Mfn2) protein, and increased mitophagy. Our work describes a new stress-signaling pathway that is initiated in the mitochondria and involves the regulation of Mulan by Omi/HtrA2 protease. Deregulation of this pathway, as it occurs in mnd2 mutant mice, causes mitochondrial dysfunction and mitophagy, and could be responsible for the motor neuron disease and the premature aging phenotype observed in these animals.
Collapse
Affiliation(s)
- Lucia Cilenti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA
| | - Camilla T Ambivero
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA
| | - Nathan Ward
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA
| | - Emad S Alnemri
- Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Doris Germain
- Tisch Cancer Institute, Division of Hematology/Oncology, Mount Sinai School of Medicine, New York, NY 10129, USA
| | - Antonis S Zervos
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA.
| |
Collapse
|
28
|
Caspase-3 and RasGAP: a stress-sensing survival/demise switch. Trends Cell Biol 2013; 24:83-9. [PMID: 24007977 DOI: 10.1016/j.tcb.2013.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
The final decision on cell fate, survival versus cell death, relies on complex and tightly regulated checkpoint mechanisms. The caspase-3 protease is a predominant player in the execution of apoptosis. However, recent progress has shown that this protease paradoxically can also protect cells from death. Here, we discuss the underappreciated, protective, and prosurvival role of caspase-3 and detail the evidence showing that caspase-3, through differential processing of p120 Ras GTPase-activating protein (RasGAP), can modulate a given set of proteins to generate, depending on the intensity of the input signals, opposite outcomes (survival vs death).
Collapse
|
29
|
Takemura G, Kanoh M, Minatoguchi S, Fujiwara H. Cardiomyocyte apoptosis in the failing heart — A critical review from definition and classification of cell death. Int J Cardiol 2013; 167:2373-86. [DOI: 10.1016/j.ijcard.2013.01.163] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/13/2012] [Accepted: 01/13/2013] [Indexed: 12/19/2022]
|
30
|
El-Khattouti A, Selimovic D, Haikel Y, Hassan M. Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death 2013; 6:37-55. [PMID: 25278778 PMCID: PMC4147769 DOI: 10.4137/jcd.s11034] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Both apoptosis and autophagy are highly conserved processes that besides their role in the maintenance of the organismal and cellular homeostasis serve as a main target of tumor therapeutics. Although their important roles in the modulation of tumor therapeutic strategies have been widely reported, the molecular actions of both apoptosis and autophagy are counteracted by cancer protective mechanisms. While apoptosis is a tightly regulated process that is implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in lysosomal degradation and recycling of proteins and organelles, and thereby is considered an important survival/protective mechanism for cancer cells in response to metabolic stress or chemotherapy. Although the relationship between autophagy and cell death is very complicated and has not been characterized in detail, the molecular mechanisms that control this relationship are considered to be a relevant target for the development of a therapeutic strategy for tumor treatment. In this review, we focus on the molecular mechanisms of apoptosis, autophagy, and those of the crosstalk between apoptosis and autophagy in order to provide insight into the molecular mechanisms that may be essential for the balance between cell survival and death as well as their role as targets for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Denis Selimovic
- Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France. ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France. ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, U 977, 67000 Strasbourg, France. ; Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
31
|
Taylor-Brown E, Hurd H. The first suicides: a legacy inherited by parasitic protozoans from prokaryote ancestors. Parasit Vectors 2013; 6:108. [PMID: 23597031 PMCID: PMC3640913 DOI: 10.1186/1756-3305-6-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/05/2013] [Indexed: 12/23/2022] Open
Abstract
It is more than 25 years since the first report that a protozoan parasite could die by a process resulting in a morphological phenotype akin to apoptosis. Since then these phenotypes have been observed in many unicellular parasites, including trypanosomatids and apicomplexans, and experimental evidence concerning the molecular pathways that are involved is growing. These observations support the view that this form of programmed cell death is an ancient one that predates the evolution of multicellularity. Here we review various hypotheses that attempt to explain the origin of apoptosis, and look for support for these hypotheses amongst the parasitic protists as, with the exception of yeast, most of the work on death mechanisms in unicellular organisms has focussed on them. We examine the role that addiction modules may have played in the original eukaryote cell and the part played by mitochondria in the execution of present day cells, looking for examples from Leishmania spp. Trypanosoma spp. and Plasmodium spp. In addition, the expanding knowledge of proteases, nucleases and other molecules acting in protist execution pathways has enabled comparisons to be made with extant Archaea and bacteria and with biochemical pathways that evolved in metazoans. These comparisons lend support to the original sin hypothesis but also suggest that present-day death pathways may have had multifaceted beginnings.
Collapse
|
32
|
Effect of mitochondrial and ER-targeted Bcl-2 overexpression on apoptosis in recombinant Chinese hamster ovary cells treated with sodium butyrate. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
D'Amelio M, Sheng M, Cecconi F. Caspase-3 in the central nervous system: beyond apoptosis. Trends Neurosci 2012; 35:700-9. [PMID: 22796265 DOI: 10.1016/j.tins.2012.06.004] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 01/06/2023]
Abstract
Caspase-3 has been identified as a key mediator of neuronal programmed cell death. This protease plays a central role in the developing nervous system and its activation is observed early in neural tube formation and persists during postnatal differentiation of the neural network. Caspase-3 activation, a crucial event of neuronal cell death program, is also a feature of many chronic neurodegenerative diseases. This traditional apoptotic function of caspase-3 is challenged by recent studies that reveal new cell death-independent roles for mitochondrial-activated caspase-3 in neurite pruning and synaptic plasticity. These findings underscore the need for further research into the mechanism of action and functions of caspase-3 that may prove useful in the development of novel pharmacological treatments for a diverse range of neurological disorders.
Collapse
Affiliation(s)
- Marcello D'Amelio
- Istituto di Ricovero e Cura a Carattere Scientifico, S. Lucia Foundation, via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | | | | |
Collapse
|
34
|
Monserrate JP, Chen MYY, Brachmann CB. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor) signaling and exhibit characteristics of altered basal energy metabolism. BMC Biol 2012; 10:63. [PMID: 22824239 PMCID: PMC3411425 DOI: 10.1186/1741-7007-10-63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/24/2012] [Indexed: 01/07/2023] Open
Abstract
Background B cell lymphoma 2 (Bcl-2) proteins are the central regulators of apoptosis. The two bcl-2 genes in Drosophila modulate the response to stress-induced cell death, but not developmental cell death. Because null mutants are viable, Drosophila provides an optimum model system to investigate alternate functions of Bcl-2 proteins. In this report, we explore the role of one bcl-2 gene in nutrient stress responses. Results We report that starvation of Drosophila larvae lacking the bcl-2 gene, buffy, decreases survival rate by more than twofold relative to wild-type larvae. The buffy null mutant reacted to starvation with the expected responses such as inhibition of target of rapamycin (Tor) signaling, autophagy initiation and mobilization of stored lipids. However, the autophagic response to starvation initiated faster in larvae lacking buffy and was inhibited by ectopic buffy. We demonstrate that unusually high basal Tor signaling, indicated by more phosphorylated S6K, was detected in the buffy mutant and that removal of a genomic copy of S6K, but not inactivation of Tor by rapamycin, reverted the precocious autophagy phenotype. Instead, Tor inactivation also required loss of a positive nutrient signal to trigger autophagy and loss of both was sufficient to activate autophagy in the buffy mutant even in the presence of enforced phosphoinositide 3-kinase (PI3K) signaling. Prior to starvation, the fed buffy mutant stored less lipid and glycogen, had high lactate levels and maintained a reduced pool of cellular ATP. These observations, together with the inability of buffy mutant larvae to adapt to nutrient restriction, indicate altered energy metabolism in the absence of buffy. Conclusions All animals in their natural habitats are faced with periods of reduced nutrient availability. This study demonstrates that buffy is required for adaptation to both starvation and nutrient restriction. Thus, Buffy is a Bcl-2 protein that plays an important non-apoptotic role to promote survival of the whole organism in a stressful situation.
Collapse
|
35
|
Non-apoptotic roles for death-related molecules: When mitochondria chose cell fate. Exp Cell Res 2012; 318:1309-15. [DOI: 10.1016/j.yexcr.2012.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 01/28/2012] [Accepted: 01/31/2012] [Indexed: 12/18/2022]
|
36
|
Park S, Nozaki K, Guyton MK, Smith JA, Ray SK, Banik NL. Calpain inhibition attenuated morphological and molecular changes in skeletal muscle of experimental allergic encephalomyelitis rats. J Neurosci Res 2012; 90:2134-45. [PMID: 22715087 DOI: 10.1002/jnr.23096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/30/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022]
Abstract
Muscle weakness and atrophy are important manifestations of multiple sclerosis (MS). To investigate the pathophysiological mechanisms of skeletal muscle change in MS, we induced experimental autoimmune encephalomyelitis (EAE) in Lewis male rats and examined morphological and molecular changes in skeletal muscle. We also treated EAE rats with calpepetin, a calpain inhibitor, to examine its beneficial effects on skeletal muscle damage. Morphological changes in muscle tissue of EAE rats included smaller and irregularly shaped muscle fibers and fibrosis. Western blot analysis demonstrated increased calpain:calpastatin ratio, inflammation-related transcription factors (nuclear factor-κB:inhibitor of κB α ratio), and proinflammatory enzymes (cyclooxygenase-2). TUNEL-positive myonuclei in skeletal muscle cells of EAE rats indicated cell death. In addition, markers of apoptotic cell death (Bax:Bcl-2 ratio and caspase-12 protein levels) were elevated. Expression of muscle-specific ubiquitin ligases (muscle atrophy F-box and muscle ring finger protein 1), was upregulated in muscle tissue of EAE-vehicle animals. Both prophylactic and therapeutic treatment with calpeptin partially attenuated muscle changes noted in EAE animals. These results indicate that morphological and molecular changes including apoptotic cell death and protein breakdown develop in skeletal muscle of EAE animals and that these changes can be reversed by calpain inhibition.
Collapse
Affiliation(s)
- Sookyoung Park
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wang L, Sun C, Wang ZH, Guo GQ. Mechanism of apoptotosis induced by ortho-topolin riboside in human hepatoma cell line SMMC-7721. Food Chem Toxicol 2012; 50:1962-8. [DOI: 10.1016/j.fct.2012.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/01/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
|
38
|
Smoum R, Rubinstein A, Dembitsky VM, Srebnik M. Boron containing compounds as protease inhibitors. Chem Rev 2012; 112:4156-220. [PMID: 22519511 DOI: 10.1021/cr608202m] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Reem Smoum
- The School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
| | | | | | | |
Collapse
|
39
|
García-García E, Pino-Barrio MJ, López-Medina L, Martínez-Serrano A. Intermediate progenitors are increased by lengthening of the cell cycle through calcium signaling and p53 expression in human neural progenitors. Mol Biol Cell 2012; 23:1167-80. [PMID: 22323293 PMCID: PMC3315818 DOI: 10.1091/mbc.e11-06-0524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During development, neurons can be generated directly from a multipotent progenitor or indirectly through an intermediate progenitor (IP). This last mode of division amplifies the progeny of neurons. The mechanisms governing the generation and behavior of IPs are not well understood. In this work, we demonstrate that the lengthening of the cell cycle enhances the generation of neurons in a human neural progenitor cell system in vitro and also the generation and expansion of IPs. These IPs are insulinoma-associated 1 (Insm1)(+)/BTG family member 2 (Btg2)(-), which suggests an increase in a self-amplifying IP population. Later the cultures express neurogenin 2 (Ngn2) and become neurogenic. The signaling responsible for this cell cycle modulation is investigated. It is found that the release of calcium from the endoplasmic reticulum to the cytosol in response to B cell lymphoma-extra large overexpression or ATP addition lengths the cell cycle and increases the number of IPs and, in turn, the final neuron outcome. Moreover, data suggest that the p53-p21 pathway is responsible for the changes in cell cycle. In agreement with this, increased p53 levels are necessary for a calcium-induced increase in neurons. Our findings contribute to understand how calcium signaling can modulate cell cycle length during neurogenesis.
Collapse
Affiliation(s)
- Elisa García-García
- Department of Molecular Biology, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain.
| | | | | | | |
Collapse
|
40
|
Zdralević M, Guaragnella N, Antonacci L, Marra E, Giannattasio S. Yeast as a tool to study signaling pathways in mitochondrial stress response and cytoprotection. ScientificWorldJournal 2012; 2012:912147. [PMID: 22454613 PMCID: PMC3289858 DOI: 10.1100/2012/912147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022] Open
Abstract
Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.
Collapse
Affiliation(s)
- Maša Zdralević
- CNR-Istituto di Biomembrane e Bioenergetica, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
41
|
Zille M, Farr TD, Przesdzing I, Müller J, Sommer C, Dirnagl U, Wunder A. Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J Cereb Blood Flow Metab 2012; 32:213-31. [PMID: 22086195 PMCID: PMC3272608 DOI: 10.1038/jcbfm.2011.150] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the hallmarks of stroke pathophysiology is the widespread death of many different types of brain cells. As our understanding of the complex disease that is stroke has grown, it is now generally accepted that various different mechanisms can result in cell damage and eventual death. A plethora of techniques is available to identify various pathological features of cell death in stroke; each has its own drawbacks and pitfalls, and most are unable to distinguish between different types of cell death, which partially explains the widespread misuse of many terms. The purpose of this review is to summarize the standard histopathological and immunohistochemical techniques used to identify various pathological features of stroke. We then discuss how these methods should be properly interpreted on the basis of what they are showing, as well as advantages and disadvantages that require consideration. As there is much interest in the visualization of stroke using noninvasive imaging strategies, we also specifically discuss how these techniques can be interpreted within the context of cell death.
Collapse
Affiliation(s)
- Marietta Zille
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Shi R, Weng J, Szelemej P, Kong J. Caspase-Independent Stroke Targets. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Lin B, Huntley D, Abuali G, Langley SR, Sindelar G, Petretto E, Butcher S, Grimm S. Determining signalling nodes for apoptosis by a genetic high-throughput screen. PLoS One 2011; 6:e25023. [PMID: 21966401 PMCID: PMC3178610 DOI: 10.1371/journal.pone.0025023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 08/25/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND With the ever-increasing information emerging from the various sequencing and gene annotation projects, there is an urgent need to elucidate the cellular functions of the newly discovered genes. The genetically regulated cell suicide of apoptosis is especially suitable for such endeavours as it is governed by a vast number of factors. METHODOLOGY/PRINCIPAL FINDINGS We have set up a high-throughput screen in 96-well microtiter plates for genes that induce apoptosis upon their individual transfection into human cells. Upon screening approximately 100,000 cDNA clones we determined 74 genes that initiate this cellular suicide programme. A thorough bioinformatics analysis of these genes revealed that 91% are novel apoptosis regulators. Careful sequence analysis and functional annotation showed that the apoptosis factors exhibit a distinct functional distribution that distinguishes the cell death process from other signalling pathways. While only a minority of classic signal transducers were determined, a substantial number of the genes fall into the transporter- and enzyme-category. The apoptosis factors are distributed throughout all cellular organelles and many signalling circuits, but one distinct signalling pathway connects at least some of the isolated genes. Comparisons with microarray data suggest that several genes are dysregulated in specific types of cancers and degenerative diseases. CONCLUSIONS/SIGNIFICANCE Many unknown genes for cell death were revealed through our screen, supporting the enormous complexity of cell death regulation. Our results will serve as a repository for other researchers working with genomics data related to apoptosis or for those seeking to reveal novel signalling pathways for cell suicide.
Collapse
Affiliation(s)
- Bevan Lin
- Division of Experimental Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cell death-resistance of differentiated myotubes is associated with enhanced anti-apoptotic mechanisms compared to myoblasts. Apoptosis 2011; 16:221-34. [PMID: 21161388 DOI: 10.1007/s10495-010-0566-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle atrophy is associated with elevated apoptosis while muscle differentiation results in apoptosis resistance, indicating that the role of apoptosis in skeletal muscle is multifaceted. The objective of this study was to investigate mechanisms underlying apoptosis susceptibility in proliferating myoblasts compared to differentiated myotubes and we hypothesized that cell death-resistance in differentiated myotubes is mediated by enhanced anti-apoptotic pathways. C(2)C(12) myoblasts and myotubes were treated with H(2)O(2) or staurosporine (Stsp) to induce cell death. H(2)O(2) and Stsp induced DNA fragmentation in more than 50% of myoblasts, but in myotubes less than 10% of nuclei showed apoptotic changes. Mitochondrial membrane potential dissipation was detected with H(2)O(2) and Stsp in myoblasts, while this response was greatly diminished in myotubes. Caspase-3 activity was 10-fold higher in myotubes compared to myoblasts, and Stsp caused a significant caspase-3 induction in both. However, exposure to H(2)O(2) did not lead to caspase-3 activation in myoblasts, and only to a modest induction in myotubes. A similar response was observed for caspase-2, -8 and -9. Abundance of caspase-inhibitors (apoptosis repressor with caspase recruitment domain (ARC), and heat shock protein (HSP) 70 and -25 was significantly higher in myotubes compared to myoblasts, and in addition ARC was suppressed in response to Stsp in myotubes. Moreover, increased expression of HSPs in myoblasts attenuated cell death in response to H(2)O(2) and Stsp. Protein abundance of the pro-apoptotic protein endonuclease G (EndoG) and apoptosis-inducing factor (AIF) was higher in myotubes compared to myoblasts. These results show that resistance to apoptosis in myotubes is increased despite high levels of pro-apoptotic signaling mechanisms, and we suggest that this protective effect is mediated by enhanced anti-caspase mechanisms.
Collapse
|
45
|
Cacace AT, Pinheiro JMB. The mitochondrial connection in auditory neuropathy. Audiol Neurootol 2011; 16:398-413. [PMID: 21266802 DOI: 10.1159/000323276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/30/2010] [Indexed: 12/21/2022] Open
Abstract
'Auditory neuropathy' (AN), the term used to codify a primary degeneration of the auditory nerve, can be linked directly or indirectly to mitochondrial dysfunction. These observations are based on the expression of AN in known mitochondrial-based neurological diseases (Friedreich's ataxia, Mohr-Tranebjærg syndrome), in conditions where defects in axonal transport, protein trafficking, and fusion processes perturb and/or disrupt mitochondrial dynamics (Charcot-Marie-Tooth disease, autosomal dominant optic atrophy), in a common neonatal condition known to be toxic to mitochondria (hyperbilirubinemia), and where respiratory chain deficiencies produce reductions in oxidative phosphorylation that adversely affect peripheral auditory mechanisms. This body of evidence is solidified by data derived from temporal bone and genetic studies, biochemical, molecular biologic, behavioral, electroacoustic, and electrophysiological investigations.
Collapse
Affiliation(s)
- Anthony T Cacace
- Department of Communication Sciences and Disorders, Wayne State University, Detroit, Mich 48202, USA. cacacea @ wayne.edu
| | | |
Collapse
|
46
|
Modulation of the generation of dopaminergic neurons from human neural stem cells by Bcl-X(L): mechanisms of action. VITAMINS AND HORMONES 2011; 87:175-205. [PMID: 22127243 DOI: 10.1016/b978-0-12-386015-6.00029-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the developmental mechanisms governing dopaminergic neuron generation and maintenance is crucial for the development of neuronal replacement therapeutic procedures, like in Parkinson's disease (PD), but also for research aimed at drug screening and pharmacology. In the present chapter, we review the present situation using stem cells of different origins (pluripotent and multipotent) and summarize current manipulations of stem cells for the enhancement of dopaminergic neuron generation, focusing on the actions of Bcl-X(L). Bcl-X(L) not only enhances dopaminergic neuron survival but also augments the expression of key developmental and maintenance genes, and, through the lengthening of the cell cycle early during differentiation, regulates cell fate decisions, producing a net enhancement of neurogenesis. The relevance of these findings is discussed in the context of basic neurogenesis and also for the development of efficient cell therapy in PD.
Collapse
|
47
|
What history tells us XXI. Apoptosis and programmed cell death: when biological categories are blurred. J Biosci 2010; 35:177-81. [PMID: 20689173 DOI: 10.1007/s12038-010-0021-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
de Moura MB, dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:391-405. [PMID: 20544881 DOI: 10.1002/em.20575] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondria are important integrators of cellular function and therefore affect the homeostatic balance of the cell. Besides their important role in producing adenosine triphosphate through oxidative phosphorylation, mitochondria are involved in the control of cytosolic calcium concentration, metabolism of key cellular intermediates, and Fe/S cluster biogenesis and contributed to programmed cell death. Mitochondria are also one of the major cellular producers of reactive oxygen species (ROS). Several human pathologies, including neurodegenerative diseases and cancer, are associated with mitochondrial dysfunction and increased ROS damage. This article reviews how dysfunctional mitochondria contribute to Alzheimer's disease, Parkinson's disease, Huntington's disease, and several human cancers.
Collapse
Affiliation(s)
- Michelle Barbi de Moura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
49
|
Liu G, Beri R, Mueller A, Kamp DW. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis. Chem Biol Interact 2010; 188:309-18. [PMID: 20380827 DOI: 10.1016/j.cbi.2010.03.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/15/2010] [Accepted: 03/30/2010] [Indexed: 01/02/2023]
Abstract
Asbestos causes pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully elucidated. Accumulating evidence show that alveolar epithelial cell (AEC) apoptosis is a crucial initiating and perpetuating event in the development of pulmonary fibrosis following exposure to a wide variety of noxious stimuli, including asbestos. We review the important molecular mechanisms underlying asbestos-induced AEC apoptosis. Specifically, we focus on the role of asbestos in augmenting AEC apoptosis by the mitochondria- and p53-regulated death pathways that result from the production of iron-derived reactive oxygen species (ROS) and DNA damage. We summarize emerging evidence implicating the endoplasmic reticulum (ER) stress response in AEC apoptosis in patients with idiopathic pulmonary fibrosis (IPF), a disease with similarities to asbestosis. Finally, we discuss a recent finding that a mitochondrial oxidative DNA repair enzyme (8-oxoguanine DNA glycosylase; Ogg1) acts as a mitochondrial aconitase chaperone protein to prevent oxidant (asbestos and H(2)O(2))-induced AEC mitochondrial dysfunction and intrinsic apoptosis. The coupling of mitochondrial Ogg1 to mitochondrial aconitase is a novel mechanism linking metabolism to mitochondrial DNA that may be important in the pathophysiologic events resulting in oxidant-induced toxicity as seen in tumors, aging, and respiratory disorders (e.g. asbestosis, IPF). Collectively, these studies are illuminating the molecular basis of AEC apoptosis following asbestos exposure that may prove useful for developing novel therapeutic strategies. Importantly, the asbestos paradigm is elucidating pathophysiologic insights into other more common pulmonary diseases, such as IPF and lung cancer, for which better therapy is required.
Collapse
Affiliation(s)
- Gang Liu
- Department of Medicine, Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center and Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
50
|
The human cytomegalovirus UL36 gene controls caspase-dependent and -independent cell death programs activated by infection of monocytes differentiating to macrophages. J Virol 2010; 84:5108-23. [PMID: 20219915 DOI: 10.1128/jvi.01345-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cellular protease caspase-8 activates extrinsic apoptosis and also functions to promote monocyte-to-macrophage differentiation. Differentiation-induced alterations to antiviral caspase-8-dependent cell death pathways are unclear. Here, we show THP-1 monocyte-to-macrophage differentiation alters the specific cell death pathways activated in response to human cytomegalovirus (HCMV) infection. Employing viruses with mutations in UL36, the gene that encodes the viral inhibitor of caspase-8 activation (vICA), our data indicate that both caspase-dependent and -independent death pathways are activated in response to infection. Activation of caspase-dependent and -independent cell death responses restricted growth of vICA-deficient viruses, and vICA/pUL36 inhibited either response. Thus, these studies also reveal that the UL36 gene controls a caspase-independent cell death pathway. The impact of caspases on control of antiviral responses differed at early and late stages of macrophage differentiation. Early in differentiation, vICA-deficient virus-induced cell death was dependent on caspases and inhibited by the pan-caspase inhibitor z-VAD(OMe)-fluoromethyl ketone. In contrast, virus-induced death at late times of differentiation was caspase independent. Additional unlabeled and fluorescent inhibitors indicated that caspase-8 promoted death from within infected cells at early but not late stages of differentiation. These data highlight the multifunctional role of vICA/pUL36 as HCMV encounters various antiviral responses during macrophage differentiation.
Collapse
|