1
|
Humphrey KM, Pandey S, Martin J, Hagoel T, Grand'Maison A, Ohm JE. Establishing a role for environmental toxicant exposure induced epigenetic remodeling in malignant transformation. Semin Cancer Biol 2019; 57:86-94. [PMID: 30453042 PMCID: PMC6522338 DOI: 10.1016/j.semcancer.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023]
Abstract
Humans are exposed to a wide variety of environmental exposures throughout their lifespan. These include both naturally occurring toxins and chemical toxicants like pesticides, herbicides, and industrial chemicals, many of which have been implicated as possible contributors to human disease susceptibility [1-3]. We, and others, have hypothesized that environmental exposures may cause adaptive epigenetic changes in regenerative cell populations and developing organisms, leading to abnormal gene expression and increased disease susceptibility later in life [3]. Common epigenetic changes include changes in miRNA expression, covalent histone modifications, and methylation of DNA. Importantly, due to their heritable nature, abnormal epigenetic modifications which occur within stem cells may be particularly deleterious. Abnormal epigenetic changes in regenerative cell linages can be passed onto a large population of daughter cells and can persist for long periods of time. It is well established that an accumulation of epigenetic changes can lead to many human diseases including cancer [4-6]. Subsequently, it is imperative that we increase our understanding of how common environmental toxins and toxicants can induce epigenetic changes, particularly in stem cell populations. In this review, we will discuss how common environmental exposures in the United States and around the world may lead to epigenetic changes and discuss potential links to human disease, including cancer.
Collapse
Affiliation(s)
- Kristen M Humphrey
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Sumali Pandey
- Minnesota State University Moorhead, Moorhead, MN, United States
| | - Jeffery Martin
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Tamara Hagoel
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Anne Grand'Maison
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
2
|
Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Anal Chim Acta 2019; 1060:30-44. [DOI: 10.1016/j.aca.2018.12.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
|
3
|
Ribeiro-Silva C, Vermeulen W, Lans H. SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair (Amst) 2019; 77:87-95. [PMID: 30897376 DOI: 10.1016/j.dnarep.2019.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/25/2023]
Abstract
SWI/SNF complexes are among the most studied ATP-dependent chromatin remodeling complexes, mostly due to their critical role in coordinating chromatin architecture and gene expression. Mutations in genes encoding SWI/SNF subunits are frequently observed in a large variety of human cancers, suggesting that one or more of the multiple SWI/SNF functions protect against tumorigenesis. Chromatin remodeling is an integral component of the DNA damage response (DDR), which safeguards against DNA damage-induced genome instability and tumorigenesis by removing DNA damage through interconnected DNA repair and signaling pathways. SWI/SNF has been implicated in facilitating repair of double-strand breaks, by non-homologous end-joining as well as homologous recombination, and repair of helix-distorting DNA damage by nucleotide excision repair. Here, we review current knowledge on SWI/SNF activity in the DDR and discuss the potential of exploiting DDR-related vulnerabilities due to SWI/SNF dysfunction for precision cancer therapy.
Collapse
Affiliation(s)
- Cristina Ribeiro-Silva
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Zhou T, Chen P, Gu J, Bishop AJR, Scott LM, Hasty P, Rebel VI. Potential relationship between inadequate response to DNA damage and development of myelodysplastic syndrome. Int J Mol Sci 2015; 16:966-89. [PMID: 25569081 PMCID: PMC4307285 DOI: 10.3390/ijms16010966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the continuous regeneration of all types of blood cells, including themselves. To ensure the functional and genomic integrity of blood tissue, a network of regulatory pathways tightly controls the proliferative status of HSCs. Nevertheless, normal HSC aging is associated with a noticeable decline in regenerative potential and possible changes in other functions. Myelodysplastic syndrome (MDS) is an age-associated hematopoietic malignancy, characterized by abnormal blood cell maturation and a high propensity for leukemic transformation. It is furthermore thought to originate in a HSC and to be associated with the accrual of multiple genetic and epigenetic aberrations. This raises the question whether MDS is, in part, related to an inability to adequately cope with DNA damage. Here we discuss the various components of the cellular response to DNA damage. For each component, we evaluate related studies that may shed light on a potential relationship between MDS development and aberrant DNA damage response/repair.
Collapse
Affiliation(s)
- Ting Zhou
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Peishuai Chen
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Jian Gu
- Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Linda M Scott
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Paul Hasty
- The Cancer Therapy Research Center, UTHSCSA, 7979 Wurzbach Road, San Antonio, TX 78229, USA.
| | - Vivienne I Rebel
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
5
|
Rastogi RP, Sinha RP, Moh SH, Lee TK, Kottuparambil S, Kim YJ, Rhee JS, Choi EM, Brown MT, Häder DP, Han T. Ultraviolet radiation and cyanobacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:154-69. [DOI: 10.1016/j.jphotobiol.2014.09.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
|
6
|
Antoniali G, Lirussi L, Poletto M, Tell G. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example. Antioxid Redox Signal 2014; 20:621-39. [PMID: 23879289 PMCID: PMC3901381 DOI: 10.1089/ars.2013.5491] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/22/2013] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE An emerging concept in DNA repair mechanisms is the evidence that some key enzymes, besides their role in the maintenance of genome stability, display also unexpected noncanonical functions associated with RNA metabolism in specific subcellular districts (e.g., nucleoli). During the evolution of these key enzymes, the acquisition of unfolded domains significantly amplified the possibility to interact with different partners and substrates, possibly explaining their phylogenetic gain of functions. RECENT ADVANCES After nucleolar stress or DNA damage, many DNA repair proteins can freely relocalize from nucleoli to the nucleoplasm. This process may represent a surveillance mechanism to monitor the synthesis and correct assembly of ribosomal units affecting cell cycle progression or inducing p53-mediated apoptosis or senescence. CRITICAL ISSUES A paradigm for this kind of regulation is represented by some enzymes of the DNA base excision repair (BER) pathway, such as apurinic/apyrimidinic endonuclease 1 (APE1). In this review, the role of the nucleolus and the noncanonical functions of the APE1 protein are discussed in light of their possible implications in human pathologies. FUTURE DIRECTIONS A productive cross-talk between DNA repair enzymes and proteins involved in RNA metabolism seems reasonable as the nucleolus is emerging as a dynamic functional hub that coordinates cell growth arrest and DNA repair mechanisms. These findings will drive further analyses on other BER proteins and might imply that nucleic acid processing enzymes are more versatile than originally thought having evolved DNA-targeted functions after a previous life in the early RNA world.
Collapse
Affiliation(s)
- Giulia Antoniali
- Department of Medical and Biological Sciences, University of Udine , Udine, Italy
| | | | | | | |
Collapse
|
7
|
Abstract
Solar ultraviolet (UV) radiation, mainly UV-B (280-315 nm), is one of the most potent genotoxic agents that adversely affects living organisms by altering their genomic stability. DNA through its nucleobases has absorption maxima in the UV region and is therefore the main target of the deleterious radiation. The main biological relevance of UV radiation lies in the formation of several cytotoxic and mutagenic DNA lesions such as cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers (DEWs), as well as DNA strand breaks. However, to counteract these DNA lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, excision repair, and mismatch repair (MMR). Photoreactivation involving the enzyme photolyase is the most frequently used repair mechanism in a number of organisms. Excision repair can be classified as base excision repair (BER) and nucleotide excision repair (NER) involving a number of glycosylases and polymerases, respectively. In addition to this, double-strand break repair, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms to ensure genomic stability. This review concentrates on the UV-induced DNA damage and the associated repair mechanisms as well as various damage detection methods.
Collapse
Affiliation(s)
- Richa
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | |
Collapse
|
8
|
Daddysman MK, Tycon MA, Fecko CJ. Photoinduced damage resulting from fluorescence imaging of live cells. Methods Mol Biol 2014; 1148:1-17. [PMID: 24718791 DOI: 10.1007/978-1-4939-0470-9_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The widespread application of fluorescence microscopy to study live cells has led to a greater understanding of numerous biological processes. Many techniques have been developed to uniquely label structures and track metabolic pathways using fluorophores in live cells. However, the photochemistry of nonnative compounds and the deposition of energy into the cell during imaging can result in unexpected and unwanted side effects. Herein, we examine potential live cell damage by first discussing common imaging considerations and modalities in fluorescence microscopy. We then consider several mechanisms by which various photochemical and photophysical phenomena cause cellular damage and introduce techniques that have leveraged these phenomena to intentionally create damage inside cells. Reviewing conditions under which intentional damage occurs can allow one to better predict when unintentional damage may be important. Finally, we delineate ways of checking for and reducing photochemical and photophysical damage.
Collapse
Affiliation(s)
- Matthew K Daddysman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | | | | |
Collapse
|
9
|
Zhao H, Yi X, Hu Z, Hu M, Chen S, Muhammad RUH, Dong X, Gong L. RNAi-mediated knockdown of catalase causes cell cycle arrest in SL-1 cells and results in low survival rate of Spodoptera litura (Fabricius). PLoS One 2013; 8:e59527. [PMID: 23555693 PMCID: PMC3608696 DOI: 10.1371/journal.pone.0059527] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/15/2013] [Indexed: 01/13/2023] Open
Abstract
Deregulated reactive oxygen species (ROS) production can lead to the disruption of structural and functional integrity of cells as a consequence of reactive interaction between ROS and various biological components. Catalase (CAT) is a common enzyme existing in nearly all organisms exposed to oxygen, which decomposes harmful hydrogen peroxide, into water and oxygen. In this study, the full length sequence that encodes CAT-like protein from Spodoptera litura named siltCAT (GenBank accession number: JQ_663444) was cloned and characterized. Amino acid sequence alignment showed siltCAT shared relatively high conservation with other insect, especially the conserved residues which defined heme and NADPH orientation. Expression pattern analysis showed that siltCAT mRNA was mainly expressed in the fat body, midgut, cuticle and malpighian tube, and as well as over last instar larvae, pupa and adult stages. RNA interference was used to silence CAT gene in SL-1 cells and the fourth-instar stage of S. litura larvae respectively. Our results provided evidence that CAT knockdown induced ROS generation, cell cycle arrest and apoptosis in SL-1 cells. It also confirmed the decrease in survival rate because of increased ROS production in experimental groups injected with double-stranded RNA of CAT (dsCAT). This study implied that ROS scavenging by CAT is important for S. litura survival.
Collapse
Affiliation(s)
- Haiming Zhao
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xin Yi
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Zhen Hu
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Meiying Hu
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Shaohua Chen
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Rizwan-ul-Haq Muhammad
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xiaolin Dong
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Liang Gong
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Leung CH, Zhong HJ, He HZ, Lu L, Chan DSH, Ma DL. Luminescent oligonucleotide-based detection of enzymes involved with DNA repair. Chem Sci 2013. [DOI: 10.1039/c3sc51228b] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Synowiec E, Blasiak J, Zaras M, Szaflik J, Szaflik JP. Association between polymorphisms of the DNA base excision repair genes MUTYH and hOGG1 and age-related macular degeneration. Exp Eye Res 2012; 98:58-66. [PMID: 22469746 DOI: 10.1016/j.exer.2012.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 01/10/2012] [Accepted: 02/15/2012] [Indexed: 12/13/2022]
Abstract
Age-Related Macular Degeneration (AMD) is an eye disease that results in progressive and irreversible loss of central vision and is considered as the primary cause of visual impairment, including blindness, in the elderly in industrialized countries. Oxidative stress has been implicated in the pathogenesis of AMD. The hOGG1 and the MUTYH genes play an important role in the repair of oxidatively damaged DNA in the base excision repair pathway. The DNA glycosylases encoded by the hOGG1 and MUTYH genes initiate this pathway by recognizing and removing 8-oxoguanine and adenine paired with 8-oxoguanine, respectively. Our study was designed to examine the association between the c.977C>G polymorphism (rs1052133) of the hOGG1 gene and the c.972G>C polymorphism (rs3219489) of the MUTYH gene and AMD as well as the modulation of this association by some clinical and lifestyle factors. Genotypes were determined in DNA from blood of 271 AMD patients, including 101 with wet and 170 with dry form of the disease and 105 sex- and age-matched individuals without AMD. We observed an association between AMD, dry and wet forms of AMD and the C/G genotype and the G allele of the c.977C>G-hOGG1 polymorphism (p 0.006; 0.009; 0.021 and 0.004; 0.005; 0.016 respectively). On the other hand, the C/C genotype and the C allele reduced the risk of AMD as well as of its dry form or wet form (p 0.002; 0.003; 0.010 and 0.004; 0.005; 0.016, respectively). Therefore, the associations we detected were driven by the dry AMD. We observed some statistically significant association between the occurrence of AMD and its dry and wet forms and genotypes of the other polymorphism, the c.972G>C-MUTYH polymorphism, but due to borderline character of all this association we do not consider them as medically relevant. Our findings suggest that the c.977C>G-hOGG1 polymorphism may be associated with dry AMD. Further studies are needed to determine possible association between AMD and the c.972G>C-MUTYH polymorphism.
Collapse
Affiliation(s)
- Ewelina Synowiec
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | | | | | | | | |
Collapse
|
12
|
Lans H, Marteijn JA, Vermeulen W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 2012; 5:4. [PMID: 22289628 PMCID: PMC3275488 DOI: 10.1186/1756-8935-5-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/30/2012] [Indexed: 12/31/2022] Open
Abstract
The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.
Collapse
Affiliation(s)
- Hannes Lans
- Department of Genetics, Medical Genetics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
13
|
Daddysman MK, Fecko CJ. DNA multiphoton absorption generates localized damage for studying repair dynamics in live cells. Biophys J 2011; 101:2294-303. [PMID: 22067170 DOI: 10.1016/j.bpj.2011.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/20/2011] [Accepted: 09/23/2011] [Indexed: 10/15/2022] Open
Abstract
Investigations into the spatiotemporal dynamics of DNA repair using live-cell imaging are aided by the ability to generate well defined regions of ultravioletlike photolesions in an optical microscope. We demonstrate that multiphoton excitation of DNA in live cells with visible femtosecond pulses produces thymine cyclopyrimidine dimers (CPDs), the primary ultraviolet DNA photoproduct. The CPDs are produced with a cubic to supercubic power dependence using pulses in the wavelength range from at least 400 to 525 nm. We show that the CPDs are confined in all three spatial dimensions, making multiphoton excitation of DNA with visible light an ideal technique for generating localized DNA photolesions in a wide variety of samples, from cultured cells to thicker tissues. We demonstrate the utility of this method by applying it to investigate the spatiotemporal recruitment of GFP-tagged topoisomerase I (TopI) to sites of localized DNA damage in polytene chromosomes within live cells of optically thick Drosophila salivary glands.
Collapse
Affiliation(s)
- Matthew K Daddysman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
14
|
Casafont I, Palanca A, Lafarga V, Berciano MT, Lafarga M. Effect of ionizing radiation in sensory ganglion neurons: organization and dynamics of nuclear compartments of DNA damage/repair and their relationship with transcription and cell cycle. Acta Neuropathol 2011; 122:481-93. [PMID: 21915754 DOI: 10.1007/s00401-011-0869-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/31/2011] [Accepted: 09/02/2011] [Indexed: 12/18/2022]
Abstract
Neurons are very sensitive to DNA damage induced by endogenous and exogenous genotoxic agents, as defective DNA repair can lead to neurodevelopmental disorders, brain tumors and neurodegenerative diseases with severe clinical manifestations. Understanding the impact of DNA damage/repair mechanisms on the nuclear organization, particularly on the regulation of transcription and cell cycle, is essential to know the pathophysiology of defective DNA repair syndromes. In this work, we study the nuclear architecture and spatiotemporal organization of chromatin compartments involved in the DNA damage response (DDR) in rat sensory ganglion neurons exposed to X-ray irradiation (IR). We demonstrate that the neuronal DDR involves the formation of two categories of DNA-damage processing chromatin compartments: transient, disappearing within the 1 day post-IR, and persistent, where unrepaired DNA is accumulated. Both compartments concentrate components of the DDR pathway, including γH2AX, pATM and 53BP1. Furthermore, DNA damage does not induce neuronal apoptosis but triggers the G0-G1 cell cycle phase transition, which is mediated by the activation of the ATM-p53 pathway and increased protein levels of p21 and cyclin D1. Moreover, the run on transcription assay reveals a severe inhibition of transcription at 0.5 h post-IR, followed by its rapid recovery over the 1 day post-IR in parallel with the progression of DNA repair. Therefore, the response of healthy neurons to DNA damage involves a transcription- and cell cycle-dependent but apoptosis-independent process. Furthermore, we propose that the segregation of unrepaired DNA in a few persistent chromatin compartments preserves genomic stability of undamaged DNA and the global transcription rate in neurons.
Collapse
Affiliation(s)
- Iñigo Casafont
- Departamento de Anatomía y Biología Celular, "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria, IFIMAV, Santander, Spain
| | | | | | | | | |
Collapse
|
15
|
Paul C, Nagano M, Robaire B. Aging results in differential regulation of DNA repair pathways in pachytene spermatocytes in the Brown Norway rat. Biol Reprod 2011; 85:1269-78. [PMID: 21865553 DOI: 10.1095/biolreprod.111.094219] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The present trend of increasing paternal age is accompanied by concerns for the development of complex multigene diseases (e.g., autism and schizophrenia) in progeny. Recent studies have established strong correlations between male age, increased oxidative stress, decreased sperm quality, and structural aberrations of chromatin and DNA in spermatozoa. We tested the hypothesis that increasing age would result in altered gene expression relating to oxidative stress and DNA damage/repair in germ cells. To test this hypothesis, pachytene spermatocytes and round spermatids were isolated from Brown Norway (BN) rats at 4 (young) and 18 (aged) mo of age. Microarray analysis was used to compare gene expression between the groups. The probe sets with significantly altered expression were linked to DNA damage/repair and oxidative stress in pachytene spermatocytes but not in round spermatids. Further analysis of pachytene spermatocytes demonstrated that genes involved in the base excision repair (BER) and nucleotide excision repair (NER) pathways were specifically altered. Quantitative RT-PCR confirmed that NER genes were upregulated (>1.5-fold), whereas BER genes were downregulated (>1.5-fold). At the protein level the members of the BER pathway were also altered by up to 2.3-fold; levels of NER proteins remained unchanged. Furthermore, there was an increase in 8-oxo-2'-deoxyguanosine (8-oxodG) immunoreactivity in testes from aged males and in the number of spermatozoa positive for 8-oxodG. In conclusion, aging is associated with differential regulation of DNA repair pathways with a decrease in the BER pathway leading to deficient repair of 8-oxo-dG lesions in germ cells and spermatozoa.
Collapse
Affiliation(s)
- Catriona Paul
- Departments of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | | | | |
Collapse
|
16
|
Lans H, Vermeulen W. Nucleotide Excision Repair in Caenorhabditis elegans. Mol Biol Int 2011; 2011:542795. [PMID: 22091407 PMCID: PMC3195855 DOI: 10.4061/2011/542795] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/18/2011] [Indexed: 01/23/2023] Open
Abstract
Nucleotide excision repair (NER) plays an essential role in many organisms across life domains to preserve and faithfully transmit DNA to the next generation. In humans, NER is essential to prevent DNA damage-induced mutation accumulation and cell death leading to cancer and aging. NER is a versatile DNA repair pathway that repairs many types of DNA damage which distort the DNA helix, such as those induced by solar UV light. A detailed molecular model of the NER pathway has emerged from in vitro and live cell experiments, particularly using model systems such as bacteria, yeast, and mammalian cell cultures. In recent years, the versatility of the nematode C. elegans to study DNA damage response (DDR) mechanisms including NER has become increasingly clear. In particular, C. elegans seems to be a convenient tool to study NER during the UV response in vivo, to analyze this process in the context of a developing and multicellular organism, and to perform genetic screening. Here, we will discuss current knowledge gained from the use of C. elegans to study NER and the response to UV-induced DNA damage.
Collapse
Affiliation(s)
- Hannes Lans
- Department of Genetics, Medical Genetics Center, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Genetics, Medical Genetics Center, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
17
|
Kumar R, Dwivedi PD, Dhawan A, Das M, Ansari KM. Citrinin-Generated Reactive Oxygen Species Cause Cell Cycle Arrest Leading to Apoptosis via the Intrinsic Mitochondrial Pathway in Mouse Skin. Toxicol Sci 2011; 122:557-66. [DOI: 10.1093/toxsci/kfr143] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Abstract
Fluorescent protein labelling, as well as impressive progress in live cell imaging have revolutionised the view on how essential nuclear functions like gene transcription regulation and DNA repair are organised. Here, we address questions like how DNA-interacting molecules find and bind their target sequences in the vast amount of DNA. In addition, we discuss methods that have been developed for quantitative analysis of data from fluorescence recovery after photobleaching experiments (FRAP).
Collapse
|
19
|
Chai C, Xie Z, Grotewold E. SELEX (Systematic Evolution of Ligands by EXponential Enrichment), as a powerful tool for deciphering the protein-DNA interaction space. Methods Mol Biol 2011; 754:249-58. [PMID: 21720957 DOI: 10.1007/978-1-61779-154-3_14] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
DNA-binding proteins, including transcription factors, play essential roles in many biological processes. The identification of the DNA sequences to which these proteins bind is a first, yet still challenging, step for determining their functions. SELEX provides an excellent tool for deciphering protein DNA-binding sequence specificity, and it has been widely adopted for addressing fundamental biological questions. SELEX is an experimental procedure that involves the progressive selection, from a large combinatorial double-stranded oligonucleotide library, of DNA ligands with variable DNA-binding affinities and specificities by repeated rounds of partition and amplification. In this chapter, we describe a SELEX protocol that we have successfully applied to both plant and animal MYB transcription factors.
Collapse
Affiliation(s)
- Chenglin Chai
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, The Ohio State University, Columbus, OH, USA.
| | | | | |
Collapse
|
20
|
Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010:592980. [PMID: 21209706 PMCID: PMC3010660 DOI: 10.4061/2010/592980] [Citation(s) in RCA: 628] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280-315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms.
Collapse
Affiliation(s)
- Rajesh P Rastogi
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | |
Collapse
|
21
|
Tycon MA, Chakraborty A, Fecko CJ. Generation of DNA photolesions by two-photon absorption of a frequency-doubled Ti:sapphire laser. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 102:161-8. [PMID: 21146997 DOI: 10.1016/j.jphotobiol.2010.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/20/2010] [Accepted: 11/11/2010] [Indexed: 12/24/2022]
Abstract
The formation of spatially localized regions of DNA damage by multiphoton absorption of light is an attractive tool for investigating DNA repair. Although this method has been applied in cells, little information is available about the formation of lesions by multiphoton absorption in the absence of exogenous or endogenous sensitizing agents. Therefore, we have investigated DNA damage induced in vitro by direct two-photon absorption of frequency-doubled femtosecond pulses from a Ti:sapphire laser. We first developed a quantitative polymerase chain reaction assay to measure DNA damage, and determined that the quantum yield of lesions formed by one-photon absorption of 254 nm light is 7.86×10(-4). We then measured the yield of lesions resulting from exposure to the visible femtosecond laser pulses, which exhibited a quadratic intensity dependence. The two-photon absorption cross section of DNA has a value (per nucleotide) of 2.6 GM at 425 nm, 2.4 GM at 450 nm, and 1.9 GM at 475 nm. A comparison of these in vitro results to several in vivo studies of multiphoton photodamage indicates that the onset of DNA damage occurs at lower intensities in vivo; we suggest possible explanations for this discrepancy.
Collapse
Affiliation(s)
- Michael A Tycon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | | | | |
Collapse
|
22
|
Szaflik JP, Janik-Papis K, Synowiec E, Ksiazek D, Zaras M, Wozniak K, Szaflik J, Blasiak J. DNA damage and repair in age-related macular degeneration. Mutat Res 2009; 669:169-76. [PMID: 19559717 DOI: 10.1016/j.mrfmmm.2009.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/26/2009] [Accepted: 06/18/2009] [Indexed: 05/18/2023]
Abstract
Age-related macular degeneration (AMD) is a retinal degenerative disease that is the main cause of vision loss in individuals over the age of 55 in the Western world. Clinically relevant AMD results from damage to the retinal pigment epithelial (RPE) cells thought to be mainly caused by oxidative stress. The stress also affects the DNA of RPE cells, which promotes genome instability in these cells. These effects may coincide with the decrease in the efficacy of DNA repair with age. Therefore individuals with DNA repair impaired more than average for a given age may be more susceptible to AMD if oxidative stress affects their RPE cells. This may be helpful in AMD risk assessment. In the present work we determined the level of basal (measured in the alkaline comet assay) endogenous and endogenous oxidative DNA damage, the susceptibility to exogenous mutagens and the efficacy of DNA repair in lymphocytes of 100 AMD patients and 110 age-matched individuals without visual disturbances. The cells taken from AMD patients displayed a higher extent of basal endogenous DNA damage without differences between patients of dry and wet forms of the disease. DNA double-strand breaks did not contribute to the observed DNA damage as checked by the neutral comet assay and pulsed field gel electrophoresis. The extent of oxidative modification to DNA bases was greater in AMD patients than in the controls, as probed by DNA repair enzymes NTH1 and Fpg. Lymphocytes from AMD patients displayed a higher sensitivity to hydrogen peroxide and UV radiation and repaired lesions induced by these factors less effectively than the cells from the control individuals. We postulate that the impaired efficacy of DNA repair may combine with enhanced sensitivity of RPE cells to blue and UV lights, contributing to the pathogenesis of AMD.
Collapse
Affiliation(s)
- Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Elias MC, Nardelli SC, Schenkman S. Chromatin and nuclear organization in Trypanosoma cruzi. Future Microbiol 2009; 4:1065-74. [DOI: 10.2217/fmb.09.74] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A total of 100 years have passed since the discovery of the protozoan Trypanosoma cruzi, the etiologic agent of Chagas’ disease. Since its discovery, the molecular and cellular biology of this early divergent eukaryote, as well as its interactions with the mammalian and insect hosts, has progressed substantially. It is now clear that this parasite presents unique mechanisms controlling gene expression, DNA replication, cell cycle and differentiation, generating several morphological forms that are adapted to survive in different hosts. In recent years, the relationship between the chromatin structure and nuclear organization with the unusual transcription, splicing, DNA replication and DNA repair mechanisms have been investigated in T. cruzi. This article reviews the relevant aspects of these mechanisms in relation to chromatin and nuclear organization.
Collapse
Affiliation(s)
| | - Sheila Cristina Nardelli
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| |
Collapse
|
24
|
Pataky K, Villanueva G, Liani A, Zgheib O, Jenkins N, Halazonetis DJ, Halazonetis TD, Brugger J. Microcollimator for micrometer-wide stripe irradiation of cells using 20-30 keV X rays. Radiat Res 2009; 172:252-9. [PMID: 19630530 DOI: 10.1667/rr1483.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Pataky, K., Villanueva, G., Liani, A., Zgheib, O., Jenkins, N., Halazonetis, D. J., Halazonetis, T. D. and Brugger, J. Microcollimator for Micrometer-Wide Stripe Irradiation of Cells Using 20-30 keV X Rays. Radiat. Res. 172, 252-259 (2009). The exposure of subnuclear compartments of cells to ionizing radiation is currently not trivial. We describe here a collimator for micrometer-wide stripe irradiation designed to work with conventional high-voltage X-ray tubes and cells cultured on standard glass cover slips. The microcollimator was fabricated by high-precision silicon micromachining and consists of X-ray absorbing chips with grooves of highly controlled depths, between 0.5-10 microm, along their surfaces. These grooves form X-ray collimating slits when the chips are stacked against each other. The use of this device for radiation biology was examined by irradiating human cells with X rays having energies between 20-30 keV. After irradiation, p53 binding protein 1 (53BP1), a nuclear protein that is recruited at sites of DNA double-strand breaks, clustered in lines corresponding to the irradiated stripes.
Collapse
Affiliation(s)
- Kristopher Pataky
- Microsystems Laboratory, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
van Oven C, Krawczyk PM, Stap J, Melo AM, Piazzetta MHO, Gobbi AL, van Veen HA, Verhoeven J, Aten JA. An ultrasoft X-ray multi-microbeam irradiation system for studies of DNA damage responses by fixed- and live-cell fluorescence microscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:721-8. [PMID: 19495740 PMCID: PMC2701496 DOI: 10.1007/s00249-009-0472-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/20/2009] [Accepted: 04/29/2009] [Indexed: 12/27/2022]
Abstract
Localized induction of DNA damage is a valuable tool for studying cellular DNA damage responses. In recent decades, methods have been developed to generate DNA damage using radiation of various types, including photons and charged particles. Here we describe a simple ultrasoft X-ray multi-microbeam system for high dose-rate, localized induction of DNA strand breaks in cells at spatially and geometrically adjustable sites. Our system can be combined with fixed- and live-cell microscopy to study responses of cells to DNA damage.
Collapse
Affiliation(s)
- Carel van Oven
- Department of Cell Biology and Histology, Center for Microscopical Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dinant C, Luijsterburg MS, Höfer T, von Bornstaedt G, Vermeulen W, Houtsmuller AB, van Driel R. Assembly of multiprotein complexes that control genome function. ACTA ACUST UNITED AC 2009; 185:21-6. [PMID: 19332890 PMCID: PMC2700518 DOI: 10.1083/jcb.200811080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Live-cell imaging studies aided by mathematical modeling have provided unprecedented insight into assembly mechanisms of multiprotein complexes that control genome function. Such studies have unveiled emerging properties of chromatin-associated systems involved in DNA repair and transcription.
Collapse
Affiliation(s)
- Christoffel Dinant
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Grigaravicius P, Greulich KO, Monajembashi S. Laser microbeams and optical tweezers in ageing research. Chemphyschem 2009; 10:79-85. [PMID: 19090523 DOI: 10.1002/cphc.200800725] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We show how a technique developed within the framework of physics and physical chemistry-in a true interdisciplinary approach-can answer questions in life sciences that are not solvable by using other techniques. Herein, we focus on blood-pressure regulation and DNA repair in ageing studies. Laser microbeams and optical tweezers are now established tools in many fields of science, particularly in the life sciences. A short glimpse is given on the wide field of non-age-research applications in life sciences. Then, optical tweezers are used to show that exerting a vertical pressure on cells representing the inner lining of blood vessels results in bursts of NO liberation concomitant with large changes in cell morphology. Repeated treatment of such human umbilical vein endothelial cells (HUVEC) results in stiffening, a hallmark of manifest high blood pressure, a disease primarily of the elderly. As a second application in ageing research, a laser microbeam is used to induce, with high spatial and temporal resolution, DNA damages in the nuclei of U2OS human osteosarcoma cells. A pairwise study of the recruitment kinetics of different DNA repair proteins reveals that DNA repair starts with non-homologous end joining (NHEJ), a repair pathway, and may only after several minutes switch to the error-free homologous recombination repair (HRR) pathway. Since DNA damages-when incorrectly repaired-accumulate with time, laser microbeams are becoming well-used tools in ageing research.
Collapse
|
28
|
Bignold L. Mechanisms of clastogen-induced chromosomal aberrations: A critical review and description of a model based on failures of tethering of DNA strand ends to strand-breaking enzymes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2009; 681:271-298. [DOI: 10.1016/j.mrrev.2008.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 01/15/2023]
|
29
|
Grigaravicius P, Rapp A, Greulich KO. A direct view by immunofluorescent comet assay (IFCA) of DNA damage induced by nicking and cutting enzymes, ionizing (137)Cs radiation, UV-A laser microbeam irradiation and the radiomimetic drug bleomycin. Mutagenesis 2009; 24:191-7. [PMID: 19139057 DOI: 10.1093/mutage/gen071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In DNA repair research, DNA damage is induced by different agents, depending on the technical facilities of the investigating researchers. A quantitative comparison of different investigations is therefore often difficult. By using a modified variant of the neutral comet assay, where the histone H1 is detected by immunofluorescence [immunofluorescent comet assay (IFCA)], we achieve previously unprecedented resolution in the detection of fragmented chromatin and show that trillions of ultraviolet A photons (of a few eV), billions of bleomycin (BLM) molecules and thousands of gamma quanta (of 662 keV) generate, in first order, similar damage in the chromatin of HeLa cells. A somewhat more detailed inspection shows that the damage caused by 20 Gy ionizing radiation and by a single laser pulse of 10 microJ are comparable, while the damage caused by 12 microg/ml BLM depends highly on the individual cell. Taken together, this work provides a detailed view of DNA fragmentation induced by different treatments and allows comparing them to some extent, especially with respect to the neutral comet assay.
Collapse
|
30
|
Lamers R, Hayter S, Matheson CD. Postmortem miscoding lesions in sequence analysis of human ancient mitochondrial DNA. J Mol Evol 2008; 68:40-55. [PMID: 19067027 DOI: 10.1007/s00239-008-9184-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 11/26/2022]
Abstract
Genetic miscoding lesions can cause inaccuracies during the interpretation of ancient DNA sequence data. In this study, genetic miscoding lesions were identified and assessed by cloning and direct sequencing of degraded, amplified mitochondrial DNA (mtDNA) extracted from human remains. Forty-two individuals, comprising nine collections from five geographic locations, were analyzed for the presence of DNA damage that can affect the generation of a correct mtDNA profile. In agreement with previous studies, high levels (56.5% of all damage sites) of proposed hydrolytic damage products were observed. Among these, type 2 transitions (cytosine --> thymine or guanine --> adenine), which are highly indicative of hydrolytic deamination, were observed in 50% of all misincorporations that occurred. In addition to hydrolytic damage products, oxidative damage products were also observed in this study and were responsible for approximately 43.5% of all misincorporations. This level of misincorporation is in contrast to previous studies characterizing miscoding lesions from the analysis of bone and teeth, where few to no oxidative damage products were observed. Of all the oxidative damage products found in this study, type 2 transversions (cytosine --> adenine/guanine --> thymine or cytosine --> guanine/guanine --> cytosine), which are commonly formed through the generation of 8-hydroxyguanine, accounted for 30.3% of all genetic miscoding lesions observed. This study identifies the previously unreported presence of oxidative DNA damage and proposes that damage to degraded DNA templates is highly specific in type, correlating with the geographic location and the taphonomic conditions of the depositional environment from which the remains are recovered.
Collapse
Affiliation(s)
- Ryan Lamers
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | | | | |
Collapse
|
31
|
Dinant C, Houtsmuller AB, Vermeulen W. Chromatin structure and DNA damage repair. Epigenetics Chromatin 2008; 1:9. [PMID: 19014481 PMCID: PMC2596136 DOI: 10.1186/1756-8935-1-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/12/2008] [Indexed: 11/10/2022] Open
Abstract
The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The two main features of the DNA damage response mechanisms are cell-cycle checkpoint activation and, at the heart of the response, DNA repair. For both damage signalling and repair, chromatin remodelling is most likely a prerequisite. Here, we discuss current knowledge on chromatin remodelling with respect to the cellular response to DNA damage, with emphasis on the response to lesions resolved by nucleotide excision repair. We will discuss the role of histone modifications as well as their displacement or exchange in nucleotide excision repair and make a comparison with their requirement in transcription and double strand break repair.
Collapse
Affiliation(s)
- Christoffel Dinant
- Department of Cell Biology and Genetics, Erasmus MC, Dr, Molewaterplein 50, 3015 GE Rotterdam, the Netherlands.
| | | | | |
Collapse
|
32
|
Wachsmuth M, Caudron-Herger M, Rippe K. Genome organization: Balancing stability and plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2061-79. [DOI: 10.1016/j.bbamcr.2008.07.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 12/18/2022]
|
33
|
Boyle J, Ueda T, Oh KS, Imoto K, Tamura D, Jagdeo J, Khan SG, Nadem C, DiGiovanna JJ, Kraemer KH. Persistence of repair proteins at unrepaired DNA damage distinguishes diseases with ERCC2 (XPD) mutations: cancer-prone xeroderma pigmentosum vs. non-cancer-prone trichothiodystrophy. Hum Mutat 2008; 29:1194-208. [PMID: 18470933 PMCID: PMC3477783 DOI: 10.1002/humu.20768] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Patients with xeroderma pigmentosum (XP) have a 1,000-fold increase in ultraviolet (UV)-induced skin cancers while trichothiodystrophy (TTD) patients, despite mutations in the same genes, ERCC2 (XPD) or ERCC3 (XPB), are cancer-free. Unlike XP cells, TTD cells have a nearly normal rate of removal of UV-induced 6-4 photoproducts (6-4PP) in their DNA and low levels of the basal transcription factor, TFIIH. We examined seven XP, TTD, and XP/TTD complex patients and identified mutations in the XPD gene. We discovered large differences in nucleotide excision repair (NER) protein recruitment to sites of localized UV damage in TTD cells compared to XP or normal cells. XPC protein was rapidly localized in all cells. XPC was redistributed in TTD, and normal cells by 3 hr postirradiation, but remained localized in XP cells at 24-hr postirradiation. In XP cells recruitment of other NER proteins (XPB, XPD, XPG, XPA, and XPF) was also delayed and persisted at 24 hr (p<0.001). In TTD cells with defects in the XPD, XPB, or GTF2H5 (TTDA) genes, in contrast, recruitment of these NER proteins was reduced compared to normals at early time points (p<0.001) and remained low at 24 hr postirradiation. These data indicate that in XP persistence of NER proteins at sites of unrepaired DNA damage is associated with greatly increased skin cancer risk possibly by blockage of translesion DNA synthesis. In contrast, in TTD, low levels of unstable TFIIH proteins do not accumulate at sites of unrepaired photoproducts and may permit normal translesion DNA synthesis without increased skin cancer.
Collapse
Affiliation(s)
- Jennifer Boyle
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Takahiro Ueda
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kyu-Seon Oh
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kyoko Imoto
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Deborah Tamura
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jared Jagdeo
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sikandar G. Khan
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Carine Nadem
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - John J. DiGiovanna
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Division of Dermatopharmacology, Department of Dermatology, The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island
| | - Kenneth H. Kraemer
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
34
|
Xu G, Herzig M, Rotrekl V, Walter CA. Base excision repair, aging and health span. Mech Ageing Dev 2008; 129:366-82. [PMID: 18423806 PMCID: PMC2526234 DOI: 10.1016/j.mad.2008.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/28/2008] [Accepted: 03/05/2008] [Indexed: 12/18/2022]
Abstract
DNA damage and mutagenesis are suggested to contribute to aging through their ability to mediate cellular dysfunction. The base excision repair (BER) pathway ameliorates a large number of DNA lesions that arise spontaneously. Many of these lesions are reported to increase with age. Oxidized guanine, repaired largely via base excision repair, is particularly well studied and shown to increase with age. Spontaneous mutant frequencies also increase with age which suggests that mutagenesis may contribute to aging. It is widely accepted that genetic instability contributes to age-related occurrences of cancer and potentially other age-related pathologies. BER activity decreases with age in multiple tissues. The specific BER protein that appears to limit activity varies among tissues. DNA polymerase-beta is reduced in brain from aged mice and rats while AP endonuclease is reduced in spermatogenic cells obtained from old mice. The differences in proteins that appear to limit BER activity among tissues may represent true tissue-specific differences in activity or may be due to differences in techniques, environmental conditions or other unidentified differences among the experimental approaches. Much remains to be addressed concerning the potential role of BER in aging and age-related health span.
Collapse
Affiliation(s)
- Guogang Xu
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Maryanne Herzig
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Vladimir Rotrekl
- Institute of Experimental Medicine, Department of Molecular Embryology, Masaryk University, Faculty of Medicine, Department of Biology, Kamenice 5, Building A6, 62500 Brno, Czech Republic
| | - Christi A. Walter
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
- South Texas Veteran’s Health Care System, 7400 Merton Minter Blvd, San Antonio, TX 78229
| |
Collapse
|
35
|
p38MAPKδ controls c-Myb degradation in response to stress. Blood Cells Mol Dis 2008; 40:388-94. [DOI: 10.1016/j.bcmd.2007.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 09/21/2007] [Indexed: 11/24/2022]
|
36
|
Nucleolar localization and dynamic roles of flap endonuclease 1 in ribosomal DNA replication and damage repair. Mol Cell Biol 2008; 28:4310-9. [PMID: 18443037 DOI: 10.1128/mcb.00200-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the wealth of information available on the biochemical functions and our recent findings of its roles in genome stability and cancer avoidance of the structure-specific flap endonuclease 1 (FEN1), its cellular compartmentalization and dynamics corresponding to its involvement in various DNA metabolic pathways are not yet elucidated. Several years ago, we demonstrated that FEN1 migrates into the nucleus in response to DNA damage and under certain cell cycle conditions. In the current paper, we found that FEN1 is superaccumulated in the nucleolus and plays a role in the resolution of stalled DNA replication forks formed at the sites of natural replication fork barriers. In response to UV irradiation and upon phosphorylation, FEN1 migrates to nuclear plasma to participate in the resolution of UV cross-links on DNA, most likely employing its concerted action of exonuclease and gap-dependent endonuclease activities. Based on yeast complementation experiments, the mutation of Ser(187)Asp, mimicking constant phosphorylation, excludes FEN1 from nucleolar accumulation. The replacement of Ser(187) by Ala, eliminating the only phosphorylation site, retains FEN1 in nucleoli. Both of the mutations cause UV sensitivity, impair cellular UV damage repair capacity, and decline overall cellular survivorship.
Collapse
|
37
|
Allelism of Saccharomyces cerevisiae gene PSO10, involved in error-prone repair of psoralen-induced DNA damage, with SUMO ligase-encoding MMS21. Curr Genet 2008; 53:361-71. [PMID: 18437386 DOI: 10.1007/s00294-008-0192-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/10/2008] [Accepted: 04/13/2008] [Indexed: 01/09/2023]
Abstract
In order to extend the understanding of the genetical and biochemical basis of photo-activated psoralen-induced DNA repair in the yeast Saccharomyces cerevisiae we have identified and cloned 10 pso mutants. Here, we describe the phenotypic characterization and molecular cloning of the pso10-1 mutant which is highly sensitive to photoactivated psoralens, UV(254) (nm) radiation and the alkylating agent methylmethane sulphonate. The pso10-1 mutant allele also confers a block in the mutagenic response to photoactivated psoralens and UV(254) (nm) radiation, and homoallelic diploids do not sporulate. Molecular cloning using a yeast genomic library, sequence analysis and genetic complementation experiments proved pso10-1 to be a mutant allele of gene MMS21 that encodes a SUMO ligase involved in the sumoylation of several DNA repair proteins. The ORF of pso10-1 contains a single nucleotide C-->T transition at position 758, which leads to a change in amino acid sequence from serine to phenylalanine [S253F]. Pso10-1p defines a leaky mutant phenotype of the essential MMS21 gene, and as member of the Smc5-Smc6 complex, still has some essential functions that allow survival of the mutant. DNA repair via translesion synthesis is severely impaired as the pso10-1 mutant allele confers severely blocked induced forward and reverse mutagenesis and shows epistatic interaction with a rev3Delta mutant allele. By identifying the allelism of PSO10 and MMS21 we demonstrate the need of a fully functional Smc5-Smc6 complex for a WT-like adequate repair of photoactivated psoralen-induced DNA damage in yeast.
Collapse
|
38
|
Melander F, Bekker-Jensen S, Falck J, Bartek J, Mailand N, Lukas J. Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. ACTA ACUST UNITED AC 2008; 181:213-26. [PMID: 18411307 PMCID: PMC2315670 DOI: 10.1083/jcb.200708210] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA double-strand breaks (DSBs) trigger accumulation of the MRE11–RAD50–Nijmegen breakage syndrome 1 (NBS1 [MRN]) complex, whose retention on the DSB-flanking chromatin facilitates survival. Chromatin retention of MRN requires the MDC1 adaptor protein, but the mechanism behind the MRN–MDC1 interaction is unknown. We show that the NBS1 subunit of MRN interacts with the MDC1 N terminus enriched in Ser-Asp-Thr (SDT) repeats. This interaction was constitutive and mediated by binding between the phosphorylated SDT repeats of MDC1 and the phosphate-binding forkhead-associated domain of NBS1. Phosphorylation of the SDT repeats by casein kinase 2 (CK2) was sufficient to trigger MDC1–NBS1 interaction in vitro, and MDC1 associated with CK2 activity in cells. Inhibition of CK2 reduced SDT phosphorylation in vivo, and disruption of the SDT-associated phosphoacceptor sites prevented the retention of NBS1 at DSBs. Together, these data suggest that phosphorylation of the SDT repeats in the MDC1 N terminus functions to recruit NBS1 and, thereby, increases the local concentration of MRN at the sites of chromosomal breakage.
Collapse
Affiliation(s)
- Fredrik Melander
- Institute of Cancer Biology and 2Centre for Genotoxic Stress Research, Danish Cancer Society, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
39
|
Schavinsky-Khrapunsky Y, Priel E, Aboud M. Dose-dependent dual effect of HTLV-1 tax oncoprotein on p53-dependent nucleotide excision repair in human T-cells. Int J Cancer 2008; 122:305-16. [PMID: 17918160 DOI: 10.1002/ijc.23091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study we investigated the effect of Tax on nucleotide excision repair (NER) in human T-cell lines by using the host cell repair analysis of UVC-irradiated reporter plasmid. This analysis revealed a p53-dependent NER activity in wild type (w.t.) p53-containing T-cells and p53-independent NER in w.t. p53-lacking T-cells. Notably, in the w.t. p53-containing cells Tax exerted a dose-dependent dual effect on NER. While low Tax doses markedly stimulated this repair, high Tax doses strongly reduced it. Further experiments demonstrated that the low Tax doses enhanced, in these cells, the level and the transcriptional function of their w.t. p53 protein. On the other hand, although the high Tax doses further increased the level of p53, they functionally inactivated its accumulating molecules. Both of these Tax effects on p53 proved to be mediated by Tax-induced NF-kappaB-related mechanisms. Together, these data suggest that by NF-kappaB activation Tax elevates the level of the cellular w.t. p53. However, while at low Tax doses the elevating w.t. p53 molecules are functionally active and capable of stimulating NER, intensifying further the NF-kappaB activation by the high Tax doses concomitantly evokes certain mechanism(s) which functionally inactivates the accumulating p53 protein. In contrast to this dual effect on the p53-dependent NER, Tax displayed only an inhibitory effect on the p53-independent NER by its high doses, whereas its low doses had no effect on this repair. The mechanisms of the NF-kappaB-associated effects on the level and function of the cellular w.t.p53 and of the p53-independent NER noted in our experimental systems are further investigated in our laboratory.
Collapse
Affiliation(s)
- Yana Schavinsky-Khrapunsky
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and Cancer Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | |
Collapse
|
40
|
Dinant C, de Jager M, Essers J, van Cappellen WA, Kanaar R, Houtsmuller AB, Vermeulen W. Activation of multiple DNA repair pathways by sub-nuclear damage induction methods. J Cell Sci 2007; 120:2731-40. [PMID: 17646676 DOI: 10.1242/jcs.004523] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Live cell studies of DNA repair mechanisms are greatly enhanced by new developments in real-time visualization of repair factors in living cells. Combined with recent advances in local sub-nuclear DNA damage induction procedures these methods have yielded detailed information on the dynamics of damage recognition and repair. Here we analyze and discuss the various types of DNA damage induced in cells by three different local damage induction methods: pulsed 800 nm laser irradiation, Hoechst 33342 treatment combined with 405 nm laser irradiation and UV-C (266 nm) laser irradiation. A wide variety of damage was detected with the first two methods, including pyrimidine dimers and single- and double-strand breaks. However, many aspects of the cellular response to presensitization by Hoechst 33342 and subsequent 405 nm irradiation were aberrant from those to every other DNA damaging method described here or in the literature. Whereas, application of low-dose 266 nm laser irradiation induced only UV-specific DNA photo-lesions allowing the study of the UV-C-induced DNA damage response in a user-defined area in cultured cells.
Collapse
Affiliation(s)
- Christoffel Dinant
- Department of Pathology, Josephine Nefkens Institute, ErasmusMC, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Rafalska-Metcalf IU, Janicki SM. Show and tell: visualizing gene expression in living cells. J Cell Sci 2007; 120:2301-7. [PMID: 17606985 DOI: 10.1242/jcs.008664] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The development of non-invasive methods of visualizing proteins and nucleic acids in living cells has provided profound insight into how they move and interact with each other in vivo. It is possible to evaluate basic mechanisms of gene expression, and to define their temporal and spatial parameters by using this methodology to label endogenous genes and make reporter constructs that allow specific DNA and RNA regulatory elements to be localized. This Commentary highlights recent reports that have used these techniques to study nuclear organization, transcription factor dynamics and the kinetics of RNA synthesis. These studies show how imaging gene expression in single living cells can reveal new regulatory mechanisms. They also expand our understanding of the role of chromatin and RNA dynamics in modulating cellular responses to developmental and environmental signals.
Collapse
|
42
|
Abstract
Genomes are more than linear sequences. In vivo they exist as elaborate physical structures, and their functional properties are strongly determined by their cellular organization. I discuss here the functional relevance of spatial and temporal genome organization at three hierarchical levels: the organization of nuclear processes, the higher-order organization of the chromatin fiber, and the spatial arrangement of genomes within the cell nucleus. Recent insights into the cell biology of genomes have overturned long-held dogmas and have led to new models for many essential cellular processes, including gene expression and genome stability.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Tembe V, Henderson BR. Protein trafficking in response to DNA damage. Cell Signal 2007; 19:1113-20. [PMID: 17391916 DOI: 10.1016/j.cellsig.2007.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Accepted: 03/02/2007] [Indexed: 11/29/2022]
Abstract
Human cells are prone to a range of natural environmental stresses and administered agents that damage or modify DNA, resulting in a cellular response typified by either cell death, or a cell cycle arrest, to permit repair of the genomic damage. DNA damage often elicits movement of proteins from one subcellular location to another, and the redistribution of proteins involved in genomic maintenance into distinct nuclear DNA repair foci is well documented. In this review, we discuss the DNA damage-induced trafficking of proteins to and from other distinct subcellular organelles including the nucleolus, mitochondria, Golgi complex and centrosome. The extent of intracellular transport suggests a dynamic and possibly co-ordinated role for protein trafficking in the DNA damage response.
Collapse
Affiliation(s)
- Varsha Tembe
- Westmead Institute for Cancer Research, Westmead Millennium Institute at Westmead Hospital, University of Sydney, NSW 2145, Australia
| | | |
Collapse
|
44
|
Radak Z, Kumagai S, Nakamoto H, Goto S. 8-Oxoguanosine and uracil repair of nuclear and mitochondrial DNA in red and white skeletal muscle of exercise-trained old rats. J Appl Physiol (1985) 2007; 102:1696-701. [PMID: 17204574 DOI: 10.1152/japplphysiol.01051.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxoguanine DNA glycosylase (OGG1) and uracil DNA glycosylase (UDG) are two of the most important repair enzymes that are involved in the base excision repair processes to eliminate oxidative damage from mammalian DNA, which accumulates with aging. Red and white skeletal muscle fibers have very different antioxidant enzyme activities and resistance to oxidative stress. In this paper, we demonstrate that the activity of OGG1 is significantly higher in the red type of skeletal muscle compared with white fibers from old rats. Exercise training resulted in increased OGG1 activity in the nuclei of red fibers and decreased activity in nuclei of white fibers and in the mitochondria of both red and white fibers. The activities of UDG were similar in both red and white muscle fibers. Exercise training appears to increase the activity of UDG in the nuclei and mitochondria. However, exercise training affects the activity of OGG1 in nuclei and mitochondria differently, suggesting different regulation of the enzymes. In contrast, UDG showed similar activities in nuclei and mitochondrial extracts of exercise-trained animals. These data provide evidence for differential regulation of UDG and OGG1 in maintaining fidelity of DNA in oxidatively stressed cells.
Collapse
Affiliation(s)
- Zsolt Radak
- Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|