1
|
Schutt KL, Queen KA, Fisher K, Budington O, Mao W, Liu W, Gu X, Xiao Y, Aswad F, Joseph J, Stumpff J. Identification of the KIF18A alpha-4 helix as a therapeutic target for chromosomally unstable tumor cells. Front Mol Biosci 2024; 11:1328077. [PMID: 38410188 PMCID: PMC10896213 DOI: 10.3389/fmolb.2024.1328077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Background: The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. Methods: In this study, we used cultured cell models to investigate the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Results: Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. Conclusion: These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.
Collapse
Affiliation(s)
- Katherine L Schutt
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Katelyn A Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Kira Fisher
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Olivia Budington
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | | | - Wei Liu
- Apeiron Therapeutics, Shanghai, China
| | | | | | - Fred Aswad
- Apeiron Therapeutics, Burlingame, CA, United States
| | - James Joseph
- Apeiron Therapeutics, Burlingame, CA, United States
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| |
Collapse
|
2
|
Sun M, Wang Y, Xin G, Yang B, Jiang Q, Zhang C. NuSAP regulates microtubule flux and Kif2A localization to ensure accurate chromosome congression. J Cell Biol 2024; 223:e202108070. [PMID: 38117947 PMCID: PMC10733630 DOI: 10.1083/jcb.202108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/10/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023] Open
Abstract
Precise chromosome congression and segregation requires the proper assembly of a steady-state metaphase spindle, which is dynamic and maintained by continuous microtubule flux. NuSAP is a microtubule-stabilizing and -bundling protein that promotes chromosome-dependent spindle assembly. However, its function in spindle dynamics remains unclear. Here, we demonstrate that NuSAP regulates the metaphase spindle length control. Mechanistically, NuSAP facilitates kinetochore capture and spindle assembly by promoting Eg5 binding to microtubules. It also prevents excessive microtubule depolymerization through interaction with Kif2A, which reduces Kif2A spindle-pole localization. NuSAP is phosphorylated by Aurora A at Ser-240 during mitosis, and this phosphorylation promotes its interaction with Kif2A on the spindle body and reduces its localization with the spindle poles, thus maintaining proper spindle microtubule flux. NuSAP knockout resulted in the formation of shorter spindles with faster microtubule flux and chromosome misalignment. Taken together, we uncover that NuSAP participates in spindle assembly, dynamics, and metaphase spindle length control through the regulation of microtubule flux and Kif2A localization.
Collapse
Affiliation(s)
- Mengjie Sun
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Yao Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Guangwei Xin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Biying Yang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Chuanmao Zhang
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Schutt K, Queen KA, Fisher K, Budington O, Mao W, Liu W, Xiao Y, Aswad F, Joseph J, Stumpff J. Identification of the KIF18A alpha-4 helix as a therapeutic target for chromosomally unstable tumor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562576. [PMID: 37905069 PMCID: PMC10614886 DOI: 10.1101/2023.10.16.562576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. In this study, we investigated the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.
Collapse
Affiliation(s)
- Katherine Schutt
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Katelyn A Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Kira Fisher
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Olivia Budington
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | | | - Wei Liu
- Apeiron Therapeutics, Shanghai, CN
| | | | | | | | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| |
Collapse
|
4
|
Sun M, Jia M, Ren H, Yang B, Chi W, Xin G, Jiang Q, Zhang C. NuMA regulates mitotic spindle assembly, structural dynamics and function via phase separation. Nat Commun 2021; 12:7157. [PMID: 34887424 PMCID: PMC8660824 DOI: 10.1038/s41467-021-27528-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
A functional mitotic spindle is essential for accurate chromosome congression and segregation during cell proliferation; however, the underlying mechanisms of its assembly remain unclear. Here we show that NuMA regulates this assembly process via phase separation regulated by Aurora A. NuMA undergoes liquid-liquid phase separation during mitotic entry and KifC1 facilitates NuMA condensates concentrating on spindle poles. Phase separation of NuMA is mediated by its C-terminus, whereas its dynein-dynactin binding motif also facilitates this process. Phase-separated NuMA droplets concentrate tubulins, bind microtubules, and enrich crucial regulators, including Kif2A, at the spindle poles, which then depolymerizes spindle microtubules and promotes poleward spindle microtubule flux for spindle assembly and structural dynamics. In this work, we show that NuMA orchestrates mitotic spindle assembly, structural dynamics and function via liquid-liquid phase separation regulated by Aurora A phosphorylation.
Collapse
Affiliation(s)
- Mengjie Sun
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Mingkang Jia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - He Ren
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Biying Yang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Wangfei Chi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Guangwei Xin
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Qing Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Chuanmao Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
5
|
Centrosome as a micro-electronic generator in live cell. Biosystems 2020; 197:104210. [PMID: 32763375 DOI: 10.1016/j.biosystems.2020.104210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Centrosome, composed of two centrioles arranged in an orthogonal configuration, is an indispensable cellular organelle for mitosis. 130 years after its discovery, the structural-functional relationship of centrosome is still obscure. Encouraged by the telltale signs of the "Mouse and Magnet experiment", Paul Schafer pioneered in the research on electromagnetism of centriole with electron microscopy(EM) in the late 1960s. Followed by the decades-long slow progression of the field with sporadic reports indicating the electromagnetisms of mitosis. Piecing together the evidences, we generated a mechanistic model for centrosome function during mitosis, in which centrosome functions as an electronic generator. In particular, the spinal rotations of centrioles transform the cellular chemical energy into cellular electromagnetic energy. The model is strongly supported by multiple experimental evidences. It offers an elegant explanation for the self-organized orthogonal configuration of the two centrioles in a centrosome, that is through the dynamic electromagnetic interactions of both centrioles of the centrosome.
Collapse
|
6
|
Nazockdast E, Redemann S. Mechanics of the spindle apparatus. Semin Cell Dev Biol 2020; 107:91-102. [PMID: 32747191 DOI: 10.1016/j.semcdb.2020.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 12/01/2022]
Abstract
During mitosis microtubules self-organize to form a bipolar mitotic spindle structure, which positions the sister chromatids on the spindle mid-plane and separates them afterwards. Previous studies have identified many spindle associated proteins. Yet, we do not fully understand how these nanoscopic proteins lead to force generation through interactions of individual microtubules, motor proteins and chromosomes, and how a large number of these local interactions ultimately determine the structure and mechanics of the spindle in micron scale. Here we review the current understanding and open questions related to the structure and mechanics of the mitotic spindle. We then discuss how a combination of electron microscopy and computational modeling can be used to tackle some of these open questions.
Collapse
Affiliation(s)
- Ehssan Nazockdast
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA.
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology & Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Kapoor TM. Metaphase Spindle Assembly. BIOLOGY 2017; 6:biology6010008. [PMID: 28165376 PMCID: PMC5372001 DOI: 10.3390/biology6010008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/31/2023]
Abstract
A microtubule-based bipolar spindle is required for error-free chromosome segregation during cell division. In this review I discuss the molecular mechanisms required for the assembly of this dynamic micrometer-scale structure in animal cells.
Collapse
Affiliation(s)
- Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, the Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
8
|
Dual Chromatin and Cytoskeletal Remodeling by SETD2. Cell 2016; 166:950-962. [PMID: 27518565 DOI: 10.1016/j.cell.2016.07.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/13/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Posttranslational modifications (PTMs) of tubulin specify microtubules for specialized cellular functions and comprise what is termed a "tubulin code." PTMs of histones comprise an analogous "histone code," although the "readers, writers, and erasers" of the cytoskeleton and epigenome have heretofore been distinct. We show that methylation is a PTM of dynamic microtubules and that the histone methyltransferase SET-domain-containing 2 (SETD2), which is responsible for H3 lysine 36 trimethylation (H3K36me3) of histones, also methylates α-tubulin at lysine 40, the same lysine that is marked by acetylation on microtubules. Methylation of microtubules occurs during mitosis and cytokinesis and can be ablated by SETD2 deletion, which causes mitotic spindle and cytokinesis defects, micronuclei, and polyploidy. These data now identify SETD2 as a dual-function methyltransferase for both chromatin and the cytoskeleton and show a requirement for methylation in maintenance of genomic stability and the integrity of both the tubulin and histone codes.
Collapse
|
9
|
Sandquist JC, Larson ME, Hine KJ. Myosin-10 independently influences mitotic spindle structure and mitotic progression. Cytoskeleton (Hoboken) 2016; 73:351-64. [PMID: 27220038 DOI: 10.1002/cm.21311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 12/30/2022]
Abstract
The iconic bipolar structure of the mitotic spindle is of extreme importance to proper spindle function. At best, spindle abnormalities result in a delayed mitosis, while worse outcomes include cell death or disease. Recent work has uncovered an important role for the actin-based motor protein myosin-10 in the regulation of spindle structure and function. Here we examine the contribution of the myosin tail homology 4 (MyTH4) domain of the myosin-10 tail to the protein's spindle functions. The MyTH4 domain is known to mediate binding to microtubules and we verify the suspicion that this domain contributes to myosin-10's close association with the spindle. More surprisingly, our data demonstrate that some but not all of myosin-10's spindle functions require microtubule binding. In particular, myosin-10's contribution to spindle pole integrity requires microtubule binding, whereas its contribution to normal mitotic progression does not. This is demonstrated by the observation that dominant negative expression of the wild-type MyTH4 domain produces multipolar spindles and an increased mitotic index, whereas overexpression of a version of the MyTH4 domain harboring point mutations that abrogate microtubule binding results in only the mitotic index phenotype. Our data suggest that myosin-10 helps to control the metaphase to anaphase transition in cells independent of microtubule binding. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joshua C Sandquist
- Biology Department, Grinnell College, Grinnell, Iowa.,Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew E Larson
- Program in Cellular and Molecular Biology and the Medical Scientist Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ken J Hine
- Biology Department, Grinnell College, Grinnell, Iowa
| |
Collapse
|
10
|
Kwon HJ, Park JE, Song H, Jang CY. DDA3 and Mdp3 modulate Kif2a recruitment onto the mitotic spindle to control minus-end spindle dynamics. J Cell Sci 2016; 129:2719-25. [PMID: 27284004 DOI: 10.1242/jcs.180109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
Active turnover of spindle microtubules (MTs) for the formation of a bi-orientated spindle, chromosome congression and proper chromosome segregation is regulated by MT depolymerases such as the kinesin-13 family and the plus-end-tracking proteins (+TIPs). However, the control mechanisms underlying the spindle MT dynamics that are responsible for poleward flux at the minus end of MTs are poorly understood. Here, we show that Mdp3 (also known as MAP7D3) forms a complex with DDA3 (also known as PSRC1) and controls spindle dynamics at the minus end of MTs by inhibiting DDA3-mediated Kif2a recruitment to the spindle. Aberrant Kif2a activity at the minus end of spindle MTs in Mdp3-depleted cells decreased spindle stability and resulted in unaligned chromosomes in metaphase, lagging chromosomes in anaphase, and chromosome bridges in telophase and cytokinesis. Although they play opposing roles in minus-end MT dynamics, acting as an MT destabilizer and an MT stabilizer, respectively, DDA3 and Mdp3 did not affect the localization of each other. Thus, the DDA3 complex orchestrates MT dynamics at the MT minus end by fine-tuning the recruitment of Kif2a to regulate minus-end MT dynamics and poleward MT flux at the mitotic spindle.
Collapse
Affiliation(s)
- Hye Jin Kwon
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Ji Eun Park
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Haiyu Song
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Chang-Young Jang
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| |
Collapse
|
11
|
Fu J, Bian M, Xin G, Deng Z, Luo J, Guo X, Chen H, Wang Y, Jiang Q, Zhang C. TPX2 phosphorylation maintains metaphase spindle length by regulating microtubule flux. J Cell Biol 2016; 210:373-83. [PMID: 26240182 PMCID: PMC4523612 DOI: 10.1083/jcb.201412109] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TPX2 is phosphorylated by Aurora A and is essential for normal microtubule flux on the metaphase spindle. A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles, along with other regulators of microtubule dynamics. How microtubule polymerization and depolymerization are coordinated remains unclear. Here we show that TPX2, a microtubule-bundling protein and activator of Aurora A, plays an important role. TPX2 was phosphorylated by Aurora A during mitosis. Its phospho-null mutant caused short metaphase spindles coupled with low microtubule flux rate. Interestingly, phosphorylation of TPX2 regulated its interaction with CLASP1 but not Kif2a. The effect of its mutant in shortening the spindle could be rescued by codepletion of CLASP1 and Kif2a that abolished microtubule flux. Together we propose that Aurora A–dependent TPX2 phosphorylation controls mitotic spindle length through regulating microtubule flux.
Collapse
Affiliation(s)
- Jingyan Fu
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Minglei Bian
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhaoxuan Deng
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jia Luo
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao Guo
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hao Chen
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yao Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Abstract
Microtubules are cytoskeletal filaments that are intrinsically polarized, with two structurally and functionally distinct ends, the plus end and the minus end. Over the last decade, numerous studies have shown that microtubule plus-end dynamics play an important role in many vital cellular processes and are controlled by numerous factors, such as microtubule plus-end-tracking proteins (+TIPs). In contrast, the cellular machinery that controls the behavior and organization of microtubule minus ends remains one of the least well-understood facets of the microtubule cytoskeleton. The recent characterization of the CAMSAP/Patronin/Nezha family members as specific 'minus-end-targeting proteins' ('-TIPs') has provided important new insights into the mechanisms governing minus-end dynamics. Here, we review the current state of knowledge on how microtubule minus ends are controlled and how minus-end regulators contribute to non-centrosomal microtubule organization and function during cell division, migration and differentiation.
Collapse
|
13
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
14
|
Catch and release: how do kinetochores hook the right microtubules during mitosis? Trends Genet 2014; 30:150-9. [PMID: 24631209 DOI: 10.1016/j.tig.2014.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/22/2022]
Abstract
Sport fishermen keep tension on their lines to prevent hooked fish from releasing. A molecular version of this angler's trick, operating at kinetochores, ensures accuracy during mitosis: the mitotic spindle attaches randomly to chromosomes and then correctly bioriented attachments are stabilized due to the tension exerted on them by opposing microtubules. Incorrect attachments, which lack tension, are unstable and release quickly, allowing another chance for biorientation. Stabilization of molecular interactions by tension also occurs in other physiological contexts, such as cell adhesion, motility, hemostasis, and tissue morphogenesis. Here, we review models for the stabilization of kinetochore attachments with an eye toward emerging models for other force-activated systems. Although attention in the mitosis field has focused mainly on one kinase-based mechanism, multiple mechanisms may act together to stabilize properly bioriented kinetochores and some principles governing other tension-sensitive systems may also apply to kinetochores.
Collapse
|
15
|
Sewer MB, Li D. Regulation of adrenocortical steroid hormone production by RhoA-diaphanous 1 signaling and the cytoskeleton. Mol Cell Endocrinol 2013; 371. [PMID: 23186810 PMCID: PMC3926866 DOI: 10.1016/j.mce.2012.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The production of glucocorticoids and aldosterone in the adrenal cortex is regulated at multiple levels. Biosynthesis of these hormones is initiated when cholesterol, the substrate, enters the inner mitochondrial membrane for conversion to pregnenolone. Unlike most metabolic pathways, the biosynthesis of adrenocortical steroid hormones is unique because some of the enzymes are localized in mitochondria and others in the endoplasmic reticulum (ER). Although much is known about the factors that control the transcription and activities of the proteins that are required for steroid hormone production, the parameters that govern the exchange of substrates between the ER and mitochondria are less well understood. This short review summarizes studies that have begun to provide insight into the role of the cytoskeleton, mitochondrial transport, and the physical interaction of the ER and mitochondria in the production of adrenocortical steroid hormones.
Collapse
Affiliation(s)
- Marion B Sewer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0704, USA.
| | | |
Collapse
|
16
|
Zhao Y, Zhan Q. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis. Theor Biol Med Model 2012; 9:26. [PMID: 22748065 PMCID: PMC3503562 DOI: 10.1186/1742-4682-9-26] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/26/2012] [Indexed: 12/23/2022] Open
Abstract
Super-macromolecular complexes play many important roles in eukaryotic cells. Classical structural biological studies focus on their complicated molecular structures, physical interactions and biochemical modifications. Recent advances concerning intracellular electric fields generated by cell organelles and super-macromolecular complexes shed new light on the mechanisms that govern the dynamics of mitosis and meiosis. In this review we synthesize this knowledge to provide an integrated theoretical model of these cellular events. We suggest that the electric fields generated by synchronized oscillation of microtubules, centrosomes, and chromatin fibers facilitate several events during mitosis and meiosis, including centrosome trafficking, chromosome congression in mitosis and synapsis between homologous chromosomes in meiosis. These intracellular electric fields are generated under energy excitation through the synchronized electric oscillations of the dipolar structures of microtubules, centrosomes and chromosomes, three of the super-macromolecular complexes within an animal cell.
Collapse
Affiliation(s)
- Yue Zhao
- State key laboratory of molecular oncology, Cancer Institute & Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Room 6107, No,17 Pan Jia Yuan Nan Li, Chao Yang District, Bei Jing, 100021, China.
| | | |
Collapse
|
17
|
Meunier S, Vernos I. Microtubule assembly during mitosis - from distinct origins to distinct functions? J Cell Sci 2012; 125:2805-14. [PMID: 22736044 DOI: 10.1242/jcs.092429] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mitotic spindle is structurally and functionally defined by its main component, the microtubules (MTs). The MTs making up the spindle have various functions, organization and dynamics: astral MTs emanate from the centrosome and reach the cell cortex, and thus have a major role in spindle positioning; interpolar MTs are the main constituent of the spindle and are key for the establishment of spindle bipolarity, chromosome congression and central spindle assembly; and kinetochore-fibers are MT bundles that connect the kinetochores with the spindle poles and segregate the sister chromatids during anaphase. The duplicated centrosomes were long thought to be the origin of all of these MTs. However, in the last decade, a number of studies have contributed to the identification of non-centrosomal pathways that drive MT assembly in dividing cells. These pathways are now known to be essential for successful spindle assembly and to participate in various processes such as K-fiber formation and central spindle assembly. In this Commentary, we review the recent advances in the field and discuss how different MT assembly pathways might cooperate to successfully form the mitotic spindle.
Collapse
Affiliation(s)
- Sylvain Meunier
- Microtubule Function and Cell Division group, Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
18
|
McHedlishvili N, Wieser S, Holtackers R, Mouysset J, Belwal M, Amaro AC, Meraldi P. Kinetochores accelerate centrosome separation to ensure faithful chromosome segregation. J Cell Sci 2012; 125:906-18. [PMID: 22399803 DOI: 10.1242/jcs.091967] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
At the onset of mitosis, cells need to break down their nuclear envelope, form a bipolar spindle and attach the chromosomes to microtubules via kinetochores. Previous studies have shown that spindle bipolarization can occur either before or after nuclear envelope breakdown. In the latter case, early kinetochore-microtubule attachments generate pushing forces that accelerate centrosome separation. However, until now, the physiological relevance of this prometaphase kinetochore pushing force was unknown. We investigated the depletion phenotype of the kinetochore protein CENP-L, which we find to be essential for the stability of kinetochore microtubules, for a homogenous poleward microtubule flux rate and for the kinetochore pushing force. Loss of this force in prometaphase not only delays centrosome separation by 5-6 minutes, it also causes massive chromosome alignment and segregation defects due to the formation of syntelic and merotelic kinetochore-microtubule attachments. By contrast, CENP-L depletion has no impact on mitotic progression in cells that have already separated their centrosomes at nuclear envelope breakdown. We propose that the kinetochore pushing force is an essential safety mechanism that favors amphitelic attachments by ensuring that spindle bipolarization occurs before the formation of the majority of kinetochore-microtubule attachments.
Collapse
Affiliation(s)
- Nunu McHedlishvili
- Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Shimamoto Y, Maeda YT, Ishiwata S, Libchaber AJ, Kapoor TM. Insights into the micromechanical properties of the metaphase spindle. Cell 2011; 145:1062-74. [PMID: 21703450 DOI: 10.1016/j.cell.2011.05.038] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/18/2011] [Accepted: 05/31/2011] [Indexed: 01/03/2023]
Abstract
The microtubule-based metaphase spindle is subjected to forces that act in diverse orientations and over a wide range of timescales. Currently, we cannot explain how this dynamic structure generates and responds to forces while maintaining overall stability, as we have a poor understanding of its micromechanical properties. Here, we combine the use of force-calibrated needles, high-resolution microscopy, and biochemical perturbations to analyze the vertebrate metaphase spindle's timescale- and orientation-dependent viscoelastic properties. We find that spindle viscosity depends on microtubule crosslinking and density. Spindle elasticity can be linked to kinetochore and nonkinetochore microtubule rigidity, and also to spindle pole organization by kinesin-5 and dynein. These data suggest a quantitative model for the micromechanics of this cytoskeletal architecture and provide insight into how structural and functional stability is maintained in the face of forces, such as those that control spindle size and position, and can result from deformations associated with chromosome movement.
Collapse
Affiliation(s)
- Yuta Shimamoto
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
20
|
Mogilner A, Craig E. Towards a quantitative understanding of mitotic spindle assembly and mechanics. J Cell Sci 2011; 123:3435-45. [PMID: 20930139 DOI: 10.1242/jcs.062208] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 'simple' view of the mitotic spindle is that it self-assembles as a result of microtubules (MTs) randomly searching for chromosomes, after which the spindle length is maintained by a balance of outward tension exerted by molecular motors on the MTs connecting centrosomes and chromosomes, and compression generated by other motors on the MTs connecting the spindle poles. This picture is being challenged now by mounting evidence indicating that spindle assembly and maintenance rely on much more complex interconnected networks of microtubules, molecular motors, chromosomes and regulatory proteins. From an engineering point of view, three design principles of this molecular machine are especially important: the spindle assembles quickly, it assembles accurately, and it is mechanically robust--yet malleable. How is this design achieved with randomly interacting and impermanent molecular parts? Here, we review recent interdisciplinary studies that have started to shed light on this question. We discuss cooperative mechanisms of spindle self-assembly, error correction and maintenance of its mechanical properties, speculate on analogy between spindle and lamellipodial dynamics, and highlight the role of quantitative approaches in understanding the mitotic spindle design.
Collapse
Affiliation(s)
- Alex Mogilner
- Department of Neurobiology, Physiology and Behavior, and Department of Mathematics, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
21
|
Goodwin SS, Vale RD. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 2010; 143:263-74. [PMID: 20946984 DOI: 10.1016/j.cell.2010.09.022] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/12/2010] [Accepted: 09/13/2010] [Indexed: 11/18/2022]
Abstract
Tubulin assembles into microtubule polymers that have distinct plus and minus ends. Most microtubule plus ends in living cells are dynamic; the transitions between growth and shrinkage are regulated by assembly-promoting and destabilizing proteins. In contrast, minus ends are generally not dynamic, suggesting their stabilization by some unknown protein. Here, we have identified Patronin (also known as ssp4) as a protein that stabilizes microtubule minus ends in Drosophila S2 cells. In the absence of Patronin, minus ends lose subunits through the actions of the Kinesin-13 microtubule depolymerase, leading to a sparse interphase microtubule array and short, disorganized mitotic spindles. In vitro, the selective binding of purified Patronin to microtubule minus ends is sufficient to protect them against Kinesin-13-induced depolymerization. We propose that Patronin caps and stabilizes microtubule minus ends, an activity that serves a critical role in the organization of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Sarah S Goodwin
- The Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2200, USA
| | | |
Collapse
|
22
|
Li D, Sewer MB. RhoA and DIAPH1 mediate adrenocorticotropin-stimulated cortisol biosynthesis by regulating mitochondrial trafficking. Endocrinology 2010; 151:4313-23. [PMID: 20591975 PMCID: PMC2940507 DOI: 10.1210/en.2010-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steroid hormones are formed by the successive action of enzymes that are localized in mitochondria and the endoplasmic reticulum (ER). Compartmentalization of these enzymes in different subcellular organelles dictates the need for efficient transfer of intermediary metabolites between the mitochondrion and ER; however, the molecular determinants that regulate interorganelle substrate exchange are unknown. The objective of this study was to define the molecular mechanism by which adrenocorticotropin (ACTH) signaling regulates communication between mitochondria and the ER during steroidogenesis. Using live cell video confocal microscopy, we found that ACTH and dibutyryl cAMP rapidly increased the rate of mitochondrial movement. Inhibiting tubulin polymerization prevented both basal and ACTH/cAMP-stimulated mitochondrial trafficking and decreased cortisol secretion. This decrease in cortisol secretion evoked by microtubule inhibition was paralleled by an increase in dehydroepiandrosterone production. In contrast, treatment with paclitaxel to stabilize microtubules or latrunculin B to inhibit actin polymerization and disrupt microfilament organization increased both mitochondrial trafficking and cortisol biosynthesis. ACTH-stimulated mitochondrial movement was dependent on RhoA and the RhoA effector, diaphanous-related homolog 1 (DIAPH1). ACTH signaling temporally increased the cellular concentrations of GTP-bound and Ser-188 phosphorylated RhoA, which promoted interaction with DIAPH1. Expression of a dominant-negative RhoA mutant or silencing DIAPH1 impaired mitochondrial trafficking and cortisol biosynthesis and concomitantly increased the secretion of adrenal androgens. We conclude that ACTH regulates cortisol production by facilitating interorganelle substrate transfer via a process that is mediated by RhoA and DIAPH1, which act to coordinate the dynamic trafficking of mitochondria.
Collapse
Affiliation(s)
- Donghui Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0704, USA
| | | |
Collapse
|
23
|
Hentrich C, Surrey T. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J Cell Biol 2010; 189:465-80. [PMID: 20439998 PMCID: PMC2867311 DOI: 10.1083/jcb.200910125] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During cell division, different molecular motors act synergistically to rearrange microtubules. Minus end-directed motors are thought to have a dual role: focusing microtubule ends to poles and establishing together with plus end-directed motors a balance of force between antiparallel microtubules in the spindle. We study here the competing action of Xenopus laevis kinesin-14 and -5 in vitro in situations in which these motors with opposite directionality cross-link and slide microtubules. We find that full-length kinesin-14 can form microtubule asters without additional factors, whereas kinesin-5 does not, likely reflecting an adaptation to mitotic function. A stable balance of force is not established between two antiparallel microtubules with these motors. Instead, directional instability is generated, promoting efficient motor and microtubule sorting. A nonmotor microtubule cross-linker can suppress directional instability but also impedes microtubule sorting, illustrating a conflict between stability and dynamicity of organization. These results establish the basic organizational properties of these antagonistic mitotic motors and a microtubule bundler.
Collapse
Affiliation(s)
- Christian Hentrich
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
24
|
Ems-McClung SC, Walczak CE. Kinesin-13s in mitosis: Key players in the spatial and temporal organization of spindle microtubules. Semin Cell Dev Biol 2010; 21:276-82. [PMID: 20109574 DOI: 10.1016/j.semcdb.2010.01.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 01/19/2010] [Indexed: 11/18/2022]
Abstract
Dynamic microtubules are essential for the process of mitosis. Thus, elucidating when, where, and how microtubule dynamics are regulated is key to understanding this process. One important class of proteins that directly regulates microtubule dynamics is the Kinesin-13 family. Kinesin-13 proteins induce depolymerization uniquely from both ends of the microtubule. This activity coincides with their cellular localization and with their ability to regulate microtubule dynamics to control spindle assembly and kinetochore-microtubule attachments. In this review, we highlight recent findings that dissect the important actions of Kinesin-13 family members and summarize important studies on the regulation of their activity by phosphorylation and by protein-protein interactions.
Collapse
|
25
|
Op18 reveals the contribution of nonkinetochore microtubules to the dynamic organization of the vertebrate meiotic spindle. Proc Natl Acad Sci U S A 2009; 106:15338-43. [PMID: 19706424 DOI: 10.1073/pnas.0902317106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Accuracy in chromosome segregation depends on the assembly of a bipolar spindle. Unlike mitotic spindles, which have roughly equal amounts of kinetochore microtubules (kMTs) and nonkinetochore microtubules (non-kMTs), vertebrate meiotic spindles are predominantly comprised of non-kMTs, a large subset of which forms an antiparallel "barrel" array at the spindle equator. Though kMTs are needed to drive chromosome segregation, the contributions of non-kMTs are more mysterious. Here, we show that increasing the concentration of Op18/stathmin, a component of the chromosome-mediated microtubule formation pathway that directly controls microtubule dynamics, can be used to deplete non-kMTs in the vertebrate meiotic spindle assembled in Xenopus egg extracts. Under these conditions, kMTs and the spindle pole-associated non-kMT arrays persist in smaller spindles. In excess Op18, distances between sister kinetochores, an indicator of tension across centromeres, remain unchanged, even though kMTs flux poleward with a approximately 30% slower velocity, and chromosomes oscillate more than in control metaphase spindles. Remarkably, kinesin-5, a conserved motor protein that can push microtubules apart and is required for the assembly and maintenance of bipolar meiotic spindles, is not needed to maintain spindle bipolarity in the presence of excess Op18. Our data suggest that non-kMTs in meiotic spindles contribute to normal kMT dynamics, stable chromosome positioning, and the establishment of proper spindle size. We propose that without non-kMTs, metaphase meiotic spindles are similar to mammalian mitotic spindles, which balance forces to maintain metaphase spindle organization in the absence of extensive antiparallel microtubule overlap at the spindle equator or a key mitotic kinesin.
Collapse
|
26
|
Computational fragment-based drug design to explore the hydrophobic sub-pocket of the mitotic kinesin Eg5 allosteric binding site. J Comput Aided Mol Des 2009; 23:571-82. [DOI: 10.1007/s10822-009-9286-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
27
|
Rizk RS, Bohannon KP, Wetzel LA, Powers J, Shaw SL, Walczak CE. MCAK and paclitaxel have differential effects on spindle microtubule organization and dynamics. Mol Biol Cell 2009; 20:1639-51. [PMID: 19158381 DOI: 10.1091/mbc.e08-09-0985] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Within the mitotic spindle, there are multiple populations of microtubules with different turnover dynamics, but how these different dynamics are maintained is not fully understood. MCAK is a member of the kinesin-13 family of microtubule-destabilizing enzymes that is required for proper establishment and maintenance of the spindle. Using quantitative immunofluorescence and fluorescence recovery after photobleaching, we compared the differences in spindle organization caused by global suppression of microtubule dynamics, by treating cells with low levels of paclitaxel, versus specific perturbation of spindle microtubule subsets by MCAK inhibition. Paclitaxel treatment caused a disruption in spindle microtubule organization marked by a significant increase in microtubules near the poles and a reduction in K-fiber fluorescence intensity. This was correlated with a faster t(1/2) of both spindle and K-fiber microtubules. In contrast, MCAK inhibition caused a dramatic reorganization of spindle microtubules with a significant increase in astral microtubules and reduction in K-fiber fluorescence intensity, which correlated with a slower t(1/2) of K-fibers but no change in the t(1/2) of spindle microtubules. Our data support the model that MCAK perturbs spindle organization by acting preferentially on a subset of microtubules, and they support the overall hypothesis that microtubule dynamics is differentially regulated in the spindle.
Collapse
Affiliation(s)
- Rania S Rizk
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hueston JL, Herren GP, Cueva JG, Buechner M, Lundquist EA, Goodman MB, Suprenant KA. The C. elegans EMAP-like protein, ELP-1 is required for touch sensation and associates with microtubules and adhesion complexes. BMC DEVELOPMENTAL BIOLOGY 2008; 8:110. [PMID: 19014691 PMCID: PMC2642796 DOI: 10.1186/1471-213x-8-110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 11/17/2008] [Indexed: 01/01/2023]
Abstract
Background The founding member of the EMAP-like protein family is the Echinoderm Microtubule-Associated Protein (EMAP), so-named for its abundance in sea urchin, starfish, and sand dollar eggs. The EMAP-like protein family has five members in mammals (EML1 through EML5) and only one in both Drosophila (ELP-1) and C. elegans (ELP-1). Biochemical studies of sea urchin EMAP and vertebrate EMLs implicate these proteins in the regulation of microtubule stability. So far, however, the physiological function of this protein family remains unknown. Results We examined the expression pattern of C. elegans ELP-1 by means of transgenic gene expression in living embryos and adults, and by immunolocalization with an ELP-1-specific antibody in fixed tissues. In embryos, ELP-1 is expressed in the hypodermis. In larvae and adults, ELP-1 is expressed in the body wall, spermatheca and vulval muscles, intestine, and hypodermal seam cells. In muscle, ELP-1 is associated with adhesion complexes near the cell surface and is bound to a criss-crossing network of microtubules in the cytoplasm. ELP-1 is also expressed in a subset of mechanoreceptor neurons, including the ray neurons in the male tail, microtubule-rich touch receptor neurons, and the six ciliated IL1 neurons. This restricted localization in the nervous system implies that ELP-1 plays a role in mechanotransmission. Consistent with this idea, decreasing ELP-1 expression decreases sensitivity to gentle touch applied to the body wall. Conclusion These data imply that ELP-1 may play an important role during the transmission of forces and signals between the body surface and both muscle cells and touch receptor neurons.
Collapse
Affiliation(s)
- Jennifer L Hueston
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Sewer MB, Li D. Regulation of steroid hormone biosynthesis by the cytoskeleton. Lipids 2008; 43:1109-15. [PMID: 18726632 DOI: 10.1007/s11745-008-3221-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 07/31/2008] [Indexed: 01/11/2023]
Abstract
Steroid hormones are synthesized in response to signaling cascades initiated by the trophic peptide hormones derived from the anterior pituitary. The mechanisms by which these peptide hormones regulate steroid hormone production are multifaceted and include controlling the transcription of steroidogenic genes, regulating cholesterol (substrate) uptake and transport, modulating steroidogenic enzyme activity, and controlling electron availability. Cytoskeletal polymers such as microfilaments and microtubules have also been implicated in regulating steroidogenesis. Of note, steroidogenesis is a multi-step process that occurs in two organelles, the endoplasmic reticulum (ER) and the mitochondrion. However, the precise mechanism by which substrates are delivered back and forth between these two organelles is unknown. In this review we will discuss the role of components of the cytoskeleton in conferring optimal steroidogenic potential. Finally, we present data that identifying a novel mechanism by which sphingosine-1-phosphate induces mitochondrial trafficking to promote steroidogenesis.
Collapse
Affiliation(s)
- Marion B Sewer
- School of Biology and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | |
Collapse
|
30
|
Yang G, Cameron LA, Maddox PS, Salmon ED, Danuser G. Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle. ACTA ACUST UNITED AC 2008; 182:631-9. [PMID: 18710922 PMCID: PMC2518697 DOI: 10.1083/jcb.200801105] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Continuous poleward movement of tubulin is a hallmark of metaphase spindle dynamics in higher eukaryotic cells and is essential for stable spindle architecture and reliable chromosome segregation. We use quantitative fluorescent speckle microscopy to map with high resolution the spatial organization of microtubule flux in Xenopus laevis egg extract meiotic spindles. We find that the flux velocity decreases near spindle poles by ∼20%. The regional variation is independent of functional kinetochores and centrosomes and is suppressed by inhibition of dynein/dynactin, kinesin-5, or both. Statistical analysis reveals that tubulin flows in two distinct velocity modes. We propose an association of these modes with two architecturally distinct yet spatially overlapping and dynamically cross-linked arrays of microtubules: focused polar microtubule arrays of a uniform polarity and slower flux velocities are interconnected by a dense barrel-like microtubule array of antiparallel polarities and faster flux velocities.
Collapse
Affiliation(s)
- Ge Yang
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
31
|
Tanaka TU. Bi-orienting chromosomes: acrobatics on the mitotic spindle. Chromosoma 2008; 117:521-33. [PMID: 18677502 DOI: 10.1007/s00412-008-0173-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/05/2008] [Accepted: 06/07/2008] [Indexed: 11/28/2022]
Abstract
To maintain their genetic integrity, eukaryotic cells must segregate their chromosomes properly to opposite poles during mitosis. This process mainly depends on the forces generated by microtubules that attach to kinetochores. During prometaphase, kinetochores initially interact with a single microtubule that extends from a spindle pole and then move towards a spindle pole. Subsequently, microtubules that extend from the other spindle pole also interact with kinetochores and, eventually, each sister kinetochore attaches to microtubules that extend from opposite poles (sister kinetochore bi-orientation). If sister kinetochores interact with microtubules in wrong orientation, this must be corrected before the onset of anaphase. Here, I discuss the processes leading to bi-orientation and the mechanisms ensuring this pivotal state that is required for proper chromosome segregation.
Collapse
Affiliation(s)
- Tomoyuki U Tanaka
- Wellcome Trust Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, Scotland.
| |
Collapse
|
32
|
Zou J, Hallen MA, Yankel CD, Endow SA. A microtubule-destabilizing kinesin motor regulates spindle length and anchoring in oocytes. ACTA ACUST UNITED AC 2008; 180:459-66. [PMID: 18250200 PMCID: PMC2234233 DOI: 10.1083/jcb.200711031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The kinesin-13 motor, KLP10A, destabilizes microtubules at their minus ends in mitosis and binds to polymerizing plus ends in interphase, regulating spindle and microtubule dynamics. Little is known about kinesin-13 motors in meiosis. In this study, we report that KLP10A localizes to the unusual pole bodies of anastral Drosophila melanogaster oocyte meiosis I spindles as well as spindle fibers, centromeres, and cortical microtubules. We frequently observe the pole bodies attached to cortical microtubules, indicating that KLP10A could mediate spindle anchoring to the cortex via cortical microtubules. Oocytes treated with drugs that suppress microtubule dynamics exhibit spindles that are reoriented more vertically to the cortex than untreated controls. A dominant-negative klp10A mutant shows both reoriented and shorter oocyte spindles, implying that, unexpectedly, KLP10A may stabilize rather than destabilize microtubules, regulating spindle length and positioning the oocyte spindle. By altering microtubule dynamics, KLP10A could promote spindle reorientation upon oocyte activation.
Collapse
Affiliation(s)
- Jianwei Zou
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
33
|
Tanaka TU, Desai A. Kinetochore-microtubule interactions: the means to the end. Curr Opin Cell Biol 2008; 20:53-63. [PMID: 18182282 PMCID: PMC2358929 DOI: 10.1016/j.ceb.2007.11.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 11/26/2007] [Indexed: 01/08/2023]
Abstract
Kinetochores are proteinaceous complexes containing dozens of components; they are assembled at centromeric DNA regions and provide the major microtubule attachment site on chromosomes during cell division. Recent studies have defined the kinetochore components comprising the direct interface with spindle microtubules, primarily through structural and functional analysis of the Ndc80 and Dam1 complexes. These studies have facilitated our understanding of how kinetochores remain attached to the end of dynamic microtubules and how proper orientation of a kinetochore-microtubule attachment is promoted on the mitotic spindle. In this article, we review these recent studies and summarize their key findings.
Collapse
Affiliation(s)
- Tomoyuki U Tanaka
- Wellcome Trust Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, MSI/WTB/JBC Complex, Dundee, UK.
| | | |
Collapse
|
34
|
Johansen KM, Johansen J. Cell and Molecular Biology of the Spindle Matrix. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:155-206. [PMID: 17725967 DOI: 10.1016/s0074-7696(07)63004-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The concept of a spindle matrix has long been proposed to account for incompletely understood features of microtubule spindle dynamics and force production during mitosis. In its simplest formulation, the spindle matrix is hypothesized to provide a stationary or elastic molecular matrix that can provide a substrate for motor molecules to interact with during microtubule sliding and which can stabilize the spindle during force production. Although this is an attractive concept with the potential to greatly simplify current models of microtubule spindle behavior, definitive evidence for the molecular nature of a spindle matrix or for its direct role in microtubule spindle function has been lagging. However, as reviewed here multiple studies spanning the evolutionary spectrum from lower eukaryotes to vertebrates have provided new and intriguing evidence that a spindle matrix may be a general feature of mitosis.
Collapse
Affiliation(s)
- Kristen M Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|