1
|
Żak K, Satora M, Skrabalak I, Tarkowski R, Ostrowska-Leśko M, Bobiński M. The Potential Influence of Residual or Recurrent Disease on Bevacizumab Treatment Efficacy in Ovarian Cancer: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:1063. [PMID: 38473419 DOI: 10.3390/cancers16051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
There were high hopes for the new antiangiogenic medicament, bevacizumab, which could inhibit the creation of new blood vessels through binding to isoform A of vascular endothelial growth factor (VEGF). However, it is not only blood vessels that are responsible for tumor cell spread. During the process of tumor growth, lymphangiogenesis is mediated by other members of the VEGF family, specifically VEGF-C and VEGF-D, which act independent to bevacizumab. Therefore, based on the mechanism of bevacizumab action and the processes of angio- and lymphangiogenesis, we formed three hypotheses: (1) if the lymph nodes in primary ovarian cancers are metastatic, the outcome of bevacizumab treatment is worsened; (2) concerning the second-line treatment, bevacizumab will act in a weakened manner if recurrence occurs in lymph nodes as opposed to a local recurrence; (3) patients treated by bevacizumab are more likely to have recurrences in lymph nodes. These hypotheses raise the issue of the existing knowledge gap, which concerns the effect of bevacizumab on metastatic lymph nodes.
Collapse
Affiliation(s)
- Klaudia Żak
- Department of Medical Chemistry, Medical University of Lublin, 20-059 Lublin, Poland
| | - Małgorzata Satora
- I Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, 20-059 Lublin, Poland
| | - Ilona Skrabalak
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Rafał Tarkowski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Marta Ostrowska-Leśko
- Chair and Department of Toxicology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Marcin Bobiński
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
2
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. An mTurq2-Col4a1 mouse model allows for live visualization of mammalian basement membrane development. J Cell Biol 2024; 223:e202309074. [PMID: 38051393 PMCID: PMC10697824 DOI: 10.1083/jcb.202309074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Albini A, Albini F, Corradino P, Dugo L, Calabrone L, Noonan DM. From antiquity to contemporary times: how olive oil by-products and waste water can contribute to health. Front Nutr 2023; 10:1254947. [PMID: 37908306 PMCID: PMC10615083 DOI: 10.3389/fnut.2023.1254947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Since antiquity, numerous advantages of olive oil and its by-products have been recognized in various domains, including cooking, skincare, and healthcare. Extra virgin olive oil is a crucial component of the Mediterranean diet; several of its compounds exert antioxidant, anti-proliferative, anti-angiogenic and pro-apoptotic effects against a variety of cancers, and also affect cellular metabolism, targeting cancer cells through their metabolic derangements. Numerous olive tree parts, including leaves, can contribute metabolites useful to human health. Olive mill waste water (OMWW), a dark and pungent liquid residue produced in vast amounts during olive oil extraction, contains high organic matter concentrations that may seriously contaminate the soil and surrounding waters if not managed properly. However, OMWW is a rich source of phytochemicals with various health benefits. In ancient Rome, the farmers would employ what was known as amurca, a mulch-like by-product of olive oil production, for many purposes and applications. Several studies have investigated anti-angiogenic and chemopreventive activities of OMWW extracts. The most prevalent polyphenol in OMWW extracts is hydroxytyrosol (HT). Verbascoside and oleuperin are also abundant. We assessed the impact of one such extract, A009, on endothelial cells (HUVEC) and cancer cells. A009 was anti-angiogenic in several in vitro assays (growth, migration, adhesion) and inhibited angiogenesis in vivo, outperforming HT alone. A009 inhibited cells from several tumors in vitro and in vivo and showed potential cardioprotective effects mitigating cardiotoxicity induced by chemotherapy drugs, commonly used in cancer treatment, and reducing up-regulation of pro-inflammatory markers in cardiomyocytes. Extracts from OMWW and other olive by-products have been evaluated for biological activities by various international research teams. The results obtained make them promising candidates for further development as nutraceutical and cosmeceutical agents or dietary supplement, especially in cancer prevention or even in co-treatments with anti-cancer drugs. Furthermore, their potential to offer cardioprotective benefits opens up avenues for application in the field of cardio-oncology.
Collapse
Affiliation(s)
- Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Francesca Albini
- Royal Society for the Encouragement of Arts, Manufactures and Commerce, London, United Kingdom
| | - Paola Corradino
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Roma, Italy
| | | | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
4
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. A Window into Mammalian Basement Membrane Development: Insights from the mTurq2-Col4a1 Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559396. [PMID: 37808687 PMCID: PMC10557719 DOI: 10.1101/2023.09.27.559396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate traffic of cells and molecules between compartments, and participate in signaling, cell migration and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labelled. Here, we describe the mTurquoise2-Col4a1 mouse, in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative Planar-Sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
5
|
Lee JC, Yotis DM, Lee JY, Sarabusky MA, Shrum B, Champagne A, Ismail OZ, Tutunea-Fatan E, Leong HS, Gunaratnam L. Kidney injury molecule-1 inhibits metastasis of renal cell carcinoma. Sci Rep 2021; 11:11840. [PMID: 34088927 PMCID: PMC8178330 DOI: 10.1038/s41598-021-90919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/19/2021] [Indexed: 11/15/2022] Open
Abstract
Metastasis is present in approximately 30% of patients diagnosed with renal cell carcinoma (RCC) and is associated with a 5-year survival rate of < 15%. Kidney injury molecule 1 (KIM-1), encoded by the HAVCR1 gene, is a proximal tubule cell-surface glycoprotein and a biomarker for early detection of RCC, but its pathophysiological significance in RCC remains unclear. We generated human and murine RCC cell lines either expressing or lacking KIM-1, respectively, and compared their growth and metastatic properties using validated methods. Surprisingly, KIM-1 expression had no effect on cell proliferation or subcutaneous tumour growth in immune deficient (Rag1−/−) Balb/c mice, but inhibited cell invasion and formation of lung metastasis in the same model. Further, we show that the inhibitory effect of KIM-1 on metastases was observed in both immune deficient and immune competent mice. Transcriptomic profiling identified the mRNA for the pro-metastatic GTPase, Rab27b, to be downregulated significantly in KIM-1 expressing human and murine RCC cells. Finally, analysis of The Cancer Genome Atlas (TCGA) data revealed that elevated HAVCR1 mRNA expression in the two most common types of RCC, clear cell and papillary RCC, tumours correlated with significantly improved overall patient survival. Our findings reveal a novel role for KIM-1 in inhibiting metastasis of RCC and suggests that tumour-associated KIM-1 expression may be a favourable prognostic factor.
Collapse
Affiliation(s)
- Jasper C Lee
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, ON, Canada
| | - Demitra M Yotis
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ji Yun Lee
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, ON, Canada
| | - Marie A Sarabusky
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, ON, Canada
| | - Bradly Shrum
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, ON, Canada
| | - Audrey Champagne
- Centre de recherche du CHU de Québec-Université Laval, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Ola Z Ismail
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, ON, Canada
| | - Hon S Leong
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Lakshman Gunaratnam
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, ON, Canada. .,Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, Room A10-208, 339 Windermere Road, London, ON, N6A 5A5, Canada.
| |
Collapse
|
6
|
Naso LG, Martínez VR, Ferrer EG, Williams PAM. Antimetastatic effects of VOflavonoid complexes on A549 cell line. J Trace Elem Med Biol 2021; 64:126690. [PMID: 33260045 DOI: 10.1016/j.jtemb.2020.126690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is the most frequent type of lung cancer and more than 90 % of mortality is due to metastasis-related deaths. Flavonoids are considered nutraceuticals due to the variety of pharmacological properties. In this paper, we studied the effects of baicalin, silibinin, apigenin, luteolin, and its oxidovanadium(IV) cation complexes on the viability, adhesion to fibronectin, invasion, and migration on human lung cancer cell line A549. In addition, in order to complete the study of the interaction of VOflavonoids and bovine serum albumin (BSA), the binding ability of silibinin and VOsil to the protein was evaluated. METHOD To establish the non-cytotoxic concentration range of the tested compounds, the cancer cell viability was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Cell migration and invasion assays were performed using Boyden chambers and adhesion assay using MTT method. The interaction of compounds with BSA were investigated in physiological buffer (pH = 7.4) by fluorescence spectroscopy. RESULTS All complexes inhibited the metastatic cascade steps to a greater extent than their respective ligands. Likewise, based on binding constant values (Kb) for BSA-silibinin and BSA-VOsil, we can suggest that both compounds can interact with the protein. CONCLUSION Although all the complexes suppressed cell adhesion, invasion and migration, VOlut can be considered as a good candidate to continue the trials because it presented encouraging results as a potential antitumor and antimetastatic agent, and can be transported by BSA.
Collapse
Affiliation(s)
- Luciana G Naso
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina.
| | - Valeria R Martínez
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| | - Evelina G Ferrer
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| | - Patricia A M Williams
- CEQUINOR-CONICET-CICPBA-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465, 1900 La Plata, Argentina
| |
Collapse
|
7
|
Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel) 2020; 12:cancers12102754. [PMID: 32987868 PMCID: PMC7601447 DOI: 10.3390/cancers12102754] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the research and development of drug discovery, it is of prime importance to construct the three-dimensional (3D) tissue models in vitro. To this end, the enhancement design of cell function and activity by making use of biomaterials is essential. In this review, 3D culture systems of cancer cells combined with several biomaterials for anticancer drug screening are introduced. Abstract Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.
Collapse
|
8
|
Ando N, Tanaka K, Otsubo K, Toyokawa G, Ikematsu Y, Ide M, Yoneshima Y, Iwama E, Inoue H, Ijichi K, Tagawa T, Nakanishi Y, Okamoto I. Association of Mps one binder kinase activator 1 (MOB1) expression with poor disease-free survival in individuals with non-small cell lung cancer. Thorac Cancer 2020; 11:2830-2839. [PMID: 32841529 PMCID: PMC7529568 DOI: 10.1111/1759-7714.13608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022] Open
Abstract
Background Mps one binder kinase activator 1 (MOB1) is a core component of the Hippo signaling pathway and has been implicated as a tumor suppressor. Here, we evaluated the possible relationship of MOB1 expression in non‐small cell lung cancer (NSCLC) to prognosis. Methods We retrospectively analyzed 205 lung adenocarcinoma patients treated at Kyushu University Hospital between November 2007 and October 2012. MOB1 expression in tumor cells of surgical specimens was evaluated by immunohistochemistry. Invasive activity of NSCLC cell lines in vitro was measured with a transwell assay. Results Expression of MOB1 was classified as high in 105 of the 205 (51.2%) tumor specimens, and such high expression was significantly associated with poor disease‐free survival (P = 0.0161). Among the various clinicopathologic parameters examined, high MOB1 expression was significantly associated only with intratumoral vascular invasion (P = 0.0005). Multivariate analysis also identified high MOB1 expression as a significant independent risk factor for disease‐free survival (P = 0.0319). The invasiveness of H1299 cells in vitro was increased or attenuated by overexpression or knockdown of MOB1, respectively. Conclusions Our results suggest that MOB1 might promote early recurrence of NSCLC by increasing vascular invasion by tumor cells. Key points Significant findings of the study We found that high MOB1 expression in surgical specimens of lung adenocarcinoma was associated with poor disease‐free survival and with intratumoral vascular invasion. MOB1 expression also promoted the invasiveness of NSCLC cells in vitro. What this study adds Our results thus suggest that high MOB1 expression is a risk factor for early postoperative recurrence in lung adenocarcinoma.
Collapse
Affiliation(s)
- Nobuhisa Ando
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Otsubo
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gouji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Ikematsu
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maako Ide
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuto Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inoue
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kayo Ijichi
- Pathophysiological and Experimental Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Kitakyushu City Hospital Organization, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Nakada-Tsukui K, Marumo K, Nozaki T. A lysosomal hydrolase receptor, CPBF2, is associated with motility and invasion of the enteric protozoan parasite Entamoeba histolytica. Mol Biochem Parasitol 2020; 239:111299. [PMID: 32707151 DOI: 10.1016/j.molbiopara.2020.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Proper targeting and secretion of lysosomal hydrolases are regulated by transporting receptors. Entamoeba histolytica, the enteric protozoan parasite responsible for human amebiasis, has a unique family of lysosomal hydrolase receptors, cysteine protease binding protein family, CPBF. CPBFs, consisting of 11 members with conserved domain organization, bind to a wide range of cargos including cysteine proteases and glycosidases, which are also known to be involved in pathogenesis of this parasite. In this study, we characterized one of CPBFs, CPBF2, which is involved in cell motility and extracellular matrix invasion. Unexpectedly, these roles of CPBF were not related to its cargo, α-amylase. This is the first demonstration that a putative hydrolase receptor is involved in cell motility and invasion in parasitic protozoa.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Konomi Marumo
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-572, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
Baci D, Bruno A, Cascini C, Gallazzi M, Mortara L, Sessa F, Pelosi G, Albini A, Noonan DM. Acetyl-L-Carnitine downregulates invasion (CXCR4/CXCL12, MMP-9) and angiogenesis (VEGF, CXCL8) pathways in prostate cancer cells: rationale for prevention and interception strategies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:464. [PMID: 31718684 PMCID: PMC6852951 DOI: 10.1186/s13046-019-1461-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/21/2019] [Indexed: 01/04/2023]
Abstract
Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.
Collapse
Affiliation(s)
- Denisa Baci
- School of Medicine and Surgery, University of Milano-Bicocca, Building U8, Via Cadore 48, 20900, Monza, Italy
| | - Antonino Bruno
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Caterina Cascini
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Matteo Gallazzi
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giuseppe Pelosi
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Building U8, Via Cadore 48, 20900, Monza, Italy. .,Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.
| | - Douglas M Noonan
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
11
|
Baci D, Gallazzi M, Cascini C, Tramacere M, De Stefano D, Bruno A, Noonan DM, Albini A. Downregulation of Pro-Inflammatory and Pro-Angiogenic Pathways in Prostate Cancer Cells by a Polyphenol-Rich Extract from Olive Mill Wastewater. Int J Mol Sci 2019; 20:ijms20020307. [PMID: 30646518 PMCID: PMC6359159 DOI: 10.3390/ijms20020307] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022] Open
Abstract
Dietary phytochemicals are particularly attractive for chemoprevention and are able to modulate several signal transduction pathways linked with cancer. Olive oil, a major component of the Mediterranean diet, is an abundant source of phenolic compounds. Olive oil production is associated with the generation of a waste material, termed 'olive mill wastewater' (OMWW) that have been reported to contain water-soluble polyphenols. Prostate cancer (PCa) is considered as an ideal cancer type for chemopreventive approaches, due to its wide incidence but relatively long latency period and progression time. Here, we investigated activities associated with potential preventive properties of a polyphenol-rich olive mill wastewater extract, OMWW (A009), on three in vitro models of PCa. A009 was able to inhibit PCa cell proliferation, adhesion, migration, and invasion. Molecularly, we found that A009 targeted NF-κB and reduced pro-angiogenic growth factor, VEGF, CXCL8, and CXCL12 production. IL-6/STAT3 axis was also regulated by the extract. A009 shows promising properties, and purified hydroxytyrosol (HyT), the major polyphenol component of A009, was also active but not always as effective as A009. Finally, our results support the idea of repositioning a food waste-derived material for nutraceutical employment, with environmental and industrial cost management benefits.
Collapse
Affiliation(s)
- Denisa Baci
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Matteo Gallazzi
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
| | - Caterina Cascini
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
| | - Matilde Tramacere
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
| | | | - Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
| | - Douglas M Noonan
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
- Department of Biotechnology and Life Sciences, Laboratory of Immunology and General Pathology, University of Insubria, 21100 Varese, Italy.
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
| |
Collapse
|
12
|
Flórido A, Saraiva N, Cerqueira S, Almeida N, Parsons M, Batinic-Haberle I, Miranda JP, Costa JG, Carrara G, Castro M, Oliveira NG, Fernandes AS. The manganese(III) porphyrin MnTnHex-2-PyP 5+ modulates intracellular ROS and breast cancer cell migration: Impact on doxorubicin-treated cells. Redox Biol 2018; 20:367-378. [PMID: 30408752 PMCID: PMC6222139 DOI: 10.1016/j.redox.2018.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022] Open
Abstract
Manganese(III) porphyrins (MnPs) are superoxide dismutase (SOD) mimics with demonstrated beneficial effects in cancer treatment in combination with chemo- and radiotherapy regimens. Despite the ongoing clinical trials, little is known about the effect of MnPs on metastasis, being therefore essential to understand how MnPs affect this process. In the present work, the impact of the MnP MnTnHex-2-PyP5+ in metastasis-related processes was assessed in breast cancer cells (MCF-7 and MDA-MB-231), alone or in combination with doxorubicin (dox). The co-treatment of cells with non-cytotoxic concentrations of MnP and dox altered intracellular ROS, increasing H2O2. While MnP alone did not modify cell migration, the co-exposure led to a reduction in collective cell migration and chemotaxis. In addition, the MnP reduced the dox-induced increase in random migration of MDA-MB-231 cells. Treatment with either MnP or dox decreased the proteolytic invasion of MDA-MB-231 cells, although the effect was more pronounced upon co-exposure with both compounds. Moreover, to explore the cellular mechanisms underlying the observed effects, cell adhesion, spreading, focal adhesions, and NF-κB activation were also studied. Although differential effects were observed according to the endpoints analysed, overall, the alterations induced by MnP in dox-treated cells were consistent with a therapeutically favorable outcome. MnPs are SOD mimics with potential therapeutic applications in cancer. The impact of an MnP on breast cancer metastasis-related processes was assessed. Treatment with MnP+dox decreased collective cell migration, chemotaxis and invasion. MnP also reduced the dox-induced increase in random migration of MDA-MB-231 cells. Combination of MnP with dox revealed therapeutically favorable effects.
Collapse
Affiliation(s)
- Ana Flórido
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Sara Cerqueira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Nuno Almeida
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, England, UK
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - João G Costa
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal.
| |
Collapse
|
13
|
Baci D, Bruno A, Bassani B, Tramacere M, Mortara L, Albini A, Noonan DM. Acetyl-l-carnitine is an anti-angiogenic agent targeting the VEGFR2 and CXCR4 pathways. Cancer Lett 2018; 429:100-116. [PMID: 29678548 DOI: 10.1016/j.canlet.2018.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Carnitines play an important role in the energy exchange in cells, and are involved in the transport of fatty acids across the inner mitochondrial membrane. l-Acetylcarnitine (ALCAR) is an acetic acid ester of carnitine that has higher bioavailability and is considered a fat-burning energizer supplement. We previously found that in serum samples from prostate cancer (PCa) patients, 3 carnitine family members were significantly decreased, suggesting a potential protective role of carnitine against PCa. Several studies support beneficial effects of carnitines on cancer, no study has investigated the activities of carnitine on tumor angiogenesis. We examined whether ALCAR acts as an "angiopreventive" compound and studied the molecular mechanisms involved. We found that ALCAR was able to limit inflammatory angiogenesis by reducing stimulated endothelial cell and macrophage infiltration in vitro and in vivo. Molecularly, we show that ALCAR downregulates VEGF, VEGFR2, CXCL12, CXCR4 and FAK pathways. ALCAR blocked the activation of NF-κB and ICAM-1 and reduced the adhesion of a monocyte cell line to endothelial cells. This is the first study showing that ALCAR has anti-angiogenic and anti-inflammatory properties and might be an attractive candidate for cancer angioprevention.
Collapse
Affiliation(s)
- Denisa Baci
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Antonino Bruno
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Barbara Bassani
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Matilde Tramacere
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy.
| | - Douglas M Noonan
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy; Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
14
|
Amaro A, Angelini G, Mirisola V, Esposito AI, Reverberi D, Matis S, Maffei M, Giaretti W, Viale M, Gangemi R, Emionite L, Astigiano S, Cilli M, Bachmeier BE, Killian PH, Albini A, Pfeffer U. A highly invasive subpopulation of MDA-MB-231 breast cancer cells shows accelerated growth, differential chemoresistance, features of apocrine tumors and reduced tumorigenicity in vivo. Oncotarget 2018; 7:68803-68820. [PMID: 27626697 PMCID: PMC5356591 DOI: 10.18632/oncotarget.11931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/13/2016] [Indexed: 11/28/2022] Open
Abstract
The acquisition of an invasive phenotype is a prerequisite for metastasization, yet it is not clear whether or to which extent the invasive phenotype is linked to other features characteristic of metastatic cells. We selected an invasive subpopulation from the triple negative breast cancer cell line MDA-MB-231, performing repeated cycles of preparative assays of invasion through Matrigel covered membranes. The invasive sub-population of MDA-MB-231 cells exhibits stronger migratory capacity as compared to parental cells confirming the highly invasive potential of the selected cell line. Prolonged cultivation of these cells did not abolish the invasive phenotype. ArrayCGH, DNA index quantification and karyotype analyses confirmed a common genetic origin of the parental and invasive subpopulations and revealed discrete structural differences of the invasive subpopulation including increased ploidy and the absence of a characteristic amplification of chromosome 5p14.1-15.33. Gene expression analyses showed a drastically altered expression profile including features of apocrine breast cancers and of invasion related matrix-metalloproteases and cytokines. The invasive cells showed accelerated proliferation, increased apoptosis, and an altered pattern of chemo-sensitivity with lower IC50 values for drugs affecting the mitotic apparatus. However, the invasive cell population is significantly less tumorigenic in orthotopic mouse xenografts suggesting that the acquisition of the invasive capacity and the achievement of metastatic growth potential are distinct events.
Collapse
Affiliation(s)
- Adriana Amaro
- Molecular Pathology, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Giovanna Angelini
- Molecular Pathology, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Valentina Mirisola
- Molecular Pathology, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Alessia Isabella Esposito
- Molecular Pathology, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Daniele Reverberi
- Molecular Pathology, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Serena Matis
- Molecular Pathology, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Massimo Maffei
- Molecular Pathology, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Walter Giaretti
- Molecular Pathology, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Maurizio Viale
- Biotherapy, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Rosaria Gangemi
- Biotherapy, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Laura Emionite
- Animal Facility, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Simonetta Astigiano
- Immunology, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Michele Cilli
- Animal Facility, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Beatrice E Bachmeier
- Institute of Laboratory Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Peter H Killian
- Institute of Laboratory Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Adriana Albini
- Scientific and Technology Park, IRCCS MultiMedica, Milan, Italy
| | - Ulrich Pfeffer
- Molecular Pathology, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| |
Collapse
|
15
|
Siqueira AS, Pinto MP, Cruz MC, Smuczek B, Cruz KSP, Barbuto JAM, Hoshino D, Weaver AM, Freitas VM, Jaeger RG. Laminin-111 peptide C16 regulates invadopodia activity of malignant cells through β1 integrin, Src and ERK 1/2. Oncotarget 2018; 7:47904-47917. [PMID: 27323814 PMCID: PMC5216987 DOI: 10.18632/oncotarget.10062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 06/04/2016] [Indexed: 01/22/2023] Open
Abstract
Laminin peptides influence tumor behavior. In this study, we addressed whether laminin peptide C16 (KAFDITYVRLKF, γ1 chain) would increase invadopodia activity of cells from squamous cell carcinoma (CAL27) and fibrosarcoma (HT1080). We found that C16 stimulates invadopodia activity over time in both cell lines. Rhodamine-conjugated C16 decorates the edge of cells, suggesting a possible binding to membrane receptors. Flow cytometry showed that C16 increases activated β1 integrin, and β1 integrin miRNA-mediated depletion diminishes C16-induced invadopodia activity in both cell lines. C16 stimulates Src and ERK 1/2 phosphorylation, and ERK 1/2 inhibition decreases peptide-induced invadopodia activity. C16 also increases cortactin phosphorylation in both cells lines. Based on our findings, we propose that C16 regulates invadopodia activity over time of squamous carcinoma and fibrosarcoma cells, probably through β1 integrin, Src and ERK 1/2 signaling pathways.
Collapse
Affiliation(s)
- Adriane S Siqueira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil.,School of Dentistry, Positivo University, Curitiba, PR, 81280-330, Brazil
| | - Monique P Pinto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Mário C Cruz
- ICB Core Facility, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Basilio Smuczek
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Karen S P Cruz
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - José Alexandre M Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Daisuke Hoshino
- Division of Cancer Cell Research, Kanagawa Cancer Center, Yokohama, Kanagawa, 241-8515, Japan
| | - Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Ruy G Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| |
Collapse
|
16
|
Prina-Mello A, Jain N, Liu B, Kilpatrick JI, Tutty MA, Bell AP, Jarvis SP, Volkov Y, Movia D. Culturing substrates influence the morphological, mechanical and biochemical features of lung adenocarcinoma cells cultured in 2D or 3D. Tissue Cell 2017; 50:15-30. [PMID: 29429514 DOI: 10.1016/j.tice.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/31/2017] [Accepted: 11/26/2017] [Indexed: 01/04/2023]
Abstract
Alternative models such as three-dimensional (3D) cell cultures represent a distinct milestone towards capturing the realities of cancer biology in vitro and reduce animal experimentation in the preclinical stage of drug discovery. Significant work remains to be done to understand how substrates used in in vitro alternatives influence cancer cells phenotype and drug efficacy responses, so that to accurately link such models to specific in vivo disease scenarios. Our study describes how the morphological, mechanical and biochemical properties of adenocarcinoma (A549) cells change in response to a 3D environment and varying substrates. Confocal Laser Scanning (LSCM), He-Ion (HIM) and Atomic Force (AFM) microscopies, supported by ELISA and Western blotting, were used. These techniques enabled us to evaluate the shape, cytoskeletal organization, roughness, stiffness and biochemical signatures of cells grown within soft 3D matrices (PuraMatrix™ and Matrigel™), and to compare them to those of cells cultured on two-dimensional glass substrates. Cell cultures are also characterized for their biological response to docetaxel, a taxane-type drug used in Non-Small-Cell Lung Cancer (NSCLC) treatment. Our results offer an advanced biophysical insight into the properties and potential application of 3D cultures of A549 cells as in vitro alternatives in lung cancer research.
Collapse
Affiliation(s)
- Adriele Prina-Mello
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Namrata Jain
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland
| | - Baiyun Liu
- School of Physics, University College Dublin, Ireland
| | - Jason I Kilpatrick
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Ireland
| | - Melissa A Tutty
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Alan P Bell
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Advanced Microscopy Laboratory (AML), Trinity College Dublin, Ireland
| | - Suzanne P Jarvis
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; School of Physics, University College Dublin, Ireland
| | - Yuri Volkov
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Dania Movia
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
17
|
Olejniczak A, Szaryńska M, Kmieć Z. In vitro characterization of spheres derived from colorectal cancer cell lines. Int J Oncol 2017; 52:599-612. [PMID: 29207035 DOI: 10.3892/ijo.2017.4206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/08/2017] [Indexed: 11/06/2022] Open
Abstract
Spherical cultures (SCs) can be regarded in cancer research as a link between in vitro investigations on cancer lines and in vivo studies of tumor development. SCs are believed to mimic tumor architecture and to be enriched in cancer stem cell-like cells (CSC-like cells). In the present study we characterized colonospheres derived from colorectal cancer (CRC) cell lines, and we confirmed the ability of HCT116 and HT29 cell lines to form spheres within serum-free medium, however, the detailed analysis presented the major differences concerning their characteristics including morphology, phenotype, proliferative potential, distribution in the cell cycle phases and spherogenicity. Moreover, after we magnetically separated CD133+ and CD133- cells we could conduct the analogical analysis as we performed for the original cells. We observed that all cellular fractions unveiled sphere formation capacity, even when cultured in limited number of cells per well and only SCs originated from CD133+ fraction resembled morphologically the parental spheres. Both CD133+ and CD133- subsets derived from HCT116 line were more enriched in cells in G0/G1 phase of the cell cycle in comparison to their HT29 analogues. Additionally, proliferative potential also varied amongst all studied fractions. Surprisingly, 3-D invasion assay revealed that only HCT116-derived populations were able to migrate into extended regions of Matrigel Matrix confirming their higher aggressiveness. Our results provided comprehensive characterization of CRC cell lines culture in adherent and spherical forms and, what seems to be the most advantageous, the comparison of two distinct fractions after magnetic separation. As we found the specific features of cells presented line- and expansion mode-dependency, thus, such complete description might appear crucial before CRC lines would be involved into sophisticated assays, especially focused on potentially novel therapeutic agents targeting CSC-like cells.
Collapse
Affiliation(s)
- Agata Olejniczak
- Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Szaryńska
- Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
18
|
Huang YL, Segall JE, Wu M. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion. LAB ON A CHIP 2017; 17:3221-3233. [PMID: 28805874 PMCID: PMC6007858 DOI: 10.1039/c7lc00623c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tumor cell invasion, whether penetrating through the extracellular matrix (ECM) or crossing a vascular endothelium, is a critical step in the cancer metastatic cascade. Along the way from a primary tumor to a distant metastatic site, tumor cells interact actively with the microenvironment either via biomechanical (e. g. ECM stiffness) or biochemical (e.g. secreted cytokines) signals. Increasingly, it is recognized that the tumor microenvironment (TME) is a critical player in tumor cell invasion. A main challenge for the mechanistic understanding of tumor cell-TME interactions comes from the complexity of the TME, which consists of extracellular matrices, fluid flows, cytokine gradients and other cell types. It is difficult to control TME parameters in conventional in vitro experimental designs such as Boyden chambers or in vivo such as in mouse models. Microfluidics has emerged as an enabling tool for exploring the TME parameter space because of its ease of use in recreating a complex and physiologically realistic three dimensional TME with well-defined spatial and temporal control. In this perspective, we will discuss designing principles for modeling the biophysical microenvironment (biological flows and ECM) for tumor cells using microfluidic devices and the potential microfluidic technology holds in recreating a physiologically realistic tumor microenvironment. The focus will be on applications of microfluidic models in tumor cell invasion.
Collapse
Affiliation(s)
- Yu Ling Huang
- Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
19
|
Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans. Nat Protoc 2017; 12:2081-2096. [PMID: 28880279 DOI: 10.1038/nprot.2017.093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cell invasion through basement membrane (BM) barriers is crucial in development, leukocyte trafficking and the spread of cancer. The mechanisms that direct invasion, despite their importance in normal and disease states, are poorly understood, largely because of the inability to visualize dynamic cell-BM interactions in vivo. This protocol describes multichannel time-lapse confocal imaging of anchor-cell invasion in live Caenorhabditis elegans. Methods presented include outline-slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min) and quantitative analysis (variable timing). The acquired images enable direct measurement of invasive dynamics including formation of invadopodia and cell-membrane protrusions, and removal of BM. This protocol can be combined with genetic analysis, molecular-activity probes and optogenetic approaches to uncover the molecular mechanisms underlying cell invasion. These methods can also be readily adapted by any worm laboratory for real-time analysis of cell migration, BM turnover and cell-membrane dynamics.
Collapse
|
20
|
Nuti E, Bassani B, Camodeca C, Rosalia L, Cantelmo A, Gallo C, Baci D, Bruno A, Orlandini E, Nencetti S, Noonan DM, Albini A, Rossello A. Synthesis and antiangiogenic activity study of new hop chalcone Xanthohumol analogues. Eur J Med Chem 2017; 138:890-899. [PMID: 28750311 DOI: 10.1016/j.ejmech.2017.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/29/2022]
Abstract
Angiogenesis induction is a hallmark of cancer. Antiangiogenic properties of Xanthohumol (XN), a naturally occurring prenylated chalcone from hops, have been widely reported. Here we describe the synthesis and study the antiangiogenic activity in vitro of a series of XN derivatives, where different substituents on the B-ring of the chalcone scaffold were inserted. The new XN derivatives inhibited human umbilical-vein endothelial cell (HUVEC) proliferation, adhesion, migration, invasion and their ability to form capillary-like structures in vitro at 10 μM concentration. The preliminary results indicate that the phenolic OH group in R, present in natural XN, is not necessary for having antiangiogenic activity. In fact, the most effective compound from this series, 13, was characterized by a para-methoxy group in R and a fluorine atom in R2 on B-ring. This study paves the way for future development of synthetic analogues of XN to be used as cancer angiopreventive and chemopreventive agents.
Collapse
Affiliation(s)
- Elisa Nuti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Barbara Bassani
- Laboratory of Vascular Biology and Angiogenesis, Scientific and Technologic Park, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Caterina Camodeca
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Lea Rosalia
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - AnnaRita Cantelmo
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Cristina Gallo
- Laboratory of Translational Research, Arcispedale S. Maria Nuova-IRCCS, Viale Risorgimento 80, 42121 Reggio Emilia, Italy
| | - Denisa Baci
- Laboratory of Vascular Biology and Angiogenesis, Scientific and Technologic Park, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Antonino Bruno
- Laboratory of Vascular Biology and Angiogenesis, Scientific and Technologic Park, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy
| | - Elisabetta Orlandini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; Dipartimento di Scienze Della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Nencetti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Douglas M Noonan
- Laboratory of Vascular Biology and Angiogenesis, Scientific and Technologic Park, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; Department of Biotechnologies and Life Sciencies, University of Insubria, Viale O. Rossi 9, 21100 Varese, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, Scientific and Technologic Park, IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy.
| | - Armando Rossello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via Del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
21
|
Maritan SM, Lian EY, Mulligan LM. An Efficient and Flexible Cell Aggregation Method for 3D Spheroid Production. J Vis Exp 2017. [PMID: 28448014 DOI: 10.3791/55544] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Monolayer cell culture does not adequately model the in vivo behavior of tissues, which involves complex cell-cell and cell-matrix interactions. Three-dimensional (3D) cell culture techniques are a recent innovation developed to address the shortcomings of adherent cell culture. While several techniques for generating tissue analogues in vitro have been developed, these methods are frequently complex, expensive to establish, require specialized equipment, and are generally limited by compatibility with only certain cell types. Here, we describe a rapid and flexible protocol for aggregating cells into multicellular 3D spheroids of consistent size that is compatible with growth of a variety of tumor and normal cell lines. We utilize varying concentrations of serum and methyl cellulose (MC) to promote anchorage-independent spheroid generation and prevent the formation of cell monolayers in a highly reproducible manner. Optimal conditions for individual cell lines can be achieved by adjusting MC or serum concentrations in the spheroid formation medium. The 3D spheroids generated can be collected for use in a wide range of applications, including cell signaling or gene expression studies, candidate drug screening, or in the study of cellular processes such as tumor cell invasion and migration. The protocol is also readily adapted to generate clonal spheroids from single cells, and can be adapted to assess anchorage-independent growth and anoikis-resistance. Overall, our protocol provides an easily modifiable method for generating and utilizing 3D cell spheroids in order to recapitulate the 3D microenvironment of tissues and model the in vivo growth of normal and tumor cells.
Collapse
Affiliation(s)
- Sarah M Maritan
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute; Department of Pathology and Molecular Medicine, Queen's University
| | - Eric Y Lian
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute; Department of Pathology and Molecular Medicine, Queen's University
| | - Lois M Mulligan
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute; Department of Pathology and Molecular Medicine, Queen's University;
| |
Collapse
|
22
|
Luan X, Ma C, Wang P, Lou F. HMGB1 is negatively correlated with the development of endometrial carcinoma and prevents cancer cell invasion and metastasis by inhibiting the process of epithelial-to-mesenchymal transition. Onco Targets Ther 2017; 10:1389-1402. [PMID: 28424555 PMCID: PMC5344438 DOI: 10.2147/ott.s123085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
High-mobility group box protein 1 (HMGB1), a nuclear protein that plays a significant role in DNA architecture and transcription, was correlated with the progression of some types of cancer. However, the role of HMGB1 in endometrial cancer cell invasion and metastasis remains unexplored. HMGB1 expression was initially assessed by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in normal endometrial tissue and endometrial carcinoma tissue. High expressions of HMGB1 protein were detected in normal endometrial tissues; however, in endometrial cancer tissues, the expressions of HMGB1 were found to be very weak. Furthermore, HMGB1 expressions were negatively correlated with advanced stage and lymph node metastasis in endometrial cancer. Then by RT-qPCR, Western blot and immunocytochemistry, HMGB1 was also detected in primary cultured endometrial cells and four kinds of endometrial cancer cell lines (Ishikawa, HEC-1A, HEC-1B and KLE). We found that the expression of HMGB1 was much higher in normal endometrial cells than in endometrial cancer cells, and reduced expression levels of HMGB1 were observed especially in the highly metastatic cell lines. Using lentivirus transfection, HMGB1 small hairpin RNA was constructed, and this infected the lowly invasive endometrial cancer cell lines, Ishikawa and HEC-1B. HMGB1 knockdown significantly enhanced the proliferation, invasion and metastasis of endometrial cancer cells and induced the process of epithelial-to-mesenchymal transition. These results can contribute to the development of a new potential therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Xiaorong Luan
- Nursing College, Shandong University.,Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Chunjing Ma
- Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Ping Wang
- Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | | |
Collapse
|
23
|
Carneiro ACDM, Silveira ICD, Rezende AS, Silva BRO, Crema VO. Tyrosine kinase inhibitor TKI-258 inhibits cell motility in oral squamous cell carcinoma in vitro. J Oral Pathol Med 2016; 46:484-488. [PMID: 27732737 DOI: 10.1111/jop.12511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma is extremely invasive, and this behavior is regulated by binding of extracellular molecules to the cell membrane receptors. The TKI-258 inhibits phosphorylation of FGFRs VEGFRs and PDGFRs. Our aim was to analyze the effect of TKI-258 treatment in cell movement using SCC-4 cell line from human oral squamous cell carcinoma. METHODS F-actin was stained with rhodamine phalloidin, and confocal analysis was performed. The migration and invasion (membrane covered with Matrigel™ ) three-dimensional assays were performed, and control and cells treated with TKI-258 that migrated through the membrane were counted after 24 h. RESULTS Control cells presented abundant cytoplasm with F-actin wide distributed and evident cell cortex; however, treated (1, 5 and 10 μM TKI-258) cells showed round morphology, scanty cytoplasm, F-actin disorganized and preserved cell cortex. TKI-258 (1, 5, and 10 μM) treatment inhibits migrating cells (ANOVA, F = 97.749, d.f. = 3, 10; P < 0.0001), and it was concentration dependent. Invading cell treated with 5 μM TKI-258 was significantly lower (t = 6.708, d.f. = 5, P < 0.001). CONCLUSIONS These results suggest that the tyrosine kinase inhibitor TKI-258 has an inhibitory effect on cell motility, affecting F-actin, cell migration, and cell invasion, and probably, these processes are regulated by signaling pathways FGFRs and/or PDGFRs and/or VEGFRs.
Collapse
Affiliation(s)
- Anna Cecília Dias Maciel Carneiro
- Structural Biology Department, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Isadora Caixeta da Silveira
- Structural Biology Department, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Arthur Silva Rezende
- Structural Biology Department, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Bruna Raphaela Oliveira Silva
- Structural Biology Department, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Virgínia Oliveira Crema
- Structural Biology Department, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
24
|
Bassani B, Bartolini D, Pagani A, Principi E, Zollo M, Noonan DM, Albini A, Bruno A. Fenretinide (4-HPR) Targets Caspase-9, ERK 1/2 and the Wnt3a/β-Catenin Pathway in Medulloblastoma Cells and Medulloblastoma Cell Spheroids. PLoS One 2016; 11:e0154111. [PMID: 27367907 PMCID: PMC4930187 DOI: 10.1371/journal.pone.0154111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma (MB), a neuroectodermal tumor arising in the cerebellum, represents the most frequent childhood brain malignancy. Current treatments for MB combine radiation and chemotherapy and are often associated with relevant side effects; novel therapeutic strategies are urgently needed. N-(4-Hydroxyphenyl) retinamide (4-HPR, fenretinide), a synthetic analogue of all-trans retinoic acid, has emerged as a promising and well-tolerated cancer chemopreventive and chemotherapeutic agent for various neoplasms, from breast cancer to neuroblastoma. Here we investigated the effects of 4-HPR on MB cell lines and identified the mechanism of action for a potential use in therapy of MB. Flow cytometry analysis was performed to evaluate 4-HPR induction of apoptosis and oxygen reactive species (ROS) production, as well as cell cycle effects. Functional analysis to determine 4-HPR ability to interfere with MB cell migration and invasion were performed. Western Blot analysis were used to investigate the crucial molecules involved in selected signaling pathways associated with apoptosis (caspase-9 and PARP-1), cell survival (ERK 1/2) and tumor progression (Wnt3a and β-catenin). We show that 4-HPR induces caspase 9-dependent cell death in DAOY and ONS-76 cells, associated with increased ROS generation, suggesting that free radical intermediates might be directly involved. We observed 4-HPR induction of cell cycle arrest in G1/S phase, inactivated β-catenin, and inhibition of MB cell migration and invasion. We also evaluated the ability of 4-HPR to target MB cancer-stem/cancer-initiating cells, using an MB spheroids model, followed by flow cytometry and quantitative real-time PCR. 4-HPR treatment reduced DAOY and ONS-76 spheroid formation, in term of number and size. Decreased expression of the surface markers CD133+ and ABCG2+ as well as Oct-4 and Sox-2 gene expression were observed on BTICs treated with 4-HPR further reducing BITIC invasive activities. Finally, we analyzed 4-HPR ability to inhibit MB tumor cell growth in vivo in nude mice. Taken together, our data suggest that 4-HPR targets both parental and MB tumor stem/initiating cell-like populations. Since 4-HPR exerts low toxicity, it could represent a valid compound in the treatment of human MB.
Collapse
Affiliation(s)
- Barbara Bassani
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | | | - Arianna Pagani
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | - Elisa Principi
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Biotecnologie Avanzate, Naples, Italy
| | - Douglas M. Noonan
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
- * E-mail:
| | - Antonino Bruno
- Scientific and Technological Pole, IRCCS MultiMedica, Milano, Italy
| |
Collapse
|
25
|
Kim Y, Williams KC, Gavin CT, Jardine E, Chambers AF, Leong HS. Quantification of cancer cell extravasation in vivo. Nat Protoc 2016; 11:937-48. [PMID: 27101515 DOI: 10.1038/nprot.2016.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer cell 'invasiveness' is one of the main driving forces in cancer metastasis, and assays that quantify this key attribute of cancer cells are crucial in cancer metastasis research. The research goal of many laboratories is to elucidate the signaling pathways and effectors that are responsible for cancer cell invasion, but many of these experiments rely on in vitro methods that do not specifically simulate individual steps of the metastatic cascade. Cancer cell extravasation is arguably the most important example of invasion in the metastatic cascade, whereby a single cancer cell undergoes transendothelial migration, forming invasive processes known as invadopodia to mediate translocation of the tumor cell from the vessel lumen into tissue in vivo. We have developed a rapid, reproducible and economical technique to evaluate cancer cell invasiveness by quantifying in vivo rates of cancer cell extravasation in the chorioallantoic membrane (CAM) of chicken embryos. This technique enables the investigator to perform well-powered loss-of-function studies of cancer cell extravasation within 24 h, and it can be used to identify and validate drugs with potential antimetastatic effects that specifically target cancer cell extravasation. A key advantage of this technique over similar assays is that intravascular cancer cells within the capillary bed of the CAM are clearly distinct from extravasated cells, which makes cancer cell extravasation easy to detect. An intermediate level of experience in injections of the chorioallantoic membrane of avian embryos and cell culture techniques is required to carry out the protocol.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Karla C Williams
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Breast Cancer Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - Carson T Gavin
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Emily Jardine
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Ann F Chambers
- Translational Breast Cancer Research Unit, London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Hon S Leong
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
26
|
Xuan Y, Chi L, Tian H, Cai W, Sun C, Wang T, Zhou X, Shao M, Zhu Y, Niu C, Sun Y, Cong W, Zhu Z, Li Z, Wang Y, Jin L. The activation of the NF-κB-JNK pathway is independent of the PI3K-Rac1-JNK pathway involved in the bFGF-regulated human fibroblast cell migration. J Dermatol Sci 2016; 82:28-37. [PMID: 26829882 DOI: 10.1016/j.jdermsci.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/27/2015] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Skin wound healing is a complex process that repairs multiple organ-tissues. Fibroblasts are key players of skin cells, whose migration is important during wound healing process. bFGF has shown a great efficacy to promote cell migration, but the precise mechanism by which bFGF regulates cell migration remains elusive. OBJECTIVE The aim of this study was to find bFGF-regulated gene pools and further identify target molecules that participated in human fibroblast cell migration. METHODS Skin primary fibroblasts and rat skin wound model were used to demonstrate the novel mechanism of bFGF regulating cell migration to accelerate wound healing. Cell migration was determined using the wound healing scratch assay. The differentially expressed genes and numerous biochemical pathways after bFGF treatment were identified by RNA-Seq analysis, and differentially expressed genes were further verified by qRT-PCR. siRNA duplex target to interfering the expression of PI3-kinase (p110α) was transformed into NIH/3T3 cells. Western blotting analysis was used to determine marker protein expressions. The invasive activity of fibroblasts was measured using 3D spheroid cell invasion assay. RESULTS RNA-Seq analysis identified numerous biochemical pathways including the NF-κB pathway under the control of FGF signaling. bFGF negatively regulates the phosphorylation of IκB-α, the most well studied NF-κB signaling regulator while bFGF induces JNK phosphorylation. Application of Bay11-7082, a representative NF-κB inhibitor promoted cell migration, invasion and enhanced the JNKs phosphorylation. However, inhibition of JNKs blocked cell migration when NF-κB is inhibited. Moreover, application of the PI3K inhibitor LY294002 together with Bay11-7082 maintained normal cell migration and knocking-down PI3K (p110α) by a specific siRNA inhibited JNKs phosphorylation while maintaining normal IκBα phosphorylation, indicating that PI3K and NF-κB signaling independently regulate JNKs activation. In addition, administration of bFGF or Bay11-7082 promoted rat skin wound repair and accelerated the invasion of fibroblasts. CONCLUSION This study sheds light on the mode of action of bFGF and identifies that the NF-κB-JNKs pathway is independent of the PI3K-JNKs pathway to accelerate fibroblast migration. In addition, bFGF and the relief of inflammation could be a favorable therapeutic approach for skin wound healing.
Collapse
Affiliation(s)
- Yuanhu Xuan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Lisha Chi
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Haishan Tian
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Wanhui Cai
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Congcong Sun
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Tao Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Xuan Zhou
- Ningbo First Hospital, Ningbo 315000, China
| | - Minglong Shao
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yuting Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Niu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yusheng Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weitao Cong
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongxin Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhaoyu Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yang Wang
- Institute of neuroscience, Department of histology and embryology, Wenzhou Medical University, Wenzhou 325000, China.
| | - Litai Jin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
27
|
Salo T, Sutinen M, Hoque Apu E, Sundquist E, Cervigne NK, de Oliveira CE, Akram SU, Ohlmeier S, Suomi F, Eklund L, Juusela P, Åström P, Bitu CC, Santala M, Savolainen K, Korvala J, Paes Leme AF, Coletta RD. A novel human leiomyoma tissue derived matrix for cell culture studies. BMC Cancer 2015; 15:981. [PMID: 26673244 PMCID: PMC4682271 DOI: 10.1186/s12885-015-1944-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/19/2015] [Indexed: 01/29/2023] Open
Abstract
Background The composition of the matrix molecules is important in in vitro cell culture experiments of e.g. human cancer invasion and vessel formation. Currently, the mouse Engelbreth-Holm-Swarm (EHS) sarcoma -derived products, such as Matrigel®, are the most commonly used tumor microenvironment (TME) mimicking matrices for experimental studies. However, since Matrigel® is non-human in origin, its molecular composition does not accurately simulate human TME. We have previously described a solid 3D organotypic myoma disc invasion assay, which is derived from human uterus benign leiomyoma tumor. Here, we describe the preparation and analyses of a processed, gelatinous leiomyoma matrix, named Myogel. Methods A total protein extract, Myogel, was formulated from myoma. The protein contents of Myogel were characterized and its composition and properties compared with a commercial mouse Matrigel®. Myogel was tested and compared to Matrigel® in human cell adhesion, migration, invasion, colony formation, spheroid culture and vessel formation experiments, as well as in a 3D hanging drop video image analysis. Results We demonstrated that only 34 % of Myogel’s molecular content was similar to Matrigel®. All test results showed that Myogel was comparable with Matrigel®, and when mixed with low-melting agarose (Myogel-LMA) it was superior to Matrigel® in in vitro Transwell® invasion and capillary formation assays. Conclusions In conclusion, we have developed a novel Myogel TME matrix, which is recommended for in vitro human cell culture experiments since it closely mimics the human tumor microenvironment of solid cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1944-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tuula Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, PO Box 5281, FI-90014, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014, Oulu, Finland. .,Department of Oral and Maxillofacial Diseases, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Meeri Sutinen
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, PO Box 5281, FI-90014, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014, Oulu, Finland.
| | - Ehsanul Hoque Apu
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, PO Box 5281, FI-90014, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014, Oulu, Finland.
| | - Elias Sundquist
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, PO Box 5281, FI-90014, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014, Oulu, Finland.
| | - Nilva K Cervigne
- Clinical Department, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, SP-13202-550, Brazil. .,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, SP-13414-903, Brazil.
| | - Carine Ervolino de Oliveira
- Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, SP-13414-903, Brazil.
| | - Saad Ullah Akram
- Center for Machine Vision Research, University of Oulu, FI-90014, Oulu, Finland. .,Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland.
| | - Steffen Ohlmeier
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014, Oulu, Finland. .,Proteomics Core Facility, Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland.
| | - Fumi Suomi
- Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland. .,Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014, Oulu, Finland.
| | - Lauri Eklund
- Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland. .,Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014, Oulu, Finland.
| | - Pirjo Juusela
- Department of Oral and Maxillofacial Diseases, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Pirjo Åström
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, PO Box 5281, FI-90014, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014, Oulu, Finland.
| | - Carolina Cavalcante Bitu
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, PO Box 5281, FI-90014, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014, Oulu, Finland.
| | - Markku Santala
- Department of Obstetrics and Gynecology, Oulu University Hospital and University of Oulu, FI-90029, Oulu, Finland.
| | - Kalle Savolainen
- Department of Obstetrics and Gynecology, Tampere University Hospital and University of Tampere, FI-33521, Tampere, Finland.
| | - Johanna Korvala
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, PO Box 5281, FI-90014, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90014, Oulu, Finland.
| | | | - Ricardo D Coletta
- Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, SP-13414-903, Brazil.
| |
Collapse
|
28
|
Bracke ME, Roman BI, Stevens CV, Mus LM, Parmar VS, De Wever O, Mareel MM. Chick Heart Invasion Assay for Testing the Invasiveness of Cancer Cells and the Activity of Potentially Anti-invasive Compounds. J Vis Exp 2015:e52792. [PMID: 26131648 DOI: 10.3791/52792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The goal of the chick heart assay is to offer a relevant organ culture method to study tumor invasion in three dimensions. The assay can distinguish between invasive and non-invasive cells, and enables study of the effects of test compounds on tumor invasion. Cancer cells - either as aggregates or single cells - are confronted with fragments of embryonic chick heart. After organ culture in suspension for a few days or weeks the confronting cultures are fixed and embedded in paraffin for histological analysis. The three-dimensional interaction between the cancer cells and the normal tissue is then reconstructed from serial sections stained with hematoxylin-eosin or after immunohistochemical staining for epitopes in the heart tissue or the confronting cancer cells. The assay is consistent with the recent concept that cancer invasion is the result of molecular interactions between the cancer cells and their neighbouring stromal host elements (myofibroblasts, endothelial cells, extracellular matrix components, etc.). Here, this stromal environment is offered to the cancer cells as a living tissue fragment. Supporting aspects to the relevance of the assay are multiple. Invasion in the assay is in accordance with the criteria of cancer invasion: progressive occupation and replacement in time and space of the host tissue, and invasiveness and non-invasiveness in vivo of the confronting cells generally correlates with the outcome of the assay. Furthermore, the invasion pattern of cells in vivo, as defined by pathologists, is reflected in the histological images in the assay. Quantitative structure-activity relation (QSAR) analysis of the results obtained with numerous potentially anti-invasive organic congener compounds allowed the study of structure-activity relations for flavonoids and chalcones, and known anti-metastatic drugs used in the clinic (e.g., microtubule inhibitors) inhibit invasion in the assay as well. However, the assay does not take into account immunological contributions to cancer invasion.
Collapse
Affiliation(s)
- Marc E Bracke
- Department of Radiation Oncology and Experimental Cancer Research, University of Ghent;
| | - Bart I Roman
- Department of Sustainable Organic Chemistry and Technology, University of Ghent
| | - Christian V Stevens
- Department of Sustainable Organic Chemistry and Technology, University of Ghent
| | - Liselot M Mus
- Department of Radiation Oncology and Experimental Cancer Research, University of Ghent
| | | | - Olivier De Wever
- Department of Radiation Oncology and Experimental Cancer Research, University of Ghent
| | - Marc M Mareel
- Department of Radiation Oncology and Experimental Cancer Research, University of Ghent
| |
Collapse
|
29
|
Fernandes AS, Flórido A, Saraiva N, Cerqueira S, Ramalhete S, Cipriano M, Cabral MF, Miranda JP, Castro M, Costa J, Oliveira NG. Role of the Copper(II) Complex Cu[15]pyN5 in Intracellular ROS and Breast Cancer Cell Motility and Invasion. Chem Biol Drug Des 2015; 86:578-88. [PMID: 25600158 DOI: 10.1111/cbdd.12521] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/02/2014] [Accepted: 01/08/2015] [Indexed: 12/29/2022]
Abstract
Multiple mechanisms related to metastases undergo redox regulation. Cu[15]pyN5 is a redox-active copper(II) complex previously studied as a chemotherapy sensitizer in mammary cells. The effects of a cotreatment with Cu[15]pyN5 and doxorubicin (dox) were evaluated in two human breast cancer cell lines: MCF7 (low aggressiveness) and MDA-MB-231 (highly aggressive). Cu[15]pyN5 decreased MCF7-directed cell migration. In addition, a cotreatment with dox and Cu[15]pyN5 reduced the proteolytic invasion of MDA-MB-231 cells. Cell detachment was not affected by exposure to these agents. Cu[15]pyN5 and dox significantly increased intracellular ROS in both cell lines. This increase could be at least partially due to H2 O2 accumulation. The combination of Cu[15]pyN5 with dox may be beneficial in breast cancer treatment as it could help reduce cancer cell migration and invasion. Moreover, the ligand [15]pyN5 has a high affinity for copper(II) and displays potential anti-angiogenic properties. Overall, we present a potential drug that might arrest the progression of breast cancer by different and complementary mechanisms.
Collapse
Affiliation(s)
- Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
| | - Ana Flórido
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
| | - Sara Cerqueira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
| | - Sérgio Ramalhete
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Madalena Cipriano
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Maria Fátima Cabral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Judite Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
30
|
Inglehart RC, Scanlon CS, D'Silva NJ. Reviewing and reconsidering invasion assays in head and neck cancer. Oral Oncol 2014; 50:1137-43. [PMID: 25448226 DOI: 10.1016/j.oraloncology.2014.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 01/21/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) are malignant tumors that arise from the surface epithelium of the oral cavity, oropharynx and larynx, primarily due to exposure to chemical carcinogens or the human papilloma virus. Due to their location, dental practitioners are well-positioned to detect the lesions. Deadlier than lymphoma or melanoma, HNSCC is incompletely understood. For these reasons, dental practitioners and researchers are focused on understanding HNSCC and the processes driving it. One of these critical processes is invasion, the degradation of the basement membrane by HNSCC cells with subsequent movement into the underlying connective tissue, blood vessels or nerves. Cancer cells metastasize to distant sites via the blood vessels, lymphatics and nerves. Metastasis is associated with poor survival. Since invasion is essential for development and metastasis of HNSCC, it is essential to understand the mechanism(s) driving this process. Elucidation of the mechanisms involved will facilitate the development of targeted treatment, thereby accelerating development of precision/personalized medicine to treat HNSCC. Robust in vitro and in vivo assays are required to investigate the mechanistic basis of invasion. This review will focus on in vitro and in vivo assays used to study invasion in HNSCC, with special emphasis on some of the latest assays to study HNSCC.
Collapse
Affiliation(s)
- Ronald C Inglehart
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Christina S Scanlon
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, USA; Department of Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
31
|
Im GI. Coculture in Musculoskeletal Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:545-54. [DOI: 10.1089/ten.teb.2013.0731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
32
|
Chou CH, Sinden JD, Couraud PO, Modo M. In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells. PLoS One 2014; 9:e106346. [PMID: 25187991 PMCID: PMC4154686 DOI: 10.1371/journal.pone.0106346] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/01/2014] [Indexed: 11/18/2022] Open
Abstract
Brain and vascular cells form a functionally integrated signalling network that is known as the neurovascular unit (NVU). The signalling (autocrine, paracrine and juxtacrine) between different elements of this unit, especially in humans, is difficult to disentangle in vivo. Developing representative in vitro models is therefore essential to better understand the cellular interactions that govern the neurovascular environment. We here describe a novel approach to assay these cellular interactions by combining a human adult cerebral microvascular endothelial cell line (hCMEC/D3) with a fetal ganglionic eminence-derived neural stem cell (hNSC) line. These cell lines provide abundant homogeneous populations of cells to produce a consistently reproducible in vitro model of endothelial morphogenesis and the ensuing NVU. Vasculature-like structures (VLS) interspersed with patches of differentiating neural cells only occurred when hNSCs were seeded onto a differentiated endothelium. These VLS emerged within 3 days of coculture and by day 6 were stabilizing. After 7 days of coculture, neuronal differentiation of hNSCs was increased 3-fold, but had no significant effect on astrocyte or oligodendrocyte differentiation. ZO1, a marker of adherens and tight junctions, was highly expressed in both undifferentiated and differentiated endothelial cells, but the adherens junction markers CD31 and VE-cadherin were significantly reduced in coculture by approximately 20%. A basement membrane, consisting of laminin, vitronectin, and collagen I and IV, separated the VLS from neural patches. This simple assay can assist in elucidating the cellular and molecular signaling involved in the formation of VLS, as well as the enhancement of neuronal differentiation through endothelial signaling.
Collapse
Affiliation(s)
- Chung-Hsing Chou
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- Kings College London, Institute of Psychiatry, Department of Neuroscience, London, United Kingdom
- Tri-service General Hospital, Department of Neurology, National Defense Medical Centre, Taipei, Taiwan
| | | | - Pierre-Olivier Couraud
- INSERM U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel Modo
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh, Department of Radiology, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Jenkins NC, Kalra RR, Dubuc A, Sivakumar W, Pedone CA, Wu X, Taylor MD, Fults DW. Genetic drivers of metastatic dissemination in sonic hedgehog medulloblastoma. Acta Neuropathol Commun 2014; 2:85. [PMID: 25059231 PMCID: PMC4149244 DOI: 10.1186/s40478-014-0085-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/31/2023] Open
Abstract
Leptomeningeal dissemination (LMD), the metastatic spread of tumor cells via the cerebrospinal fluid to the brain and spinal cord, is an ominous prognostic sign for patients with the pediatric brain tumor medulloblastoma. The need to reduce the risk of LMD has driven the development of aggressive treatment regimens, which cause disabling neurotoxic side effects in long-term survivors. Transposon-mediated mutagenesis studies in mice have revealed numerous candidate metastasis genes. Understanding how these genes drive LMD will require functional assessment using in vivo and cell culture models of medulloblastoma. We analyzed two genes that were sites of frequent transposon insertion and highly expressed in human medulloblastomas: Arnt (aryl hydrocarbon receptor nuclear translocator) and Gdi2 (GDP dissociation inhibitor 2). Here we show that ectopic expression of Arnt and Gdi2 promoted LMD in mice bearing Sonic hedgehog (Shh)-induced medulloblastomas. We overexpressed Arnt and Gdi2 in a human medulloblastoma cell line (DAOY) and an immortalized, nontransformed cell line derived from mouse granule neuron precursors (SHH-NPD) and quantified migration, invasiveness, and anchorage-independent growth, cell traits that are associated with metastatic competence in carcinomas. In SHH-NPD cells. Arnt and Gdi2 stimulated all three traits. In DAOY cells, Arnt had the same effects, but Gdi2 stimulated invasiveness only. These results support a mechanism whereby Arnt and Gdi2 cause cells to detach from the primary tumor mass by increasing cell motility and invasiveness. By conferring to tumor cells the ability to proliferate without surface attachment, Arnt and Gdi2 favor the formation of stable colonies of cells capable of seeding the leptomeninges.
Collapse
|
34
|
Bruno A, Pagani A, Pulze L, Albini A, Dallaglio K, Noonan DM, Mortara L. Orchestration of angiogenesis by immune cells. Front Oncol 2014; 4:131. [PMID: 25072019 PMCID: PMC4078768 DOI: 10.3389/fonc.2014.00131] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/16/2014] [Indexed: 12/20/2022] Open
Abstract
It is widely accepted that the tumor microenvironment (TUMIC) plays a major role in cancer and is indispensable for tumor progression. The TUMIC involves many "players" going well beyond the malignant-transformed cells, including stromal, immune, and endothelial cells (ECs). The non-malignant cells can acquire tumor-promoting functions during carcinogenesis. In particular, these cells can "orchestrate" the "symphony" of the angiogenic switch, permitting the creation of new blood vessels that allows rapid expansion and progression toward malignancy. Considerable attention within the context of tumor angiogenesis should focus not only on the ECs, representing a fundamental unit, but also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating tumors typically show a tumor-induced polarization associated with attenuation of anti-tumor functions and generation of pro-tumor activities, among these angiogenesis. Here, we propose a scenario suggesting that the angiogenic switch is an immune switch arising from the pro-angiogenic polarization of immune cells. This view links immunity, inflammation, and angiogenesis to tumor progression. Here, we review the data in the literature and seek to identify the "conductors" of this "orchestra." We also suggest that interrupting the immune → inflammation → angiogenesis → tumor progression process can delay or prevent tumor insurgence and malignant disease.
Collapse
Affiliation(s)
- Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica , Milan , Italy
| | - Arianna Pagani
- Department of Biotechnology and Life Sciences, University of Insubria , Varese , Italy
| | - Laura Pulze
- Department of Biotechnology and Life Sciences, University of Insubria , Varese , Italy
| | - Adriana Albini
- Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova , Reggio Emilia , Italy
| | - Katiuscia Dallaglio
- Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova , Reggio Emilia , Italy
| | - Douglas M Noonan
- Scientific and Technology Pole, IRCCS MultiMedica , Milan , Italy ; Department of Biotechnology and Life Sciences, University of Insubria , Varese , Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria , Varese , Italy
| |
Collapse
|
35
|
Jules J, Maiguel D, Hudson BI. Alternative splicing of the RAGE cytoplasmic domain regulates cell signaling and function. PLoS One 2013; 8:e78267. [PMID: 24260107 PMCID: PMC3832623 DOI: 10.1371/journal.pone.0078267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/09/2013] [Indexed: 12/15/2022] Open
Abstract
The Receptor for Advanced Glycation End-products (RAGE) is a multi-ligand receptor present on most cell types. Upregulation of RAGE is seen in a number of pathological states including, inflammatory and vascular disease, dementia, diabetes and various cancers. We previously demonstrated that alternative splicing of the RAGE gene is an important mechanism which regulates RAGE signaling through the production of soluble ligand decoy isoforms. However, no studies have identified any alternative splice variants within the intracellular region of RAGE, a region critical for RAGE signaling. Herein, we have cloned and characterized a novel splice variant of RAGE that has a truncated intracellular domain (RAGEΔICD). RAGEΔICD is prevalent in both human and mouse tissues including lung, brain, heart and kidney. Expression of RAGEΔICD in C6 glioma cells impaired RAGE-ligand induced signaling through various MAP kinase pathways including ERK1/2, p38 and SAPK/JNK. Moreover, RAGEΔICD significantly affected tumor cell properties through altering cell migration, invasion, adhesion and viability in C6 glioma cells. Furthermore, C6 glioma cells expressing RAGEΔICD exhibited drastic inhibition on tumorigenesis in soft agar assays. Taken together, these data indicate that RAGEΔICD represents a novel endogenous mechanism to regulate RAGE signaling. Significantly, RAGEΔICD could play an important role in RAGE related disease states through down regulation of RAGE signaling.
Collapse
Affiliation(s)
- Joel Jules
- Division of Endocrinology, Diabetes & Metabolism, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Dony Maiguel
- Division of Nephrology and Hypertension, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Barry I. Hudson
- Division of Endocrinology, Diabetes & Metabolism, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
Wang K, Demir IE, D'Haese JG, Tieftrunk E, Kujundzic K, Schorn S, Xing B, Kehl T, Friess H, Ceyhan GO. The neurotrophic factor neurturin contributes toward an aggressive cancer cell phenotype, neuropathic pain and neuronal plasticity in pancreatic cancer. Carcinogenesis 2013; 35:103-13. [PMID: 24067900 DOI: 10.1093/carcin/bgt312] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Neurotrophic factors possess an emerging role in the pathophysiology of several gastrointestinal disorders, regulating innervation, pain sensation and disease-associated neuroplasticity. Here, we aimed at characterizing the role of the neurotrophic factor neurturin (NRTN) and its receptor glial-cell-line-derived neurotrophic factor receptor alpha-2 (GFRα-2) in pancreatic cancer (PCa) and pancreatic neuropathy. For this purpose, NRTN and GFRα-2 were studied in normal human pancreas and PCa tissues via immunohistochemistry, quantitative reverse transcription-polymerase chain reaction, immunoblotting and correlated to abdominal pain. The impact of NRTN/GFRα-2 on PCa cell (PCC) biology was investigated via exposure to hypoxia, 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide viability and matrigel invasion assays in native and specific small interfering RNA-silenced PCCs. To assess the influence of NRTN on pancreatic neuroplasticity and neural invasion (NI), its impact was explored via an in vitro 'neuroplasticity assay' and a 3D neural migration assay. NRTN and GFRα-2 demonstrated a site-specific upregulation in PCa, predominantly in nerves, PCCs and extracellular matrix. Patients with severe pain demonstrated higher intraneural GFRα-2 immunoreactivity than patients with no pain. PCa tissue and PCCs contained increased amounts of NRTN, which was suppressed under hypoxia. NRTN promoted PCC invasiveness, and silencing of NRTN limited both PCC proliferation and invasion. Depletion of NRTN from PCa tissue extracts and PCC supernatants decreased axonal sprouting in neuronal cultures but did not influence glial density. Silencing of NRTN in PCCs boosted NI. We conclude that increased NRTN/GFRα-2 in PCa seems to promote an aggressive PCC phenotype and neuroplasticity in PCa. Accelerated NI following NRTN suppression constitutes a novel explanation for the attraction of PCC to nerves in the hypoxic PCa tumor microenvironment. SUMMARY PCa is characterized by intrapancreatic neuroplasticity and NI. Here, we show that PCC produce the neurotrophic factor NRTN, which reinforces their biological properties, triggers neuroplastic alterations, NI and influences pain sensation via the GFRα-2 receptor.
Collapse
Affiliation(s)
- Kun Wang
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich D-81675, Germany and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia 2013; 15:133-42. [PMID: 23441128 DOI: 10.1593/neo.121758] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/05/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment can polarize innate immune cells to a proangiogenic phenotype. Decidual natural killer (dNK) cells show an angiogenic phenotype, yet the role for NK innate lymphoid cells in tumor angiogenesis remains to be defined. We investigated NK cells from patients with surgically resected non-small cell lung cancer (NSCLC) and controls using flow cytometric and functional analyses. The CD56(+)CD16(-) NK subset in NSCLC patients, which represents the predominant NK subset in tumors and a minor subset in adjacent lung and peripheral blood, was associated with vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and interleukin-8 (IL-8)/CXCL8 production. Peripheral blood CD56(+)CD16(-) NK cells from patients with the squamous cell carcinoma (SCC) subtype showed higher VEGF and PlGF production compared to those from patients with adenocarcinoma (AdC) and controls. Higher IL-8 production was found for both SCC and AdC compared to controls. Supernatants derived from NSCLC CD56(+)CD16(-) NK cells induced endothelial cell chemotaxis and formation of capillary-like structures in vitro, particularly evident in SCC patients and absent from controls. Finally, exposure to transforming growth factor-β(1) (TGFβ(1)), a cytokine associated with dNK polarization, upregulated VEGF and PlGF in peripheral blood CD56(+)CD16(-) NK cells from healthy subjects. Our data suggest that NK cells in NSCLC act as proangiogenic cells, particularly evident for SCC and in part mediated by TGFβ(1).
Collapse
|
38
|
Fernández-Periáñez R, Molina-Privado I, Rojo F, Guijarro-Muñoz I, Alonso-Camino V, Zazo S, Compte M, Álvarez-Cienfuegos A, Cuesta ÁM, Sánchez-Martín D, Álvarez-Méndez AM, Sanz L, Álvarez-Vallina L. Basement membrane-rich organoids with functional human blood vessels are permissive niches for human breast cancer metastasis. PLoS One 2013; 8:e72957. [PMID: 23951338 PMCID: PMC3738545 DOI: 10.1371/journal.pone.0072957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 07/19/2013] [Indexed: 12/31/2022] Open
Abstract
Metastatic breast cancer is the leading cause of death by malignancy in women worldwide. Tumor metastasis is a multistep process encompassing local invasion of cancer cells at primary tumor site, intravasation into the blood vessel, survival in systemic circulation, and extravasation across the endothelium to metastasize at a secondary site. However, only a small percentage of circulating cancer cells initiate metastatic colonies. This fact, together with the inaccessibility and structural complexity of target tissues has hampered the study of the later steps in cancer metastasis. In addition, most data are derived from in vivo models where critical steps such as intravasation/extravasation of human cancer cells are mediated by murine endothelial cells. Here, we developed a new mouse model to study the molecular and cellular mechanisms underlying late steps of the metastatic cascade. We have shown that a network of functional human blood vessels can be formed by co-implantation of human endothelial cells and mesenchymal cells, embedded within a reconstituted basement membrane-like matrix and inoculated subcutaneously into immunodeficient mice. The ability of circulating cancer cells to colonize these human vascularized organoids was next assessed in an orthotopic model of human breast cancer by bioluminescent imaging, molecular techniques and immunohistological analysis. We demonstrate that disseminated human breast cancer cells efficiently colonize organoids containing a functional microvessel network composed of human endothelial cells, connected to the mouse circulatory system. Human breast cancer cells could be clearly detected at different stages of the metastatic process: initial arrest in the human microvasculature, extravasation, and growth into avascular micrometastases. This new mouse model may help us to map the extravasation process with unprecedented detail, opening the way for the identification of relevant targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Irene Molina-Privado
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Irene Guijarro-Muñoz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Vanesa Alonso-Camino
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Sandra Zazo
- Pathology Department, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Ana Álvarez-Cienfuegos
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Ángel M. Cuesta
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - David Sánchez-Martín
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | | | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
- * E-mail:
| |
Collapse
|
39
|
Xu W, Hu X, Pan W. Tissue engineering concept in the research of the tumor biology. Technol Cancer Res Treat 2013; 13:149-59. [PMID: 23862747 DOI: 10.7785/tcrt.2012.500363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor is a heterogeneous complex, which lives in a three-dimensional environment flush with biopathophysiological and biomechanical signals. This signaling abundant extracellular milieu co-evolving from cell-cell and cell-host interaction guides the development and the generation of the tumor. There has been a recent surge of interest in studying the tumor biology that more closely mirror what happens in living organisms, especially in cancer research. Incorporating cancer cells in the 3D mimicking environment instead of monolayers is reasonable for maintaining in vivo cancer behaviors in spatial and temporal context. However, 3D culture for cancer still presents a challenge for researchers in this field. Tissue engineering, originally aiming at designing the artificial organs, provided a feasible approach to recreate such complex mechanical and biochemical interplay. Aside from reproducing bionic environment, tissue engineering has been routinely introduced into cancer study to build three dimensional structures not only to develop molecular therapeutics, but also to screen for toxic effects of drugs or radiotherapy sensitivity. In this article, we focused on the recent advances of the well-defined tissue-engineering biomaterials in the application in tumor biology. We also discussed the fabrications of the scaffolds from different materials, which might contribute to future cancer research.
Collapse
Affiliation(s)
- Wen Xu
- Gastroenterology Department, The Second Affiliated Hospital of Zhejiang University, School of Medicine, #88 Jiefang Road, Hangzhou, Zhejiang, 310009 China.
| | | | | |
Collapse
|
40
|
Hepatocyte growth factor-loaded biomaterials for mesenchymal stem cell recruitment. Stem Cells Int 2013; 2013:892065. [PMID: 23861688 PMCID: PMC3703903 DOI: 10.1155/2013/892065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 12/17/2022] Open
Abstract
Human adult mesenchymal stem cells (MSC) can be readily harvested from bone marrow through aspiration. MSC are involved in tissue regeneration and repair, particularly in wound healing. Due to their high self-renewal capacity and excellent differentiation potential in vitro, MSC are ideally suited for regenerative medicine. The complex interactions of MSC with their environment and their influence on the molecular and functional levels are widely studied but not completely understood. MSC secrete, for example, hepatocyte growth factor (HGF), whose concentration is enhanced in wounded areas and which is shown to act as a chemoattractant for MSC. We produced HGF-loaded biomaterials based on collagen and fibrin gels to develop a recruitment system for endogenous MSC to improve wound healing. Here, we report that HGF incorporated into collagen or fibrin gels leads to enhanced and directed MSC migration in vitro. HGF-loaded biomaterials might be potentially used as in vivo wound dressings to recruit endogenous MSC from tissue-specific niches towards the wounded area. This novel approach may help to reduce costly multistep procedures of cell isolation, in vitro culture, and transplantation usually used in tissue engineering.
Collapse
|
41
|
Zimmermann M, Box C, Eccles SA. Two-dimensional vs. three-dimensional in vitro tumor migration and invasion assays. Methods Mol Biol 2013; 986:227-52. [PMID: 23436416 DOI: 10.1007/978-1-62703-311-4_15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Motility and invasion are key hallmarks that distinguish benign from malignant tumors, enabling cells to cross tissue boundaries, disseminate in blood and lymph and establish metastases at distant sites. Similar properties are also utilized by activated endothelial cells during tumor-induced angiogenesis. It is now appreciated that these processes might provide a rich source of novel molecular targets with the potential for inhibitors to restrain both metastasis and neoangiogenesis. Such therapeutic strategies require assays that can rapidly and quantitatively measure cell movement and the ability to traverse physiological barriers. The need for high-throughput, however, must be balanced by assay designs that accommodate, as far as possible, the complexity of the in vivo tumor microenvironment. This chapter aims to give an overview of some commonly used migration and invasion assays to aid in the selection of a balanced portfolio of techniques for the rapid and accurate evaluation of novel therapeutic agents.
Collapse
Affiliation(s)
- Miriam Zimmermann
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, McElwain Laboratories, The Institute of Cancer Research, Surrey, UK
| | | | | |
Collapse
|
42
|
Halfter W, Candiello J, Hu H, Zhang P, Schreiber E, Balasubramani M. Protein composition and biomechanical properties of in vivo-derived basement membranes. Cell Adh Migr 2012; 7:64-71. [PMID: 23154404 PMCID: PMC3544788 DOI: 10.4161/cam.22479] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Basement membranes (BMs) evolved together with the first metazoan species approximately 500 million years ago. Main functions of BMs are stabilizing epithelial cell layers and connecting different types of tissues to functional, multicellular organisms. Mutations of BM proteins from worms to humans are either embryonic lethal or result in severe diseases, including muscular dystrophy, blindness, deafness, kidney defects, cardio-vascular abnormalities or retinal and cortical malformations. In vivo-derived BMs are difficult to come by; they are very thin and sticky and, therefore, difficult to handle and probe. In addition, BMs are difficult to solubilize complicating their biochemical analysis. For these reasons, most of our knowledge of BM biology is based on studies of the BM-like extracellular matrix (ECM) of mouse yolk sac tumors or from studies of the lens capsule, an unusually thick BM. Recently, isolation procedures for a variety of BMs have been described, and new techniques have been developed to directly analyze the protein compositions, the biomechanical properties and the biological functions of BMs. New findings show that native BMs consist of approximately 20 proteins. BMs are four times thicker than previously recorded, and proteoglycans are mainly responsible to determine the thickness of BMs by binding large quantities of water to the matrix. The mechanical stiffness of BMs is similar to that of articular cartilage. In mice with mutation of BM proteins, the stiffness of BMs is often reduced. As a consequence, these BMs rupture due to mechanical instability explaining many of the pathological phenotypes. Finally, the morphology and protein composition of human BMs changes with age, thus BMs are dynamic in their structure, composition and biomechanical properties.
Collapse
Affiliation(s)
- Willi Halfter
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Puxbaum V, Nimmerfall E, Bäuerl C, Taub N, Blaas PM, Wieser J, Mikula M, Mikulits W, Ng KM, Yeoh GC, Mach L. M6P/IGF2R modulates the invasiveness of liver cells via its capacity to bind mannose 6-phosphate residues. J Hepatol 2012; 57:337-43. [PMID: 22521359 PMCID: PMC3401376 DOI: 10.1016/j.jhep.2012.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/10/2012] [Accepted: 03/23/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R), a multifunctional protein, plays a central role in intracellular targeting of lysosomal enzymes and control of insulin-like growth factor II (IGF-II) bioactivity. Importantly, the gene encoding this receptor is frequently inactivated in a wide range of malignant tumors including hepatocellular carcinomas. Thus, M6P/IGF2R is considered a putative liver tumor suppressor. The aim of this study was to establish the impact of the receptor on the invasive properties of liver cells. METHODS Reconstitution experiments were performed by expression of wild type and mutant M6P/IGF2R in receptor-deficient FRL14 fetal rat liver cells. RNA interference was used to induce M6P/IGF2R downregulation in receptor-positive MIM-1-4 mouse hepatocytes. RESULTS We show that the M6P/IGF2R status exerts a strong impact on the invasiveness of tumorigenic rodent liver cells. M6P/IGF2R-deficient fetal rat liver cells hypersecrete lysosomal cathepsins and penetrate extracellular matrix barriers in a cathepsin-dependent manner. Forced expression of M6P/IGF2R restores intracellular transport of cathepsins to lysosomes and concomitantly reduces the tumorigenicity and invasive potential of these cells. Conversely, M6P/IGF2R knock-down in receptor-positive mouse hepatocytes causes increased cathepsin secretion as well as enhanced cell motility and invasiveness. We also demonstrate that functional M6P-binding sites are important for the anti-invasive properties of M6P/IGF2R, whereas the capacity to bind IGF-II is dispensable for the anti-invasive activity of the receptor in liver cells. CONCLUSIONS M6P/IGF2R restricts liver cell invasion by preventing the pericellular action of M6P-modified proteins.
Collapse
Key Words
- bsa, bovine serum albumin
- ecm, extracellular matrix
- fbs, fetal bovine serum
- hcc, hepatocellular carcinoma
- hgf, hepatocyte growth factor
- igf-ii, insulin-like growth factor ii
- m6p, mannose 6-phosphate
- m6p/igf2r, mannose 6-phosphate/insulin-like growth factor ii receptor
- mpr46, 46-kda mannose 6-phosphate receptor
- rnai, rna interference
- shrna, short hairpin rna
- sirna, short interfering rna
- cathepsin
- hepatocellular carcinoma
- lysosome
- matrix degradation
- cell invasion
Collapse
Affiliation(s)
- Verena Puxbaum
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Elisabeth Nimmerfall
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christine Bäuerl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Nicole Taub
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Pia-Maria Blaas
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Johannes Wieser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Mario Mikula
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Wolfgang Mikulits
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Ken M. Ng
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, M310, Crawley, WA 6009, Australia
| | - George C.T. Yeoh
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, M310, Crawley, WA 6009, Australia,Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, 50 Murray Street, Perth, WA 6000, Australia
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria,Corresponding author. Tel.: +43 1 47654 6360, fax: +43 1 47654 6392.
| |
Collapse
|
44
|
Albini A, Tosetti F, Li VW, Noonan DM, Li WW. Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol 2012; 9:498-509. [PMID: 22850752 DOI: 10.1038/nrclinonc.2012.120] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Healthy individuals can harbour microscopic tumours and dysplastic foci in different organs in an undetectable and asymptomatic state for many years. These lesions do not progress in the absence of angiogenesis or inflammation. Targeting both processes before clinical manifestation can prevent tumour growth and progression. Angioprevention is a chemoprevention approach that interrupts the formation of new blood vessels when tumour cell foci are in an indolent state. Many efficacious chemopreventive drugs function by preventing angiogenesis in the tumour microenvironment. Blocking the vascularization of incipient tumours should maintain a dormancy state such that neoplasia or cancer exist without disease. The current limitations of antiangiogenic cancer therapy may well be related to the use of antiangiogenic agents too late in the disease course. In this Review, we suggest mechanisms and strategies for using antiangiogenesis agents in a safe, preventive clinical angioprevention setting, proposing different levels of clinical angioprevention according to risk, and indicate potential drugs to be employed at these levels. Finally, angioprevention may go well beyond cancer in the prevention of a range of chronic disorders where angiogenesis is crucial, including different forms of inflammatory or autoimmune diseases, ocular disorders, and neurodegeneration.
Collapse
Affiliation(s)
- Adriana Albini
- IRCCS MultiMedica, Science and Technology Pole, Via Fantoli 16/15, Milan 20138, Italy. adriana.albini@ multimedica.it
| | | | | | | | | |
Collapse
|
45
|
Ye Y, Gao JX, Tian H, Yearsley K, Lange AR, Robertson FM, Barsky SH. Early to Intermediate Steps of Tumor Embolic Formation Involve Specific Proteolytic Processing of E-Cadherin Regulated by Rab7. Mol Cancer Res 2012; 10:713-26. [DOI: 10.1158/1541-7786.mcr-12-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
The genesis and unique properties of the lymphovascular tumor embolus are because of calpain-regulated proteolysis of E-cadherin. Oncogene 2012; 32:1702-13. [DOI: 10.1038/onc.2012.180] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Mishra DK, Thrall MJ, Baird BN, Ott HC, Blackmon SH, Kurie JM, Kim MP. Human lung cancer cells grown on acellular rat lung matrix create perfusable tumor nodules. Ann Thorac Surg 2012; 93:1075-81. [PMID: 22385822 PMCID: PMC4512949 DOI: 10.1016/j.athoracsur.2012.01.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/03/2012] [Accepted: 01/06/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Extracellular matrix allows lung cancer to form its shape and grow. Recent studies on organ reengineering for orthotopic transplantation have provided a new avenue for isolating purified native matrix to use for growing cells. Whether human lung cancer cells grown in a decellularized rat lung matrix would create perfusable human lung cancer nodules was tested. METHODS Rat lungs were harvested and native cells were removed using sodium dodecyl sulfate and Triton X-100 in a decellularization chamber to create a decellularized rat lung matrix. Human A549, H460, or H1299 lung cancer cells were placed into the decellularized rat lung matrix and grown in a customized bioreactor with perfusion of oxygenated media for 7 to 14 days. RESULTS Decellularized rat lung matrix showed preservation of matrix architecture devoid of all rat cells. All three human lung cancer cell lines grown in the bioreactor developed tumor nodules with intact vasculature. Moreover, the lung cancer cells developed a pattern of growth similar to the original human lung cancer. CONCLUSIONS Overall, this study shows that human lung cancer cells form perfusable tumor nodules in a customized bioreactor on a decellularized rat lung matrix created by a customized decellularization chamber. The lung cancer cells grown in the matrix had features similar to the original human lung cancer. This ex vivo model can be used potentially to gain a deeper understanding of the biologic processes involved in human lung cancer.
Collapse
Affiliation(s)
- Dhruva K Mishra
- Department of Surgery, The Methodist Hospital Research Institute, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Penet MF, Chen Z, Bhujwalla ZM. MRI of metastasis-permissive microenvironments. Future Oncol 2012; 7:1269-84. [PMID: 22044202 DOI: 10.2217/fon.11.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One of the earliest documented observations of the importance of the microenvironment in metastasis was made by Stephen Paget in 1889. More than a century later, the metastatic cascade remains a major cause of mortality from cancer. Cancer meets the criterion of a successful organization that is able to survive by adapting to changing environments. In fact, the tumor microenvironment and stroma are co-opted and shaped by cancer cells to derive a survival advantage. Cohesive strategies integrating advances in molecular biology and chemistry, with noninvasive multimodality imaging, provide new insights into the role of the tumor microenvironment in promoting metastasis from primary tumors as well as insights into environments that attract and permit cancer cells to establish colonies in distant organs. This article provides an overview of molecular and functional imaging characterization of microenvironments that can promote or permit cancer cells to metastasize and the microenvironmental characteristics of distant metastases.
Collapse
Affiliation(s)
- Marie-France Penet
- JHU In vivo Cellular & Molecular Imaging Center, The Russell H. Morgan Department of Radiology & Radiological Science, Baltimore, MD, USA.
| | | | | |
Collapse
|
49
|
Albini A, Noonan DM. Angiopoietin2 and tie2: tied to lymphangiogenesis and lung metastasis. New perspectives in antimetastatic antiangiogenic therapy. J Natl Cancer Inst 2012; 104:429-31. [PMID: 22343030 PMCID: PMC3309131 DOI: 10.1093/jnci/djs032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
50
|
Schwartz J, Pavlova S, Kolokythas A, Lugakingira M, Tao L, Miloro M. Streptococci-human papilloma virus interaction with ethanol exposure leads to keratinocyte damage. J Oral Maxillofac Surg 2011; 70:1867-79. [PMID: 22079067 DOI: 10.1016/j.joms.2011.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 11/16/2022]
Abstract
PURPOSE Ethanol, human papilloma virus (HPV), and poor oral hygiene are risk factors that have been attributed to oral carcinogenesis. Streptococci sp and HPV infections are common in the head and neck, often associated with sexual activity. Although HPV is linked to head and neck squamous cell carcinoma, it is unclear whether there is a similar role for Streptococci sp. This cell study examines whether Streptococci sp and HPV-16 with exposure to ethyl alcohol (ETOH) can act as cofactors in the malignant transformation of oral keratinocytes. MATERIALS AND METHODS ETOH (0.1%-20% vol/vol) was used to investigate Streptococci sp attachment with immortalized E6-expressing HPV/HOK-16B cells, human oral buccal keratinocytes, and foreskin keratinocytes. Streptococci sp (Streptococci mutans [LT11]) and various strains of acetaldehyde (AA) producer and nonproducer Streptococcus salivarius (110-1, 109-2, 101-7, and 107-1) and a lactic acid producer bacterium, Lactobacillus rhamnosus (24-1 and 25-2), were examined for interactions with keratinocytes by use of a green dye (percent of cells with colonies after 24 hours). Carcinogens, AA, malondialdehyde, DNA damage, and proliferation (5'-bromo-2-deoxyuridine) among keratinocytes were also quantified. RESULTS AA and malondialdehyde production from permissible Streptococci sp significantly increased with attachment to keratinocytes, whereas L rhamnosus did not significantly attach to keratinocytes. This attachment was associated with enhanced levels of AA adduct formation, proliferation (5'-bromo-2-deoxyuridine incorporation), and enhanced migration through integrin-coated basement membrane by HPV oral keratinocytes, which are characteristics of a malignant phenotype. CONCLUSIONS These cell studies suggest that oral Streptococci sp and HPV (HPV-16) cooperate to transform oral keratinocytes after low-level ETOH (1%) exposure. These results appear to suggest a significant clinical interaction, but further validation is warranted.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, and Member, University of Illinois Cancer Center, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|