1
|
Cristofani R, Piccolella M, Crippa V, Tedesco B, Montagnani Marelli M, Poletti A, Moretti RM. The Role of HSPB8, a Component of the Chaperone-Assisted Selective Autophagy Machinery, in Cancer. Cells 2021; 10:335. [PMID: 33562660 PMCID: PMC7915307 DOI: 10.3390/cells10020335] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The cellular response to cancer-induced stress is one of the major aspects regulating cancer development and progression. The Heat Shock Protein B8 (HSPB8) is a small chaperone involved in chaperone-assisted selective autophagy (CASA). CASA promotes the selective degradation of proteins to counteract cell stress such as tumor-induced stress. HSPB8 is also involved in (i) the cell division machinery regulating chromosome segregation and cell cycle arrest in the G0/G1 phase and (ii) inflammation regulating dendritic cell maturation and cytokine production. HSPB8 expression and role are tumor-specific, showing a dual and opposite role. Interestingly, HSPB8 may be involved in the acquisition of chemoresistance to drugs. Despite the fact the mechanisms of HSPB8-mediated CASA activation in tumors need further studies, HSPB8 could represent an important factor in cancer induction and progression and it may be a potential target for anticancer treatment in specific types of cancer. In this review, we will discuss the molecular mechanism underlying HSPB8 roles in normal and cancer conditions. The basic mechanisms involved in anti- and pro-tumoral activities of HSPB8 are deeply discussed together with the pathways that modulate HSPB8 expression, in order to outline molecules with a beneficial effect for cancer cell growth, migration, and death.
Collapse
|
2
|
Li J, Jiang H. Regulating positioning and orientation of mitotic spindles via cell size and shape. Phys Rev E 2018; 97:012407. [PMID: 29448469 DOI: 10.1103/physreve.97.012407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 06/08/2023]
Abstract
Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.
Collapse
Affiliation(s)
- Jingchen Li
- Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongyuan Jiang
- Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
3
|
Bizzotto S, Uzquiano A, Dingli F, Ershov D, Houllier A, Arras G, Richards M, Loew D, Minc N, Croquelois A, Houdusse A, Francis F. Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex. Sci Rep 2017; 7:17308. [PMID: 29229923 PMCID: PMC5725533 DOI: 10.1038/s41598-017-15253-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023] Open
Abstract
The ventricular zone (VZ) of the developing cerebral cortex is a pseudostratified epithelium that contains progenitors undergoing precisely regulated divisions at its most apical side, the ventricular lining (VL). Mitotic perturbations can contribute to pathological mechanisms leading to cortical malformations. The HeCo mutant mouse exhibits subcortical band heterotopia (SBH), likely to be initiated by progenitor delamination from the VZ early during corticogenesis. The causes for this are however, currently unknown. Eml1, a microtubule (MT)-associated protein of the EMAP family, is impaired in these mice. We first show that MT dynamics are perturbed in mutant progenitor cells in vitro. These may influence interphase and mitotic MT mechanisms and indeed, centrosome and primary cilia were altered and spindles were found to be abnormally long in HeCo progenitors. Consistently, MT and spindle length regulators were identified in EML1 pulldowns from embryonic brain extracts. Finally, we found that mitotic cell shape is also abnormal in the mutant VZ. These previously unidentified VZ characteristics suggest altered cell constraints which may contribute to cell delamination.
Collapse
Affiliation(s)
- Sara Bizzotto
- INSERM UMR-S 839, 17 rue du Fer à Moulin, Paris, 75005, France.,Sorbonne Universités, Université Pierre et Marie Curie, 4 Place Jussieu, Paris, 75005, France.,Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris, 75005, France.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Ana Uzquiano
- INSERM UMR-S 839, 17 rue du Fer à Moulin, Paris, 75005, France.,Sorbonne Universités, Université Pierre et Marie Curie, 4 Place Jussieu, Paris, 75005, France.,Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris, 75005, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
| | | | - Anne Houllier
- INSERM UMR-S 839, 17 rue du Fer à Moulin, Paris, 75005, France.,Sorbonne Universités, Université Pierre et Marie Curie, 4 Place Jussieu, Paris, 75005, France.,Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris, 75005, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
| | - Mark Richards
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
| | - Nicolas Minc
- Institut Jacques Monod, UMR7592 CNRS, Paris, France
| | - Alexandre Croquelois
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 21 rue du Bugnon, 1011, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Anne Houdusse
- Structural Motility, Institut Curie, Centre de Recherche; CNRS, UMR144, 26 rue d'Ulm, Cedex 05, Paris, 75248, France
| | - Fiona Francis
- INSERM UMR-S 839, 17 rue du Fer à Moulin, Paris, 75005, France. .,Sorbonne Universités, Université Pierre et Marie Curie, 4 Place Jussieu, Paris, 75005, France. .,Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris, 75005, France.
| |
Collapse
|
4
|
Satir P. Chirality of the cytoskeleton in the origins of cellular asymmetry. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0408. [PMID: 27821520 DOI: 10.1098/rstb.2015.0408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 02/06/2023] Open
Abstract
Self-assembly of two important components of the cytoskeleton of eukaryotic cells, actin microfilaments and microtubules (MTs) results in polar filaments of one chirality. As is true for bacterial flagella, in actin microfilaments, screw direction is important for assembly processes and motility. For MTs, polar orientation within the cell is paramount. The alignment of these elements in the cell cytoplasm gives rise to emergent properties, including the potential for cell differentiation and specialization. Complex MTs with a characteristic chirality are found in basal bodies and centrioles; this chirality is preserved in cilia. In motile cilia, it is reflected in the direction of the effective stroke. The positioning of the basal body or cilia on the cell surface depends on polarity proteins. In evolution, survival depends on global polarity information relayed to the cell in part by orientation of the MT and actin filament cytoskeletons and the chirality of the basal body to determine left and right coordinates within a defined anterior-posterior cell and tissue axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Peter Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Ebnet K. Junctional Adhesion Molecules (JAMs): Cell Adhesion Receptors With Pleiotropic Functions in Cell Physiology and Development. Physiol Rev 2017; 97:1529-1554. [PMID: 28931565 DOI: 10.1152/physrev.00004.2017] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Junctional adhesion molecules (JAM)-A, -B and -C are cell-cell adhesion molecules of the immunoglobulin superfamily which are expressed by a variety of tissues, both during development and in the adult organism. Through their extracellular domains, they interact with other adhesion receptors on opposing cells. Through their cytoplasmic domains, they interact with PDZ domain-containing scaffolding and signaling proteins. In combination, these two properties regulate the assembly of signaling complexes at specific sites of cell-cell adhesion. The multitude of molecular interactions has enabled JAMs to adopt distinct cellular functions such as the regulation of cell-cell contact formation, cell migration, or mitotic spindle orientation. Not surprisingly, JAMs regulate diverse processes such as epithelial and endothelial barrier formation, hemostasis, angiogenesis, hematopoiesis, germ cell development, and the development of the central and peripheral nervous system. This review summarizes the recent progress in the understanding of JAMs, including their characteristic structural features, their molecular interactions, their cellular functions, and their contribution to a multitude of processes during vertebrate development and homeostasis.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, Cells-In-Motion Cluster of Excellence (EXC1003-CiM), and Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| |
Collapse
|
6
|
Schweiggert J, Panigada D, Tan AN, Liakopoulos D. Kar9 controls the nucleocytoplasmic distribution of yeast EB1. Cell Cycle 2016; 15:2860-2866. [PMID: 27625073 DOI: 10.1080/15384101.2016.1231282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The precise temporal and spatial concentration of microtubule-associated proteins (MAPs) within the cell is fundamental to ensure chromosome segregation and correct spindle positioning. MAPs form an intricate web of interactions among each other and compete for binding sites on microtubules. Therefore, when assessing cellular phenotypes upon MAP up- or downregulation, it is important to consider the protein interaction network between individual MAPs. Here, we show that changes in the amounts of the spindle positioning factor Kar9 specifically affect the distribution of yeast EB1 on spindle microtubules, without influencing other microtubule-associated interacting partners of Kar9, i.e. yeast XMAP215 and CLIP-170. Alterations in the distribution of yeast EB1 explain chromosome segregation defects upon knockout, overexpression or stabilization of Kar9 and provide an example for non-linear effects on MAP behavior after perturbation of their equilibrium.
Collapse
Affiliation(s)
- Jörg Schweiggert
- a Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 523 , Montpellier , France.,b Biochemistry Centre Heidelberg (BZH) , Heidelberg , Germany.,c The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg , Heidelberg , Germany
| | - Davide Panigada
- a Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 523 , Montpellier , France
| | - Ann Na Tan
- b Biochemistry Centre Heidelberg (BZH) , Heidelberg , Germany
| | - Dimitris Liakopoulos
- a Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 523 , Montpellier , France.,c The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
7
|
Srivastava D, Mukherjee R, Mookherjee D, Chakrabarti O. Mahogunin-mediated regulation of Gαi localisation during mitosis and its effect on spindle positioning. Biochem Cell Biol 2016; 94:359-69. [DOI: 10.1139/bcb-2015-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mahogunin RING Finger 1 (MGRN1) is a ubiquitin E3 ligase known to affect spindle tilt in mitotic cells by regulating α-tubulin ubiquitination and polymerization. In cell culture systems we have found that expressing truncated mutants of MGRN1 leads to various other mitotic anomalies, such as lateral and angular spindle displacements. This seems to be independent of the MGRN1 ligase activity. Our experiments suggest that MGRN1 regulates the balance between the lower molecular weight monomeric Gαi and larger trimeric G-protein complex, along with its abundance in the ternary complex that regulates spindle positioning. The cytosolic isoforms of MGRN1 lead to the enrichment of monomeric Gαi in the cytosol and its subsequent recruitment at the plasma membrane. Excess Gαi at the cell cortex results in an imbalance in the assembly of the ternary complex regulating spindle positioning during mitosis. These observations seem independent of the ligase activity of MGRN1, although we cannot exclude the involvement of an intermediate player that acts as a substrate for MGRN1, and in turn, regulates Gαi.
Collapse
Affiliation(s)
- Devika Srivastava
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Rukmini Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
8
|
Dasso M. Kar9 Controls the Cytoplasm by Visiting the Nucleus. Dev Cell 2016; 36:360-1. [PMID: 26906732 DOI: 10.1016/j.devcel.2016.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kar9 positions mitotic spindles during budding yeast cell division. Reporting in this issue of Developmental Cell, Schweiggert et al. (2016) show that modulation of Kar9 stability mediates crosstalk between cytoplasmic and nuclear microtubules, using an elaborate mechanism that involves regulated nuclear transport as well as SUMOylation and ubiquitination.
Collapse
Affiliation(s)
- Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Regulation of a Spindle Positioning Factor at Kinetochores by SUMO-Targeted Ubiquitin Ligases. Dev Cell 2016; 36:415-27. [PMID: 26906737 DOI: 10.1016/j.devcel.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/04/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
Correct function of the mitotic spindle requires balanced interplay of kinetochore and astral microtubules that mediate chromosome segregation and spindle positioning, respectively. Errors therein can cause severe defects ranging from aneuploidy to developmental disorders. Here, we describe a protein degradation pathway that functionally links astral microtubules to kinetochores via regulation of a microtubule-associated factor. We show that the yeast spindle positioning protein Kar9 localizes not only to astral but also to kinetochore microtubules, where it becomes targeted for proteasomal degradation by the SUMO-targeted ubiquitin ligases (STUbLs) Slx5-Slx8. Intriguingly, this process does not depend on preceding sumoylation of Kar9 but rather requires SUMO-dependent recruitment of STUbLs to kinetochores. Failure to degrade Kar9 leads to defects in both chromosome segregation and spindle positioning. We propose that kinetochores serve as platforms to recruit STUbLs in a SUMO-dependent manner in order to ensure correct spindle function by regulating levels of microtubule-associated proteins.
Collapse
|
10
|
Tuncay H, Ebnet K. Cell adhesion molecule control of planar spindle orientation. Cell Mol Life Sci 2016; 73:1195-207. [PMID: 26698907 PMCID: PMC11108431 DOI: 10.1007/s00018-015-2116-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/26/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet.
Collapse
Affiliation(s)
- Hüseyin Tuncay
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Muenster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Muenster, Germany.
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, 48419, Muenster, Germany.
| |
Collapse
|
11
|
Bhonker Y, Abu-Rayyan A, Ushakov K, Amir-Zilberstein L, Shivatzki S, Yizhar-Barnea O, Elkan-Miller T, Tayeb-Fligelman E, Kim SM, Landau M, Kanaan M, Chen P, Matsuzaki F, Sprinzak D, Avraham KB. The GPSM2/LGN GoLoco motifs are essential for hearing. Mamm Genome 2015; 27:29-46. [PMID: 26662512 DOI: 10.1007/s00335-015-9614-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022]
Abstract
The planar cell polarity (PCP) pathway is responsible for polarizing and orienting cochlear hair cells during development through movement of a primary cilium, the kinocilium. GPSM2/LGN, a mitotic spindle-orienting protein associated with deafness in humans, is a PCP effector involved in kinocilium migration. Here, we link human and mouse truncating mutations in the GPSM2/LGN gene, both leading to hearing loss. The human variant, p.(Trp326*), was identified by targeted genomic enrichment of genes associated with deafness, followed by massively parallel sequencing. Lgn (ΔC) mice, with a targeted deletion truncating the C-terminal GoLoco motifs, are profoundly deaf and show misorientation of the hair bundle and severe malformations in stereocilia shape that deteriorates over time. Full-length protein levels are greatly reduced in mutant mice, with upregulated mRNA levels. The truncated Lgn (ΔC) allele is translated in vitro, suggesting that mutant mice may have partially functioning Lgn. Gαi and aPKC, known to function in the same pathway as Lgn, are dependent on Lgn for proper localization. The polarization of core PCP proteins is not affected in Lgn mutants; however, Lgn and Gαi are misoriented in a PCP mutant, supporting the role of Lgn as a PCP effector. The kinocilium, previously shown to be dependent on Lgn for robust localization, is essential for proper localization of Lgn, as well as Gαi and aPKC, suggesting that cilium function plays a role in positioning of apical proteins. Taken together, our data provide a mechanism for the loss of hearing found in human patients with GPSM2/LGN variants.
Collapse
Affiliation(s)
- Yoni Bhonker
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Amal Abu-Rayyan
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Liat Amir-Zilberstein
- Department of Biochemistry and Molecular Biology, Weiss Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Shaked Shivatzki
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ofer Yizhar-Barnea
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tal Elkan-Miller
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Einav Tayeb-Fligelman
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Sun Myoung Kim
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Moien Kanaan
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Ping Chen
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - Fumio Matsuzaki
- Laboratory of Cell Asymmetry, Center for Developmental Biology, Riken, Kobe, 650-0047, Japan
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, Weiss Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
12
|
Fuchs M, Luthold C, Guilbert SM, Varlet AA, Lambert H, Jetté A, Elowe S, Landry J, Lavoie JN. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet 2015; 11:e1005582. [PMID: 26496431 PMCID: PMC4619738 DOI: 10.1371/journal.pgen.1005582] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/16/2015] [Indexed: 02/07/2023] Open
Abstract
The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation. Small heat shock proteins (sHSP/HSPB) form a diverse family of ATP-independent chaperones. Some of them protect the proteome against aggregation during stress and others regulate normal biological processes through ill-defined mechanisms. Interactions between HSPB proteins and elements of the cytoskeleton are increasingly linked to their implication in human degenerative diseases and cancer. For instance, a multichaperone complex containing HSPB8 and its co-chaperone BAG3 would maintain muscle cell integrity by promoting the autophagic clearance of damaged components within F-actin structures. Selective autophagy is a targeted protein degradation mechanism for elimination of damaged organelles and proteins. It may also regulate removal of signaling proteins from their functionally relevant sites during intense remodeling of the cytoskeleton, as it occurs during mitosis. Here, we report a novel role for HSPB8 and BAG3 during mitosis in mammalian cells that involves the autophagic receptor p62/SQSTM1. We show that a reduction of any protein within the HSPB8-BAG3-p62/SQSTM signaling axis similarly impairs mitotic progression and chromosome segregation by affecting orientation of the mitotic spindle and assembly of mitotic-specific actin structures. Our findings establish a unique role for HSPB8 in a novel function of BAG3 in mitotic cell division and genome stability, through effect on remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- Margit Fuchs
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Carole Luthold
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Solenn M. Guilbert
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Alice Anaïs Varlet
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Alexandra Jetté
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Sabine Elowe
- Reproduction, Perinatal Health and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Pédiatrie, Université Laval, Quebec, Canada
| | - Jacques Landry
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
13
|
Srivastava D, Chakrabarti O. Ubiquitin in regulation of spindle apparatus and its positioning: implications in development and disease. Biochem Cell Biol 2015; 93:273-81. [PMID: 26110206 DOI: 10.1139/bcb-2015-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emerging data implicates ubiquitination, a post-translational modification, in regulating essential cellular events, one of them being mitosis. In this review we discuss how various E3 ligases modulate the cortical proteins such as dynein, LGN, NuMa, Gα, along with polymerization, stability, and integrity of spindles. These are responsible for regulating symmetric cell division. Some of the ubiquitin ligases regulating these proteins include PARK2, BRCA1/BARD1, MGRN1, SMURF2, and SIAH1; these play a pivotal role in the correct positioning of the spindle apparatus. A direct connection between developmental or various pathological disorders and the ubiquitination mediated cortical regulation is rather speculative, though deletions or mutations in them lead to developmental disorders and disease conditions.
Collapse
Affiliation(s)
- Devika Srivastava
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
| |
Collapse
|
14
|
Cell size modulates oscillation, positioning and length of mitotic spindles. Sci Rep 2015; 5:10504. [PMID: 26015263 PMCID: PMC4444851 DOI: 10.1038/srep10504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/15/2015] [Indexed: 02/05/2023] Open
Abstract
Mitotic spindle is the main subcellular structure that accomplishes the chromosome segregation between daughter cells during cell division. However, how mitotic spindles sense and control their size, position and movement inside the cell still remains unclear. In this paper, we focus on the size effects of mitotic spindles, i.e., how cell size controls various interesting phenomena in the metaphase, such as oscillation, positioning and size limit of mitotic spindles. We systematically studied the frequency doubling phenomenon during chromosome oscillation and found that cell size can regulate the period and amplitude of chromosome oscillation. We found that the relaxation time of the positioning process increases exponentially with cell size. We also showed that the stabler microtubule-kinetochore attachments alone can directly lead to an upper limit of spindle size. Our work not only explains the existing experimental observations, but also provides some interesting predictions that can be verified or rejected by further experiments.
Collapse
|
15
|
Avidor-Reiss T, Khire A, Fishman EL, Jo KH. Atypical centrioles during sexual reproduction. Front Cell Dev Biol 2015; 3:21. [PMID: 25883936 PMCID: PMC4381714 DOI: 10.3389/fcell.2015.00021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 01/30/2023] Open
Abstract
Centrioles are conserved, self-replicating, microtubule-based, 9-fold symmetric subcellular organelles that are essential for proper cell division and function. Most cells have two centrioles and maintaining this number of centrioles is important for animal development and physiology. However, how animals gain their first two centrioles during reproduction is only partially understood. It is well established that in most animals, the centrioles are contributed to the zygote by the sperm. However, in humans and many animals, the sperm centrioles are modified in their structure and protein composition, or they appear to be missing altogether. In these animals, the origin of the first centrioles is not clear. Here, we review various hypotheses on how centrioles are gained during reproduction and describe specialized functions of the zygotic centrioles. In particular, we discuss a new and atypical centriole found in sperm and zygote, called the proximal centriole-like structure (PCL). We also discuss another type of atypical centriole, the "zombie" centriole, which is degenerated but functional. Together, the presence of centrioles, PCL, and zombie centrioles suggests a universal mechanism of centriole inheritance among animals and new causes of infertility. Since the atypical centrioles of sperm and zygote share similar functions with typical centrioles in somatic cells, they can provide unmatched insight into centriole biology.
Collapse
|
16
|
Zangle TA, Teitell MA, Reed J. Live cell interferometry quantifies dynamics of biomass partitioning during cytokinesis. PLoS One 2014; 9:e115726. [PMID: 25531652 PMCID: PMC4274116 DOI: 10.1371/journal.pone.0115726] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/27/2014] [Indexed: 12/19/2022] Open
Abstract
The equal partitioning of cell mass between daughters is the usual and expected outcome of cytokinesis for self-renewing cells. However, most studies of partitioning during cell division have focused on daughter cell shape symmetry or segregation of chromosomes. Here, we use live cell interferometry (LCI) to quantify the partitioning of daughter cell mass during and following cytokinesis. We use adherent and non-adherent mouse fibroblast and mouse and human lymphocyte cell lines as models and show that, on average, mass asymmetries present at the time of cleavage furrow formation persist through cytokinesis. The addition of multiple cytoskeleton-disrupting agents leads to increased asymmetry in mass partitioning which suggests the absence of active mass partitioning mechanisms after cleavage furrow positioning.
Collapse
Affiliation(s)
- Thomas A. Zangle
- Department of Bioengineering, University of California Los Angeles (UCLA), Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
- * E-mail: (TAZ); (JR)
| | - Michael A. Teitell
- Department of Bioengineering, University of California Los Angeles (UCLA), Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, California, United States of America
- Broad Stem Cell Research Center, UCLA, Los Angeles, California, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - Jason Reed
- Department of Physics, Virginia Commonwealth University (VCU), Richmond, Virginia, United States of America
- VCU Massey Cancer Center, Richmond, Virginia, United States of America
- * E-mail: (TAZ); (JR)
| |
Collapse
|
17
|
Elric J, Etienne-Manneville S. Centrosome positioning in polarized cells: common themes and variations. Exp Cell Res 2014; 328:240-8. [PMID: 25218948 DOI: 10.1016/j.yexcr.2014.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
The centrosome position is tightly regulated during the cell cycle and during differentiated cellular functions. Because centrosome organizes the microtubule network to coordinate both intracellular organization and cell signaling, centrosome positioning is crucial to determine either the axis of cell division, the direction of cell migration or the polarized immune response of lymphocytes. Since alteration of centrosome positioning seems to promote cell transformation and tumor spreading, the molecular mechanisms controlling centrosome movement in response to extracellular and intracellular cues are under intense investigation. Evolutionary conserved pathways involving polarity proteins and cytoskeletal rearrangements are emerging as common regulators of centrosome positioning in a wide variety of cellular contexts.
Collapse
Affiliation(s)
- Julien Elric
- Institut Pasteur - CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France; Université Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Dr Roux, 75015 Paris, France
| | - Sandrine Etienne-Manneville
- Institut Pasteur - CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
18
|
Li Y, Naveed H, Kachalo S, Xu LX, Liang J. Mechanisms of regulating tissue elongation in Drosophila wing: impact of oriented cell divisions, oriented mechanical forces, and reduced cell size. PLoS One 2014; 9:e86725. [PMID: 24504016 PMCID: PMC3913577 DOI: 10.1371/journal.pone.0086725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
Regulation of cell growth and cell division plays fundamental roles in tissue morphogenesis. However, the mechanisms of regulating tissue elongation through cell growth and cell division are still not well understood. The wing imaginal disc of Drosophila provides a model system that has been widely used to study tissue morphogenesis. Here we use a recently developed two-dimensional cellular model to study the mechanisms of regulating tissue elongation in Drosophila wing. We simulate the effects of directional cues on tissue elongation. We also computationally analyze the role of reduced cell size. Our simulation results indicate that oriented cell divisions, oriented mechanical forces, and reduced cell size can all mediate tissue elongation, but they function differently. We show that oriented cell divisions and oriented mechanical forces act as directional cues during tissue elongation. Between these two directional cues, oriented mechanical forces have a stronger influence than oriented cell divisions. In addition, we raise the novel hypothesis that reduced cell size may significantly promote tissue elongation. We find that reduced cell size alone cannot drive tissue elongation. However, when combined with directional cues, such as oriented cell divisions or oriented mechanical forces, reduced cell size can significantly enhance tissue elongation in Drosophila wing. Furthermore, our simulation results suggest that reduced cell size has a short-term effect on cell topology by decreasing the frequency of hexagonal cells, which is consistent with experimental observations. Our simulation results suggest that cell divisions without cell growth play essential roles in tissue elongation.
Collapse
Affiliation(s)
- Yingzi Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hammad Naveed
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, China
| | - Sema Kachalo
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lisa X. Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
- Shanghai Engineering Research Center of Medical Equipment and Technology, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- * E-mail: (LXX); (JL)
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
- * E-mail: (LXX); (JL)
| |
Collapse
|
19
|
EGFR/MEK/ERK/CDK5-dependent integrin-independent FAK phosphorylated on serine 732 contributes to microtubule depolymerization and mitosis in tumor cells. Cell Death Dis 2013; 4:e815. [PMID: 24091658 PMCID: PMC3824663 DOI: 10.1038/cddis.2013.353] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 02/08/2023]
Abstract
FAK is a non-receptor tyrosine kinase contributing to migration and proliferation downstream of integrin and/or growth factor receptor signaling of normal and malignant cells. In addition to well-characterized tyrosine phosphorylations, FAK is phosphorylated on several serines, whose role is not yet clarified. We observed that phosphorylated FAK on serine 732 (P-FAKSer732) is present at variable levels in vitro, in several melanoma, ovarian and thyroid tumor cell lines and in vivo, in tumor cells present in fresh ovarian cancer ascites. In vitro P-FAKSer732 was barely detectable during interphase while its levels strongly increased in mitotic cells upon activation of the EGFR/MEK/ERK axis in an integrin-independent manner. P-FAKSer732 presence was crucial for the maintenance of the proliferation rate and its levels were inversely related to the levels of acetylated α-tubulin. P-FAKSer732 localized at the microtubules (MTs) of the spindle, biochemically associated with MTs and contributed to MT depolymerization. The lack of the phosphorylation on Ser732 as well as the inhibition of CDK5 activity by roscovitine impaired mitotic spindle assembly and correct chromosome alignment during mitosis. We also identified, for the first time, that the EGF-dependent EGFR activation led to increased P-FAKSer732 and polymerized MTs. Our data shed light on the multifunctional roles of FAK in neoplastic cells, being involved not only in integrin-dependent migratory signaling but also in integrin-independent MT dynamics and mitosis control. These findings provide a new potential target for inhibiting the growth of tumor cells in which the EGFR/MEK/ERK/CDK5 pathway is active.
Collapse
|
20
|
Kotak S, Gönczy P. Mechanisms of spindle positioning: cortical force generators in the limelight. Curr Opin Cell Biol 2013; 25:741-8. [PMID: 23958212 DOI: 10.1016/j.ceb.2013.07.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 01/04/2023]
Abstract
Correct positioning of the spindle governs placement of the cytokinesis furrow and thus plays a crucial role in the partitioning of fate determinants and the disposition of daughter cells in a tissue. Converging evidence indicates that spindle positioning is often dictated by interactions between the plus-end of astral microtubules that emanate from the spindle poles and an evolutionary conserved cortical machinery that serves to pull on them. At the heart of this machinery lies a ternary complex (LIN-5/GPR-1/2/Gα in Caenorhabditis elegans and NuMA/LGN/Gαi in Homo sapiens) that promotes the presence of the motor protein dynein at the cell cortex. In this review, we discuss how the above components contribute to spindle positioning and how the underlying mechanisms are precisely regulated to ensure the proper execution of this crucial process in metazoan organisms.
Collapse
Affiliation(s)
- Sachin Kotak
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1005, Switzerland
| | | |
Collapse
|
21
|
Abstract
Accurate positioning of the mitotic spindle is critical to ensure proper distribution of chromosomes during cell division. The small GTPase Ran, which regulates a variety of processes throughout the cell cycle, including interphase nucleocytoplasmic transport and mitotic spindle assembly, was recently shown to also control spindle alignment. Ran is required for the correct cortical localization of LGN and nuclear-mitotic apparatus protein (NuMA), proteins that generate pulling forces on astral microtubules (MTs) through cytoplasmic dynein. Here we use importazole, a small-molecule inhibitor of RanGTP/importin-β function, to study the role of Ran in spindle positioning in human cells. We find that importazole treatment results in defects in astral MT dynamics, as well as in mislocalization of LGN and NuMA, leading to misoriented spindles. Of interest, importazole-induced spindle-centering defects can be rescued by nocodazole treatment, which depolymerizes astral MTs, or by overexpression of CLASP1, which does not restore proper LGN and NuMA localization but stabilizes astral MT interactions with the cortex. Together our data suggest a model for mitotic spindle positioning in which RanGTP and CLASP1 cooperate to align the spindle along the long axis of the dividing cell.
Collapse
Affiliation(s)
- Stephen L Bird
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|