1
|
Quan Y, Wang M, Zhang H, Lu D, Ping H. Spatial transcriptomics identifies RBM39 as a gene a ssociated with Gleason score progression in prostate cancer. iScience 2024; 27:111351. [PMID: 39650727 PMCID: PMC11625293 DOI: 10.1016/j.isci.2024.111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/17/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Prostate cancer (PCa) exhibits significant intratumor heterogeneity, frequently manifesting as a multifocal disease. This study utilized Visium spatial transcriptomics (ST) to explore transcriptome patterns in PCa regions with varying Gleason scores (GSs). Principal component analysis (PCA) and Louvain clustering analysis revealed transcriptomic classifications aligned with the histology of different GSs. The increasing degree of tumor malignancy during GS progression was validated using inferred copy number variation (inferCNV) analysis. Diffusion pseudotime (DPT) and partition-based graph abstraction (PAGA) analyses predicted the developmental trajectories among distinct clusters. Differentially expressed gene (DEG) analysis through pairwise comparisons of various GSs identified genes associated with GS progression. Validation with The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset confirmed the differential expression of RBM39, a finding further supported by cytological and histological experiments. These findings enhance our understanding of GS evolution through spatial transcriptomics and highlight RBM39 as a gene associated with GS progression.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Hong Zhang
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Dan Lu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, P.R. China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| |
Collapse
|
2
|
Quan Y, Zhang H, Wang M, Ping H. UQCRB and LBH are correlated with Gleason score progression in prostate cancer: Spatial transcriptomics and experimental validation. Comput Struct Biotechnol J 2024; 23:3315-3326. [PMID: 39310280 PMCID: PMC11414276 DOI: 10.1016/j.csbj.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Prostate cancer (PCa) is a multifocal disease characterized by genomic and phenotypic heterogeneity within a single gland. In this study, Visium spatial transcriptomics (ST) analysis was applied to PCa tissues with different histological structures to infer the molecular events involved in Gleason score (GS) progression. The spots in tissue sections were classified into various groups using Principal Component Analysis (PCA) and Louvain clustering analysis based on transcriptome data. Anotation of the spots according to GS revealed notable similarities between transcriptomic profiles and histologically identifiable structures. The accuracy of macroscopic GS determination was bioinformatically verified through malignancy-related feature analysis, specifically inferred copy number variation (inferCNV), as well as developmental trajectory analyses, such as diffusion pseudotime (DPT) and partition-based graph abstraction (PAGA). Genes related to GS progression were identified from the differentially expressed genes (DEGs) through pairwise comparisons of groups along a GS gradient. The proteins encoded by the representative oncogenes UQCRB and LBH were found to be highly expressed in advanced-stage PCa tissues. Knockdown of their mRNAs significantly suppressed PCa cell proliferation and invasion. These findings were validated using The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset, as well as through histological and cytological experiments. The results presented here establish a foundation for ST-based evaluation of GS progression and provide valuable insights into the GS progression-related genes UQCRB and LBH.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Hong Zhang
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| |
Collapse
|
3
|
Okpako IO, Ng'ong'a FA, Kyama CM, Njeru SN. Network pharmacology, molecular docking, and in vitro study on Aspilia pluriseta against prostate cancer. BMC Complement Med Ther 2024; 24:338. [PMID: 39304868 DOI: 10.1186/s12906-024-04642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Current prostate cancer treatments are associated with life-threatening side effects, prompting the search for effective and safer alternatives. Aspilia pluriseta Schweinf. ex Engl. has previously shown anticancer activity in lung and liver cancer cell lines. This study investigated its potential for prostate cancer. METHODS A crude extract of A. pluriseta root was prepared using dichloromethane/methanol (1:1 v/v) and partitioned into hexane, ethyl acetate, and water fractions. The MTT assay was used to assess the antiproliferative activity of the fractions. The active fractions were tested at 6.25-200 µg/ml on human prostate cancer DU-145 cells and non-cancerous Vero E6 cells. Qualitative phytochemical and gas chromatography-mass spectrometry (GC-MS) analyses were conducted to identify chemical compounds. Network pharmacology was employed to predict molecular targets and modes of action of the identified chemical compounds, with subsequent validation through molecular docking and real-time PCR. RESULTS Active extracts included crude dichloromethane/methanol, hexane, and ethyl acetate fractions, inhibiting DU-145 cell proliferation with IC50 values of 16.94, 20.06, and 24.14 µg/ml, respectively. Selectivity indices were determined to be 6.04 (crude), 3.62 (hexane), and 6.68 (ethyl acetate). Identified phytochemicals comprised phenols, terpenoids, flavonoids, tannins, sterols, and saponins. GC-MS analysis revealed seventy-nine (79) compounds, with seven (7) meeting ideal drug candidate parameters; their hub gene targets included MAPK3, MAPK1, IL6, TP53, ESR1, PTGS2, MMP9, MDM2, AR, and MAP2K1, implicating regulation of PI3K/Akt, MAPK, and p53 signaling pathways as potential modes of action. Core compounds such as 1-heneicosanol, lanosterol, andrographolide, and retinoic acid exhibited strong binding activities, particularly lanosterol with MAPK21 (-9.7 kcal/mol), ESR1 (-8.9 kcal/mol), and MAPK3 (-8.8 kcal/mol). Treatment with A. pluriseta downregulated AR expression and upregulated p53, while also downregulating CDK1 and BCL-2 and upregulating caspase-3. CONCLUSIONS A. pluriseta extracts inhibited DU-145 cell growth without causing cellular toxicity, suggesting great potential for development as an anti-prostate cancer agent. However, further in vitro and in vivo experiments are recommended.
Collapse
Affiliation(s)
- Innocent Oluwaseun Okpako
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya.
| | - Florence Atieno Ng'ong'a
- Department of Biochemistry, School of Biomedical Sciences, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Cleophas Mutinda Kyama
- Department of Medical Laboratory Sciences, School of Biomedical Sciences, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Sospeter Ngoci Njeru
- Centre for Traditional Medicine and Drug Research and Centre for Community Driven Research, Kenya Medical Research Institute, Nairobi, Kenya.
| |
Collapse
|
4
|
Gao P, Li C, Gong Q, Liu L, Qin R, Liu J. Sex steroid hormone residues in milk and their potential risks for breast and prostate cancer. Front Nutr 2024; 11:1390379. [PMID: 39285863 PMCID: PMC11403374 DOI: 10.3389/fnut.2024.1390379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Milk was a source of important nutrients for humans and was especially important for children and adolescents. The modern dairy animal production pattern had contributed to residual sex steroid hormones in milk. When this milk was consumed by humans, these hormones entered the body leading to hormonal disruptions and potentially increasing the risk of various types of cancers. This article reviewed the presence of residual sex steroid hormones in milk, their potential risks on human health, and their possible association with the incidence of breast and prostate cancer. The potential linkage between dairy consumption and these cancers were described in detail. The hormones present in dairy products could affect the development and progression of these types of cancer. Sex steroid hormones could interact with different signaling pathways, influencing carcinogenic cascades that could eventually lead to tumorigenesis. Given these potential health risks, the article suggested appropriate consumption of dairy products. This included being mindful not just of the amount of dairy consumed, but also the types of dairy products selected. More scientific exploration was needed, but this review provided valuable insights for health-conscious consumers and contributed to the ongoing discussion on dietary guidelines and human health.
Collapse
Affiliation(s)
- Pengyue Gao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| | - Chengyi Li
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Quan Gong
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Lian Liu
- School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan, China
| |
Collapse
|
5
|
Deng J, Yuan S, Pan W, Li Q, Chen Z. Nanotherapy to Reshape the Tumor Microenvironment: A New Strategy for Prostate Cancer Treatment. ACS OMEGA 2024; 9:26878-26899. [PMID: 38947792 PMCID: PMC11209918 DOI: 10.1021/acsomega.4c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer in males worldwide. Androgen deprivation therapy (ADT) is the primary treatment method used for PCa. Although more effective androgen synthesis and antiandrogen inhibitors have been developed for clinical practice, hormone resistance increases the incidence of ADT-insensitive prostate cancer and poor prognoses. The tumor microenvironment (TME) has become a research hotspot with efforts to identify treatment targets based on the characteristics of the TME to improve prognosis. Herein, we introduce the basic characteristics of the PCa TME and the side effects of traditional prostate cancer treatments. We further highlight the emergence of novel nanotherapy strategies, their therapeutic mechanisms, and their effects on the PCa microenvironment. With further research, clinical applications of nanotherapy for PCa are expected in the near future. Collectively, this Review provides a valuable resource regarding the various nanotherapy types, demonstrating their broad clinical prospects to improve the quality of life in patients with PCa.
Collapse
Affiliation(s)
- Juan Deng
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
- The
First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Shaofei Yuan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Wenjie Pan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Qimeng Li
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Zhonglin Chen
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| |
Collapse
|
6
|
Lavi Arab F, Hoseinzadeh A, Hafezi F, Sadat Mohammadi F, Zeynali F, Hadad Tehran M, Rostami A. Mesenchymal stem cell-derived exosomes for management of prostate cancer: An updated view. Int Immunopharmacol 2024; 134:112171. [PMID: 38701539 DOI: 10.1016/j.intimp.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Prostate cancer represents the second most prevalent form of cancer found in males, and stands as the fifth primary contributor to cancer-induced mortality on a global scale. Research has shown that transplanted mesenchymal stem cells (MSCs) can migrate by homing to tumor sites in the body. In prostate cancer, researchers have explored the fact that MSC-based therapies (including genetically modified delivery vehicles or vectors) and MSC-derived exosomes are emerging as attractive options to improve the efficacy and safety of traditional cancer therapies. In addition, researchers have reported new insights into the application of extracellular vesicle (EV)-MSC therapy as a novel treatment option that could provide a more effective and targeted approach to prostate cancer treatment. Moreover, the new generation of exosomes, which contain biologically functional molecules as signal transducers between cells, can simultaneously deliver different therapeutic agents and induce an anti-tumor phenotype in immune cells and their recruitment to the tumor site. The results of the current research on the use of MSCs in the treatment of prostate cancer may be helpful to researchers and clinicians working in this field. Nevertheless, it is crucial to emphasize that although dual-role MSCs show promise as a therapeutic modality for managing prostate cancer, further investigation is imperative to comprehensively grasp their safety and effectiveness. Ongoing clinical trials are being conducted to assess the viability of MSCs in the management of prostate cancer. The results of these trials will help determine the viability of this approach. Based on the current literature, engineered MSCs-EV offer great potential for application in targeted tumor therapy.
Collapse
Affiliation(s)
- Fahimeh Lavi Arab
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Akram Hoseinzadeh
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.; Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Hafezi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadat Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farid Zeynali
- Department of Urology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Hadad Tehran
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amirreza Rostami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Detassis S, Precazzini F, Grasso M, Del Vescovo V, Maines F, Caffo O, Campomenosi P, Denti MA. Plasma microRNA Signature as Companion Diagnostic for Abiraterone Acetate Treatment in Metastatic Castration-Resistant Prostate Cancer: A Pilot Study. Int J Mol Sci 2024; 25:5573. [PMID: 38891761 PMCID: PMC11171781 DOI: 10.3390/ijms25115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Abiraterone acetate (AA) serves as a medication for managing persistent testosterone production in patients with metastatic castration-resistant prostate cancer (mCRPC). However, its efficacy varies among individuals; thus, the identification of biomarkers to predict and follow treatment response is required. In this pilot study, we explored the potential of circulating microRNAs (c-miRNAs) to stratify patients based on their responsiveness to AA. We conducted an analysis of plasma samples obtained from a cohort of 33 mCRPC patients before and after three, six, and nine months of AA treatment. Using miRNA RT-qPCR panels for candidate discovery and TaqMan RT-qPCR for validation, we identified promising miRNA signatures. Our investigation indicated that a signature based on miR-103a-3p and miR-378a-5p effectively discriminates between non-responder and responder patients, while also following the drug's efficacy over time. Additionally, through in silico analysis, we identified target genes and transcription factors of the two miRNAs, including PTEN and HOXB13, which are known to play roles in AA resistance in mCRPC. In summary, our study highlights two c-miRNAs as potential companion diagnostics of AA in mCRPC patients, offering novel insights for informed decision-making in the treatment of mCRPC.
Collapse
Affiliation(s)
- Simone Detassis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- OPTOI Srl, Via Vienna 8, 38100 Trento, TN, Italy
| | - Francesca Precazzini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione di Bolzano, Via Laura Conti 4, 39100 Bolzano, BZ, Italy
| | - Margherita Grasso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- L.N.Age Srl-Link Neuroscience and Healthcare, Via Mario Savini 15, 00136 Roma, RO, Italy
| | - Valerio Del Vescovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- Kapadi Italy Srl, Corso Italia 22, 20122 Milano, MI, Italy
| | - Francesca Maines
- Division of Oncology, Santa Chiara Hospital, Largo Medaglie D’oro 9, 38122 Trento, TN, Italy
| | - Orazio Caffo
- Division of Oncology, Santa Chiara Hospital, Largo Medaglie D’oro 9, 38122 Trento, TN, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
| |
Collapse
|
8
|
Wong EY, Chu TN, Ladi-Seyedian SS. Genomics and Artificial Intelligence: Prostate Cancer. Urol Clin North Am 2024; 51:27-33. [PMID: 37945100 DOI: 10.1016/j.ucl.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Artificial intelligence (AI) is revolutionizing prostate cancer genomics research. By leveraging machine learning and deep learning algorithms, researchers can rapidly analyze vast genomic datasets to identify patterns and correlations that may be missed by traditional methods. These AI-driven insights can lead to the discovery of novel biomarkers, enhance the accuracy of diagnosis, and predict disease progression and treatment response. As such, AI is becoming an indispensable tool in the pursuit of personalized medicine for prostate cancer.
Collapse
Affiliation(s)
- Elyssa Y Wong
- Catherine & Joseph Aresty Department of Urology, Center for Robotic Simulation & Education, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Timothy N Chu
- Catherine & Joseph Aresty Department of Urology, Center for Robotic Simulation & Education, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Seyedeh-Sanam Ladi-Seyedian
- Catherine & Joseph Aresty Department of Urology, Center for Robotic Simulation & Education, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Chaudhary M, Kumar S, Kaur P, Sahu SK, Mittal A. Comprehensive Review on Recent Strategies for Management of Prostate Cancer: Therapeutic Targets and SAR. Mini Rev Med Chem 2024; 24:721-747. [PMID: 37694781 DOI: 10.2174/1389557523666230911141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023]
Abstract
Prostate cancer is a disease that is affecting a large population worldwide. Androgen deprivation therapy (ADT) has become a foundation for the treatment of advanced prostate cancer, as used in most clinical settings from neo-adjuvant to metastatic stage. In spite of the success of ADT in managing the disease in the majority of men, hormonal manipulation fails eventually. New molecules are developed for patients with various hormone-refractory diseases. Advancements in molecular oncology have increased understanding of numerous cellular mechanisms which control cell death in the prostate and these insights can lead to the development of more efficacious and tolerable therapies for carcinoma of the prostate. This review is focused on numerous therapies that might be a boon for prostate therapy like signaling inhibitors, vaccines, and inhibitors of androgen receptors. Along with these, various bioactive molecules and their derivatives are highlighted, which act as potential antiprostate cancer agents. This article also emphasized the recent advances in the field of medicinal chemistry of prostate cancer agents.
Collapse
Affiliation(s)
- Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Shubham Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Amit Mittal
- Faculty of Pharmaceutical Sciences, Desh Bhagat University, Amloh Road, Mandi Gobindgarh, Punjab, 147301, India
| |
Collapse
|
10
|
Somanath PR, Chernoff J, Cummings BS, Prasad SM, Homan HD. Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer. Cancers (Basel) 2023; 15:2236. [PMID: 37190165 PMCID: PMC10137274 DOI: 10.3390/cancers15082236] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic prostate cancer (mPCa) has limited therapeutic options and a high mortality rate. The p21-activated kinase (PAK) family of proteins is important in cell survival, proliferation, and motility in physiology, and pathologies such as infectious, inflammatory, vascular, and neurological diseases as well as cancers. Group-I PAKs (PAK1, PAK2, and PAK3) are involved in the regulation of actin dynamics and thus are integral for cell morphology, adhesion to the extracellular matrix, and cell motility. They also play prominent roles in cell survival and proliferation. These properties make group-I PAKs a potentially important target for cancer therapy. In contrast to normal prostate and prostatic epithelial cells, group-I PAKs are highly expressed in mPCA and PCa tissue. Importantly, the expression of group-I PAKs is proportional to the Gleason score of the patients. While several compounds have been identified that target group-I PAKs and these are active in cells and mice, and while some inhibitors have entered human trials, as of yet, none have been FDA-approved. Probable reasons for this lack of translation include issues related to selectivity, specificity, stability, and efficacy resulting in side effects and/or lack of efficacy. In the current review, we describe the pathophysiology and current treatment guidelines of PCa, present group-I PAKs as a potential druggable target to treat mPCa patients, and discuss the various ATP-competitive and allosteric inhibitors of PAKs. We also discuss the development and testing of a nanotechnology-based therapeutic formulation of group-I PAK inhibitors and its significant potential advantages as a novel, selective, stable, and efficacious mPCa therapeutic over other PCa therapeutics in the pipeline.
Collapse
Affiliation(s)
- Payaningal R. Somanath
- Department of Clinical & Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- MetasTx LLC, Basking Ridge, NJ 07920, USA
| | - Jonathan Chernoff
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Brian S. Cummings
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sandip M. Prasad
- Morristown Medical Center, Atlantic Health System, Morristown, NJ 07960, USA
| | | |
Collapse
|
11
|
Anderson D, Razzak AN, McDonald M, Cao D, Hasoon J, Viswanath O, Kaye AD, Urits I. Mental Health in Urologic Oncology. Health Psychol Res 2022; 10:37518. [DOI: 10.52965/001c.37518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This article is a systematic review of mental health in urologic oncology patients with prostate cancer (PCa), bladder cancer (BC), renal cell carcinoma (RCC), testicular cancer (TC), or penile cancer (PeCa). For all pathologies, a focus on increasing quality of life post-treatment demonstrated a positive impact in reducing Mental Health Illness (MHI) prevalence. Cancer specific mental health care may be given to patients to reduce suicide risk in BC patients and sexual identify and masculinity counseling may improve mental health for TC or PeCa patients. In order to better accommodate patient’s mental health needs when undergoing GU cancer treatment, we recommend incorporation of mental health metrics such as questionnaires to assess early treatment of MHI, a greater emphasis on psychosocial support with the patient’s loved ones, peers, and healthcare team, alongside advising healthy habits such as exercise which has been shown to drastically reduce MHI incidence across all pathologies. We hope that these measures conducted by urologists and oncologists, alongside possible coordination with psychiatrists and psychologists for psychotherapy, psychopharmacology, and neuro-stimulation treatment modems may be helpful in the long term to reduce MHI incidence in urology oncology patients. Given the higher incidence of MHI in oncology patients and in the patient population after the Covid-19 pandemic, MHI awareness in the sphere of urologic oncologic treatment continues to be crucial when creating a collaborative treatment platform for patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Omar Viswanath
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Valley Anesthesiology and Pain Consultants, Envision Physician Services; Department of Anesthesiology, University of Arizona College of Medicine Phoenix;Department of Anesthesiology, Creighton University School of Medicine
| | | | - Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Department of Anesthesiology, Louisiana State University Health Shreveport
| |
Collapse
|
12
|
Bleeker J, Wang ZA. Applications of Vertebrate Models in Studying Prostatitis and Inflammation-Associated Prostatic Diseases. Front Mol Biosci 2022; 9:898871. [PMID: 35865005 PMCID: PMC9294738 DOI: 10.3389/fmolb.2022.898871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
It has long been postulated that the inflammatory environment favors cell proliferation, and is conducive to diseases such as cancer. In the prostate gland, clinical data implicate important roles of prostatitis in the progression of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa). However, their causal relationships have not been firmly established yet due to unresolved molecular and cellular mechanisms. By accurately mimicking human disease, vertebrate animals provide essential in vivo models to address this question. Here, we review the vertebrate prostatitis models that have been developed and discuss how they may reveal possible mechanisms by which prostate inflammation promotes BPH and PCa. Recent studies, particularly those involving genetically engineered mouse models (GEMMs), suggest that such mechanisms are multifaceted, which include epithelium barrier disruption, DNA damage and cell proliferation induced by paracrine signals, and expansion of potential cells of origin for cancer. Future research using rodent prostatitis models should aim to distinguish the etiologies of BPH and PCa, and facilitate the development of novel clinical approaches for prostatic disease prevention.
Collapse
|
13
|
Qian C, Li D, Chen Y. ETS factors in prostate cancer. Cancer Lett 2022; 530:181-189. [PMID: 35033589 PMCID: PMC8832285 DOI: 10.1016/j.canlet.2022.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
The ETS family of proteins consists of 28 transcription factors, many of which play critical roles in both normal tissue development and homeostasis and have been implicated in development and progression of a variety of cancers. In prostate cancer, gene fusion and overexpression of ETS factors ERG, FLI1, ETV1, ETV4 and ETV5 have been found in half of prostate cancer patients in Caucasian men and define the largest genetic subtype of prostate cancer. This review summarizes the data on the discovery, modeling, molecular taxonomy, lineage plasticity and therapeutic targeting of ETS family members in prostate cancer.
Collapse
Affiliation(s)
- Cheng Qian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, NY, 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Saleh OM, Albakri KA, Alabdallat YJ, Dajani MH, El Gazzar WB. The safety and efficacy of CAR-T cells in the treatment of prostate cancer: review. Biomarkers 2021; 27:22-34. [PMID: 34882051 DOI: 10.1080/1354750x.2021.2016973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE A new breakthrough development in cancer treatment is chimeric antigen receptor (CAR)-T cell therapy. In this review, we focussed on its efficacy & safety in prostate cancer, obstacles impeding its clinical use, and some strategies trying to overcome them. METHODS Searching for relevant articles was done using the PubMed and Cochrane Library databases. Studies had to be published in full-text in English in order to be considered. RESULTS Many factors can limit optimal CAR-T cell outcomes, including the hostile Prostate microenvironment, age, comorbidities, and tumour grade. The adverse effects of the therapy, particularly the cytokine release syndrome, are a major source of worry after treatment administration. Attempts to alter gamma/delta T-cells and NK cells with CAR, on the other hand, have demonstrated higher effectiveness and safety than conventional CAR-T cells. CONCLUSION To improve the use of immunotherapies, a greater understanding of the prostate cancer microenvironment is required. Concerning toxicity, more research is needed to find the most specific and highly expressed prostate antigens. Furthermore, discovering predictive biomarkers for toxicities, as well as choosing the correct patient for therapy, might decrease immune-related side effects and achieve a greater response.
Collapse
Affiliation(s)
| | | | | | - Majd Hamdi Dajani
- Medical Student, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Walaa Bayoumie El Gazzar
- Department of Basic medical sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan.,Department of Medical Biochemistry and molecular biology, Faculty of Medicine, Benha University, Benha city, Egypt
| |
Collapse
|
15
|
Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG, Williams SG. Prostate cancer. Lancet 2021; 398:1075-1090. [PMID: 34370973 DOI: 10.1016/s0140-6736(21)00950-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
The management of prostate cancer continues to evolve rapidly, with substantial advances being made in understanding the genomic landscape and biology underpinning both primary and metastatic prostate cancer. Similarly, the emergence of more sensitive imaging methods has improved diagnostic and staging accuracy and refined surveillance strategies. These advances have introduced personalised therapeutics to clinical practice, with treatments targeting genomic alterations in DNA repair pathways now clinically validated. An important shift in the therapeutic framework for metastatic disease has taken place, with metastatic-directed therapies being evaluated for oligometastatic disease, aggressive management of the primary lesion shown to benefit patients with low-volume metastatic disease, and with several novel androgen pathway inhibitors significantly improving survival when used as a first-line therapy for metastatic disease. Research into the molecular characterisation of localised, recurrent, and progressive disease will undoubtedly have an impact on clinical management. Similarly, emerging research into novel therapeutics, such as targeted radioisotopes and immunotherapy, holds much promise for improving the lives of patients with prostate cancer.
Collapse
Affiliation(s)
- Shahneen Sandhu
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | | | - Edmund Chiong
- Department of Urology and Department of Surgery, National University of Singapore, Singapore
| | | | - Robert G Bristow
- Manchester Cancer Research Centre and University of Manchester, Manchester, UK
| | - Scott G Williams
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Kukkonen K, Taavitsainen S, Huhtala L, Uusi-Makela J, Granberg KJ, Nykter M, Urbanucci A. Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response. Cancers (Basel) 2021; 13:3325. [PMID: 34283056 PMCID: PMC8268970 DOI: 10.3390/cancers13133325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The dysregulation of chromatin and epigenetics has been defined as the overarching cancer hallmark. By disrupting transcriptional regulation in normal cells and mediating tumor progression by promoting cancer cell plasticity, this process has the ability to mediate all defined hallmarks of cancer. In this review, we collect and assess evidence on the contribution of chromatin and epigenetic dysregulation in prostate cancer. We highlight important mechanisms leading to prostate carcinogenesis, the emergence of castration-resistance upon treatment with androgen deprivation therapy, and resistance to antiandrogens. We examine in particular the contribution of chromatin structure and epigenetics to cell lineage commitment, which is dysregulated during tumorigenesis, and cell plasticity, which is altered during tumor progression.
Collapse
Affiliation(s)
- Konsta Kukkonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Joonas Uusi-Makela
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Kirsi J. Granberg
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
17
|
Li W, Shen MM. Prostate cancer cell heterogeneity and plasticity: Insights from studies of genetically-engineered mouse models. Semin Cancer Biol 2021; 82:60-67. [PMID: 34147640 DOI: 10.1016/j.semcancer.2021.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
Although prostate adenocarcinoma lacks distinguishable histopathological subtypes, prostate cancer displays significant inter- and intratumor heterogeneity at the molecular level and with respect to disease prognosis and treatment response. In principle, understanding the basis for prostate cancer heterogeneity can help distinguish aggressive from indolent disease, and help overcome castration-resistance in advanced prostate cancer. In this review, we will discuss recent advances in understanding the cell types of origin, putative cancer stem cells, and tumor plasticity in prostate cancer, focusing on insights from studies of genetically engineered mouse models (GEMMs). We will also outline future directions for investigating tumor heterogeneity using mouse models of prostate cancer.
Collapse
Affiliation(s)
- Weiping Li
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032 USA
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032 USA.
| |
Collapse
|
18
|
|
19
|
Li CY, Chen CY, An JH, Wu JB, Shen H. Normal Basal Epithelial Cells Stimulate the Migration and Invasion of Prostate Cancer Cell RM-1 by TGF-β1/STAT3 Axis in vitro. Cancer Manag Res 2021; 13:3685-3697. [PMID: 33994809 PMCID: PMC8114913 DOI: 10.2147/cmar.s303122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023] Open
Abstract
Aim Basal epithelial cells are absent in distant prostate cancer. This study aimed to investigate whether basal epithelial cells could suppress migration and invasion of prostate cancer cells to become a new treatment strategy for prostate cancer. Main Methods Basal epithelial cells were identified by immunofluorescence with anti-p63. Wound healing assays or transwell assays were used to explore the effects of basal epithelial cells, TGF-β1, SB431542 (inhibitor of TGF-β type I receptor) or stattic (inhibitor of phosphorylated STAT3) on migration or invasion of mouse prostate cancer cell (RM-1). Concentration of TGF-β1 was measured by ELISA assay. HE staining was used to investigate cell morphology. Immunocytochemistry with anti-p63 was used to identify basal epithelial cells. Levels of STAT3, p-STAT3 (Ser727) and proteins associated with EMT were measured with Western blot assay. Cell proliferation was measured with MTT or CCK8 assay. Results Normal basal epithelial cells acquired from mouse prostate were specific to anti-p63 and more than 90%. Basal epithelial cells and RM-1 could both secrete TGF-β1. Basal epithelial cells and TGF-β1 promoted the migration and invasion of RM-1 through changing the cell morphology and up-regulating expression of ZEB1, N-cadherin, vimentin, snail and p-STAT3 (Ser727), at the same time down-regulating E-cadherin of RM-1. SB431542 strongly suppressed migration, invasion as well as the expressions of EMT relevant proteins and p-STAT3 (Ser727) of co-cultured RM-1. In addition, stattic suppressed proliferation, migration and invasion of non-treated RM-1 and co-cultured RM-1. Conclusion Our study suggests that normal basal epithelial cells might stimulate the migration and invasion of RM-1 by TGF-β1/STAT3 axis which could be suppressed by inhibitor of TGF-β receptor and inhibitor of p-STAT3. So, basal epithelial cells might not become a treatment strategy for prostate cancer, but our results could provide some researching references for other diseases which include basal epithelial cells such as prostatic intraepithelial neoplasia, prostatic hyperplasia, cervical cancer, or urinary bladder cancer.
Collapse
Affiliation(s)
- Chun-Yan Li
- South China University of Technology School of Medicine, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Chun-Ya Chen
- South China University of Technology School of Medicine, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jian-Hong An
- South China University of Technology School of Medicine, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jian-Bin Wu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510407, People's Republic of China
| | - Hong Shen
- South China University of Technology School of Medicine, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| |
Collapse
|
20
|
de Araújo JTC, Duarte JL, Di Filippo LD, Araújo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target 2021; 29:808-821. [PMID: 33645369 DOI: 10.1080/1061186x.2021.1892121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PC) has a high morbidity and mortality rate worldwide, and the current clinical guidelines can vary depending on the stage of the disease. Drug delivery nanosystems (DDNs) can improve biopharmaceutical properties of encapsulated anti-cancer drugs by modulating their release kinetics, improving physicochemical stability and reducing toxicity. DDN can also enhance the ability of specific targeting through surface modification by coupling ligands (antibodies, nucleic acids, peptides, aptamer, proteins), thus favouring the cell internalisation process by endocytosis. The purposes of this review are to describe the limitations in the treatment of PC, explore different functionalization such as polymeric, lipid and inorganic nanosystems aimed at the treatment of PC, and demonstrate the improvement of this modification for an active target, as alternative and promising candidates for new therapies.
Collapse
Affiliation(s)
| | - Jonatas Lobato Duarte
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leonardo Delello Di Filippo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
21
|
Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, Gillessen S, Van der Kwast T, Bristow RG. Prostate cancer. Nat Rev Dis Primers 2021. [PMID: 33542230 DOI: 10.1038/s41572-020-0024.3-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Prostate cancer is a complex disease that affects millions of men globally, predominantly in high human development index regions. Patients with localized disease at a low to intermediate risk of recurrence generally have a favourable outcome of 99% overall survival for 10 years if the disease is detected and treated at an early stage. Key genetic alterations include fusions of TMPRSS2 with ETS family genes, amplification of the MYC oncogene, deletion and/or mutation of PTEN and TP53 and, in advanced disease, amplification and/or mutation of the androgen receptor (AR). Prostate cancer is usually diagnosed by prostate biopsy prompted by a blood test to measure prostate-specific antigen levels and/or digital rectal examination. Treatment for localized disease includes active surveillance, radical prostatectomy or ablative radiotherapy as curative approaches. Men whose disease relapses after prostatectomy are treated with salvage radiotherapy and/or androgen deprivation therapy (ADT) for local relapse, or with ADT combined with chemotherapy or novel androgen signalling-targeted agents for systemic relapse. Advanced prostate cancer often progresses despite androgen ablation and is then considered castration-resistant and incurable. Current treatment options include AR-targeted agents, chemotherapy, radionuclides and the poly(ADP-ribose) inhibitor olaparib. Current research aims to improve prostate cancer detection, management and outcomes, including understanding the fundamental biology at all stages of the disease.
Collapse
Affiliation(s)
- Richard J Rebello
- Cancer Research UK Manchester Institute, University of Manchester, Manchester Cancer Research Centre, Manchester, UK
| | - Christoph Oing
- Cancer Research UK Manchester Institute, University of Manchester, Manchester Cancer Research Centre, Manchester, UK
- Department of Oncology, Haematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Centre Eppendorf, Hamburg, Germany
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center at Jefferson Health and Thomas Jefferson University, Philadelphia, PA, USA
| | - Stacy Loeb
- Department of Urology and Population Health, New York University and Manhattan Veterans Affairs, Manhattan, NY, USA
| | - David C Johnson
- Department of Urology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert E Reiter
- Department of Urology, Jonssen Comprehensive Cancer Center UCLA, Los Angeles, CA, USA
| | | | - Theodorus Van der Kwast
- Laboratory Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Robert G Bristow
- Cancer Research UK Manchester Institute, University of Manchester, Manchester Cancer Research Centre, Manchester, UK.
| |
Collapse
|
22
|
Abstract
Prostate cancer is a complex disease that affects millions of men globally, predominantly in high human development index regions. Patients with localized disease at a low to intermediate risk of recurrence generally have a favourable outcome of 99% overall survival for 10 years if the disease is detected and treated at an early stage. Key genetic alterations include fusions of TMPRSS2 with ETS family genes, amplification of the MYC oncogene, deletion and/or mutation of PTEN and TP53 and, in advanced disease, amplification and/or mutation of the androgen receptor (AR). Prostate cancer is usually diagnosed by prostate biopsy prompted by a blood test to measure prostate-specific antigen levels and/or digital rectal examination. Treatment for localized disease includes active surveillance, radical prostatectomy or ablative radiotherapy as curative approaches. Men whose disease relapses after prostatectomy are treated with salvage radiotherapy and/or androgen deprivation therapy (ADT) for local relapse, or with ADT combined with chemotherapy or novel androgen signalling-targeted agents for systemic relapse. Advanced prostate cancer often progresses despite androgen ablation and is then considered castration-resistant and incurable. Current treatment options include AR-targeted agents, chemotherapy, radionuclides and the poly(ADP-ribose) inhibitor olaparib. Current research aims to improve prostate cancer detection, management and outcomes, including understanding the fundamental biology at all stages of the disease.
Collapse
|
23
|
Elbadawy M, Abugomaa A, Yamawaki H, Usui T, Sasaki K. Development of Prostate Cancer Organoid Culture Models in Basic Medicine and Translational Research. Cancers (Basel) 2020; 12:E777. [PMID: 32218271 PMCID: PMC7226333 DOI: 10.3390/cancers12040777] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PC) is the most prevalent cancer in men and the second main cause of cancer-related death in Western society. The lack of proper PC models that recapitulate the molecular and genomic landscape of clinical disease has hampered progress toward translational research to understand the disease initiation, progression, and therapeutic responses in each patient. Although several models have been developed, they hardly emulated the complicated PC microenvironment. Precision medicine is an emerging approach predicting appropriate therapies for individual cancer patients by means of various analyses of individual genomic profiling and targeting specific cancer pathways. In PC, precision medicine also has the potential to impose changes in clinical practices. Here, we describe the various PC models with special focus on PC organoids and their values in basic medicine, personalized therapy, and translational researches in vitro and in vivo, which could help to achieve the full transformative power of cancer precision medicine.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (M.E.); (A.A.); (K.S.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (M.E.); (A.A.); (K.S.)
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahliya, Egypt
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan;
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (M.E.); (A.A.); (K.S.)
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (M.E.); (A.A.); (K.S.)
| |
Collapse
|
24
|
TIP5 primes prostate luminal cells for the oncogenic transformation mediated by PTEN-loss. Proc Natl Acad Sci U S A 2020; 117:3637-3647. [PMID: 32024754 PMCID: PMC7035629 DOI: 10.1073/pnas.1911673117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell of origin and the temporal order of oncogenic events in tumors play important roles for disease state. This is of particular interest for PCa due to its highly variable clinical outcome. However, these features are difficult to analyze in tumors. We established an in vitro murine PCa organoid model taking into account the cell of origin and the temporal order of events. We found that TIP5 primes luminal prostate cells for Pten-loss mediated oncogenic transformation whereas it is dispensable once the transformation is established. Cross-species transcriptomic analyses revealed a PTEN-loss gene signature that identified a set of aggressive tumors with PTEN-del, or low PTEN expression, and high-TIP5 expression. This paper provides a powerful tool to elucidate PCa mechanisms. Prostate cancer (PCa) is the second leading cause of cancer death in men. Its clinical and molecular heterogeneities and the lack of in vitro models outline the complexity of PCa in the clinical and research settings. We established an in vitro mouse PCa model based on organoid technology that takes into account the cell of origin and the order of events. Primary PCa with deletion of the tumor suppressor gene PTEN (PTEN-del) can be modeled through Pten-down-regulation in mouse organoids. We used this system to elucidate the contribution of TIP5 in PCa initiation, a chromatin regulator that is implicated in aggressive PCa. High TIP5 expression correlates with primary PTEN-del PCa and this combination strongly associates with reduced prostate-specific antigen (PSA) recurrence-free survival. TIP5 is critical for the initiation of PCa of luminal origin mediated by Pten-loss whereas it is dispensable once Pten-loss mediated transformation is established. Cross-species analyses revealed a PTEN gene signature that identified a group of aggressive primary PCas characterized by PTEN-del, high-TIP5 expression, and a TIP5-regulated gene expression profile. The results highlight the modeling of PCa with organoids as a powerful tool to elucidate the role of genetic alterations found in recent studies in their time orders and cells of origin, thereby providing further optimization for tumor stratification to improve the clinical management of PCa.
Collapse
|
25
|
Muthuswami R, Bailey L, Rakesh R, Imbalzano AN, Nickerson JA, Hockensmith JW. BRG1 is a prognostic indicator and a potential therapeutic target for prostate cancer. J Cell Physiol 2019; 234:15194-15205. [PMID: 30667054 PMCID: PMC6563042 DOI: 10.1002/jcp.28161] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
Brahma-related gene 1 (BRG1) is one of two mutually exclusive ATPases that function as the catalytic subunit of human SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling enzymes. BRG1 has been identified as a tumor suppressor in some cancer types but has been shown to be expressed at elevated levels, relative to normal tissue, in other cancers. Using TCGA (The Cancer Genome Atlas) prostate cancer database, we determined that BRG1 mRNA and protein expression is elevated in prostate tumors relative to normal prostate tissue. Only 3 of 491 (0.6%) sequenced tumors showed amplification of the locus or mutation in the protein coding sequence, arguing against the idea that elevated expression due to amplification or expression of a mutant BRG1 protein is associated with prostate cancer. Kaplan-Meier survival curves showed that BRG1 expression in prostate tumors inversely correlated with survival. However, BRG1 expression did not correlate with Gleason score/International Society of Urological Pathology (ISUP) Grade Group, indicating it is an independent predictor of tumor progression/patient outcome. To experimentally assess BRG1 as a possible therapeutic target, we treated prostate cancer cells with a biologic inhibitor called ADAADi (active DNA-dependent ATPase A Domain inhibitor) that targets the activity of the SNF2 family of ATPases in biochemical assays but showed specificity for BRG1 in prior tissue culture experiments. The inhibitor decreased prostate cancer cell proliferation and induced apoptosis. When directly injected into xenografts established by injection of prostate cancer cells in mouse flanks, the inhibitor decreased tumor growth and increased survival. These results indicate the efficacy of pursuing BRG1 as both an indicator of patient outcome and as a therapeutic target.
Collapse
Affiliation(s)
- Rohini Muthuswami
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia,School of Life Sciences, Jawaharlal Nehru UniversityNew DelhiIndia
| | - LeeAnn Bailey
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia
| | | | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Jeffrey A. Nickerson
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Joel W. Hockensmith
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia
| |
Collapse
|
26
|
Abstract
Stem/progenitor cells play central roles in processes of organogenesis and tissue maintenance, whereas cancer stem cells (CSCs) are thought to drive tumor malignancy. Here, we review recent progress in the identification and analysis of normal prostate stem/progenitor cells as well as putative CSCs in both genetically engineered mouse models as well as in human tissue. We also discuss studies that have investigated the cell type of origin for prostate cancer. In addition, we provide a critical assessment of methodologies used in stem cell analyses and outline directions for future research.
Collapse
Affiliation(s)
- Jia J Li
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Michael M Shen
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
27
|
Trabzonlu L, Kulac I, Zheng Q, Hicks JL, Haffner MC, Nelson WG, Sfanos KS, Ertunc O, Lotan TL, Heaphy CM, Meeker AK, Yegnasubramanian S, De Marzo AM. Molecular Pathology of High-Grade Prostatic Intraepithelial Neoplasia: Challenges and Opportunities. Cold Spring Harb Perspect Med 2019; 9:a030403. [PMID: 30082453 PMCID: PMC6444695 DOI: 10.1101/cshperspect.a030403] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A better understanding of the early stages of prostate cancer initiation, potentially arising from precursor lesions, may fuel development of powerful approaches for prostate cancer prevention or interception. The best-known candidate for such a precursor lesion has been referred to as high-grade prostatic intraepithelial neoplasia (HGPIN). Although there is significant evidence supporting the notion that such HGPIN lesions can give rise to invasive adenocarcinomas of the prostate, there are also numerous complicating considerations and evidence that cloud the picture in many instances. Notably, recent evidence has suggested that some fraction of such lesions that are morphologically consistent with HGPIN may actually be invasive carcinomas masquerading as HGPIN-a state that we term "postinvasive intraepithelial carcinoma" (PIC). Although the prevalence of such PIC lesions is not fully understood, this and other factors can confound the potential of identifying prostate precursors that can be targeted for disease prevention, interception, or treatment. Here, we review our current understanding of the morphological and molecular pathological features of prostate cancer precursor lesions.
Collapse
Affiliation(s)
- Levent Trabzonlu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Ibrahim Kulac
- Department of Pathology, Koc University School of Medicine, Istanbul 34010, Turkey
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Jessica L Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Michael C Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - William G Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Onur Ertunc
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| |
Collapse
|
28
|
Abstract
Comprehensive knowledge of the normal prostate epithelial lineage hierarchy is a prerequisite to investigate the identity of the cells of origin for prostate cancer. The basal and luminal cells constitute most of the prostate epithelium and have been the major focuses of the study on the cells of origin for prostate cancer. Much progress has been made during the past few decades, mainly using mouse models, to understand the inter-lineage relationship and intra-lineage heterogeneity in adults as well as the lineage plasticity during conditions of stress. These studies have concluded that the adult mouse prostate basal and luminal cells are largely independently sustained under physiological conditions, but both types of cells possess the capacity for bipotent differentiation under stress or artificial experimental conditions. However, the existence or the identity of the putative progenitors within each lineage warrants further investigation. Whether the human prostate lineage hierarchy is completely the same as that of the mouse remains uncertain. Experiments from independent groups have demonstrated that both types of cells in mice and humans can serve as targets for transformation. But controversies remain whether the disease from distinct cells of origin display different clinical behaviors. Further investigation of the intra-lineage heterogeneity will provide new insights into this issue. Understanding the identity of the cells of origin for prostate cancer will help identify novel prognostic markers for early detection of aggressive prostate cancers, provide insights into the therapeutic vulnerability of these tumors, and inspire novel therapeutic strategies.
Collapse
|
29
|
Le Magnen C, Virk RK, Dutta A, Kim JY, Panja S, Lopez-Bujanda ZA, Califano A, Drake CG, Mitrofanova A, Abate-Shen C. Cooperation of loss of NKX3.1 and inflammation in prostate cancer initiation. Dis Model Mech 2018; 11:dmm035139. [PMID: 30266798 PMCID: PMC6262819 DOI: 10.1242/dmm.035139] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
Although it is known that inflammation plays a critical role in prostate tumorigenesis, the underlying processes are not well understood. Based on analysis of genetically engineered mouse models combined with correlative analysis of expression profiling data from human prostate tumors, we demonstrate a reciprocal relationship between inflammation and the status of the NKX3.1 homeobox gene associated with prostate cancer initiation. We find that cancer initiation in aged Nkx3.1 mutant mice correlates with enrichment of specific immune populations and increased expression of immunoregulatory genes. Furthermore, expression of these immunoregulatory genes is similarly increased in human prostate tumors having low levels of NKX3.1 expression. We further show that induction of prostatitis in Nkx3.1 mutant mice accelerates prostate cancer initiation, which is coincident with aberrant cellular plasticity and differentiation. Correspondingly, human prostate tumors having low levels of NKX3.1 have de-regulated expression of genes associated with these cellular processes. We propose that loss of function of NKX3.1 accelerates inflammation-driven prostate cancer initiation potentially via aberrant cellular plasticity and impairment of cellular differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Clémentine Le Magnen
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Medical Center, NY 10032, USA
| | - Aditya Dutta
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaime Yeji Kim
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ 07101, USA
| | - Zoila A Lopez-Bujanda
- Graduate Program in Pathobiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Columbia Center for Translational Immunology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Departments of Systems Biology and Biochemistry and Molecular Biophysics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Charles G Drake
- Department of Medicine, Columbia Center for Translational Immunology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ 07101, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Pathology & Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
30
|
Abstract
Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
31
|
Chua CW, Epsi NJ, Leung EY, Xuan S, Lei M, Li BI, Bergren SK, Hibshoosh H, Mitrofanova A, Shen MM. Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation. eLife 2018; 7:28768. [PMID: 29334357 PMCID: PMC5807048 DOI: 10.7554/elife.28768] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Master regulatory genes of tissue specification play key roles in stem/progenitor cells and are often important in cancer. In the prostate, androgen receptor (AR) is a master regulator essential for development and tumorigenesis, but its specific functions in prostate stem/progenitor cells have not been elucidated. We have investigated AR function in CARNs (CAstration-Resistant Nkx3.1-expressing cells), a luminal stem/progenitor cell that functions in prostate regeneration. Using genetically--engineered mouse models and novel prostate epithelial cell lines, we find that progenitor properties of CARNs are largely unaffected by AR deletion, apart from decreased proliferation in vivo. Furthermore, AR loss suppresses tumor formation after deletion of the Pten tumor suppressor in CARNs; however, combined Pten deletion and activation of oncogenic Kras in AR-deleted CARNs result in tumors with focal neuroendocrine differentiation. Our findings show that AR modulates specific progenitor properties of CARNs, including their ability to serve as a cell of origin for prostate cancer.
Collapse
Affiliation(s)
- Chee Wai Chua
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Nusrat J Epsi
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, United States.,Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, United States
| | - Eva Y Leung
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Shouhong Xuan
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Ming Lei
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Bo I Li
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Sarah K Bergren
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, United States.,Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, United States
| | - Michael M Shen
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| |
Collapse
|
32
|
Nunes AM, Barraza-Flores P, Smith CR, Burkin DJ. Integrin α7: a major driver and therapeutic target for glioblastoma malignancy. Stem Cell Investig 2017; 4:97. [PMID: 29359136 PMCID: PMC5763033 DOI: 10.21037/sci.2017.12.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Andreia M Nunes
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Christina R Smith
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
33
|
Thysell E, Ylitalo EB, Jernberg E, Bergh A, Wikström P. A Systems Approach to Prostate Cancer Classification-Letter. Cancer Res 2017; 77:7131-7132. [PMID: 29212852 DOI: 10.1158/0008-5472.can-16-3231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/21/2016] [Accepted: 10/19/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
34
|
PTEN is a protein phosphatase that targets active PTK6 and inhibits PTK6 oncogenic signaling in prostate cancer. Nat Commun 2017; 8:1508. [PMID: 29142193 PMCID: PMC5688148 DOI: 10.1038/s41467-017-01574-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/29/2017] [Indexed: 12/15/2022] Open
Abstract
PTEN activity is often lost in prostate cancer. We show that the tyrosine kinase PTK6 (BRK) is a PTEN substrate. Phosphorylation of PTK6 tyrosine 342 (PY342) promotes activation, while phosphorylation of tyrosine 447 (PY447) regulates auto-inhibition. Introduction of PTEN into a PTEN null prostate cancer cell line leads to dephosphorylation of PY342 but not PY447 and PTK6 inhibition. Conversely, PTEN knockdown promotes PTK6 activation in PTEN positive cells. Using a variety of PTEN mutant constructs, we show that protein phosphatase activity of PTEN targets PTK6, with efficiency similar to PTP1B, a phosphatase that directly dephosphorylates PTK6 Y342. Conditional disruption of Pten in the mouse prostate leads to tumorigenesis and increased phosphorylation of PTK6 Y342, and disruption of Ptk6 impairs tumorigenesis. In human prostate tumor tissue microarrays, loss of PTEN correlates with increased PTK6 PY342 and poor outcome. These data suggest PTK6 activation promotes invasive prostate cancer induced by PTEN loss. PTEN is often lost in prostate cancer. In this study, the authors show that PTEN can act as a protein phosphatase that targets active PTK6, thereby regulating its oncogenic signaling in prostate cancer progression.
Collapse
|
35
|
Abstract
Technical advances in the development of organoid systems enable cell lines, primary adult cells, or stem or progenitor cells to develop into diverse, multicellular entities, which can self-renew, self-organize, and differentiate. These 3D organoid cultures have proven to be of value in increasing our understanding of the biology of disease and offer the potential of regenerative and genetic therapies. The successful application of 3D organoids derived from adult tissue into urological cancer research can further our understanding of these diseases and could also provide preclinical cancer models to realize the precision medicine paradigm by therapeutic screening of individual patient samples ex vivo. Kidney organoids derived from induced pluripotent stem cells provide personalized biomarkers, which can be correlated with genetic and clinical information. Organoid models can also improve our comprehension of aspects of particular diseases; for example, in prostate cancer, 3D organoids can aid in the identification of tumour-initiating cells from an epithelial cell lineage. Furthermore, kidney organoid differentiation from human pluripotent stem cells enables gene editing to model disease in kidney tubular epithelial cells. State-of-the-art human organoid cultures have potential as tools in basic and clinical research in renal, bladder, and prostatic diseases.
Collapse
Affiliation(s)
- Shangqian Wang
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.,Urology Department, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.,Key Laboratory of Systems Biology,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.,Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.,Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|