1
|
Schindler M, Osterwalder M, Harabula I, Wittler L, Tzika AC, Dechmann DKN, Vingron M, Visel A, Haas SA, Real FM. Induction of kidney-related gene programs through co-option of SALL1 in mole ovotestes. Development 2023; 150:dev201562. [PMID: 37519269 PMCID: PMC10499028 DOI: 10.1242/dev.201562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Changes in gene expression represent an important source of phenotypic innovation. Yet how such changes emerge and impact the evolution of traits remains elusive. Here, we explore the molecular mechanisms associated with the development of masculinizing ovotestes in female moles. By performing integrative analyses of epigenetic and transcriptional data in mole and mouse, we identified the co-option of SALL1 expression in mole ovotestes formation. Chromosome conformation capture analyses highlight a striking conservation of the 3D organization at the SALL1 locus, but an evolutionary divergence of enhancer activity. Interspecies reporter assays support the capability of mole-specific enhancers to activate transcription in urogenital tissues. Through overexpression experiments in transgenic mice, we further demonstrate the capability of SALL1 to induce kidney-related gene programs, which are a signature of mole ovotestes. Our results highlight the co-option of gene expression, through changes in enhancer activity, as a plausible mechanism for the evolution of traits.
Collapse
Affiliation(s)
- Magdalena Schindler
- Gene Regulation & Evolution, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Department of Cardiology, Bern University Hospital, Bern 3010, Switzerland
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Izabela Harabula
- Epigenetic Regulation and Chromatin Architecture, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin 10115, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Athanasia C. Tzika
- Department of Genetics & Evolution, University of Geneva, Geneva 1205, Switzerland
| | - Dina K. N. Dechmann
- Department of Migration, Max Planck Institute for Animal Behavior, Radolfzell 78315, Germany
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Stefan A. Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Francisca M. Real
- Gene Regulation & Evolution, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| |
Collapse
|
2
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
3
|
Acemel RD, Lupiáñez DG. Evolution of 3D chromatin organization at different scales. Curr Opin Genet Dev 2023; 78:102019. [PMID: 36603519 DOI: 10.1016/j.gde.2022.102019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 01/04/2023]
Abstract
Most animal genomes fold in 3D chromatin domains called topologically associated domains (TADs) that facilitate interactions between cis-regulatory elements (CREs) and promoters. Owing to their critical role in the control of developmental gene expression, we explore how TADs have shaped animal evolution. In the light of recent studies that profile TADs in disparate animal lineages, we discuss their phylogenetic distribution and the mechanisms that underlie their formation. We present evidence indicating that TADs are plastic entities composed of genomic strata of different ages: ancient cores are combined with newer regions and brought into extant TADs through genomic rearrangements. We highlight that newly incorporated TAD strata enable the establishment of new CRE-promoter interactions and in turn new expression patterns that can drive phenotypical innovation. We further highlight how subtle changes in chromatin folding may fine-tune the expression levels of developmental genes and hold a potential for evolutionary significance.
Collapse
|
4
|
Vara C, Ruiz-Herrera A. Unpacking chromatin remodelling in germ cells: implications for development and evolution. Trends Genet 2021; 38:422-425. [PMID: 34772523 DOI: 10.1016/j.tig.2021.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
Germ cells reflect the evolutionary history and future potential of a species. Understanding how the genome is organised in gametocytes is fundamental to understanding fertility and its impact on genetic diversity and evolution of species. Here, we explore principles of chromatin remodelling during the formation of germ cells and how these are affected by genome reshuffling.
Collapse
Affiliation(s)
- Covadonga Vara
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain.
| |
Collapse
|
5
|
CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression. Nat Commun 2021; 12:5415. [PMID: 34518536 PMCID: PMC8438036 DOI: 10.1038/s41467-021-25604-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
Coordinated chromatin interactions between enhancers and promoters are critical for gene regulation. The architectural protein CTCF mediates chromatin looping and is enriched at the boundaries of topologically associating domains (TADs), which are sub-megabase chromatin structures. In vitro CTCF depletion leads to a loss of TADs but has only limited effects over gene expression, challenging the concept that CTCF-mediated chromatin structures are a fundamental requirement for gene regulation. However, how CTCF and a perturbed chromatin structure impacts gene expression during development remains poorly understood. Here we link the loss of CTCF and gene regulation during patterning and organogenesis in a ctcf knockout zebrafish model. CTCF absence leads to loss of chromatin structure and affects the expression of thousands of genes, including many developmental regulators. Our results demonstrate the essential role of CTCF in providing the structural context for enhancer-promoter interactions, thus regulating developmental genes.
Collapse
|
6
|
Tena JJ, Santos-Pereira JM. Topologically Associating Domains and Regulatory Landscapes in Development, Evolution and Disease. Front Cell Dev Biol 2021; 9:702787. [PMID: 34295901 PMCID: PMC8290416 DOI: 10.3389/fcell.2021.702787] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023] Open
Abstract
Animal genomes are folded in topologically associating domains (TADs) that have been linked to the regulation of the genes they contain by constraining regulatory interactions between cis-regulatory elements and promoters. Therefore, TADs are proposed as structural scaffolds for the establishment of regulatory landscapes (RLs). In this review, we discuss recent advances in the connection between TADs and gene regulation, their relationship with gene RLs and their dynamics during development and differentiation. Moreover, we describe how restructuring TADs may lead to pathological conditions, which explains their high evolutionary conservation, but at the same time it provides a substrate for the emergence of evolutionary innovations that lay at the origin of vertebrates and other phylogenetic clades.
Collapse
Affiliation(s)
- Juan J. Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - José M. Santos-Pereira
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
7
|
The impact of chromosomal fusions on 3D genome folding and recombination in the germ line. Nat Commun 2021; 12:2981. [PMID: 34016985 PMCID: PMC8137915 DOI: 10.1038/s41467-021-23270-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/16/2021] [Indexed: 02/08/2023] Open
Abstract
The spatial folding of chromosomes inside the nucleus has regulatory effects on gene expression, yet the impact of genome reshuffling on this organization remains unclear. Here, we take advantage of chromosome conformation capture in combination with single-nucleotide polymorphism (SNP) genotyping and analysis of crossover events to study how the higher-order chromatin organization and recombination landscapes are affected by chromosomal fusions in the mammalian germ line. We demonstrate that chromosomal fusions alter the nuclear architecture during meiosis, including an increased rate of heterologous interactions in primary spermatocytes, and alterations in both chromosome synapsis and axis length. These disturbances in topology were associated with changes in genomic landscapes of recombination, resulting in detectable genomic footprints. Overall, we show that chromosomal fusions impact the dynamic genome topology of germ cells in two ways: (i) altering chromosomal nuclear occupancy and synapsis, and (ii) reshaping landscapes of recombination.
Collapse
|
8
|
Mota-Gómez I, Lupiáñez DG. A (3D-Nuclear) Space Odyssey: Making Sense of Hi-C Maps. Genes (Basel) 2019; 10:E415. [PMID: 31146487 PMCID: PMC6627722 DOI: 10.3390/genes10060415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 01/26/2023] Open
Abstract
Three-dimensional (3D)-chromatin organization is critical for proper enhancer-promoter communication and, therefore, for a precise execution of the transcriptional programs governing cellular processes. The emergence of Chromosome Conformation Capture (3C) methods, in particular Hi-C, has allowed the investigation of chromatin interactions on a genome-wide scale, revealing the existence of overlapping molecular mechanisms that we are just starting to decipher. Therefore, disentangling Hi-C signal into these individual components is essential to provide meaningful biological data interpretation. Here, we discuss emerging views on the molecular forces shaping the genome in 3D, with a focus on their respective contributions and interdependence. We discuss Hi-C data at both population and single-cell levels, thus providing criteria to interpret genomic function in the 3D-nuclear space.
Collapse
Affiliation(s)
- Irene Mota-Gómez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin 10115, Germany.
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin 10115, Germany.
| |
Collapse
|
9
|
|