1
|
Wang YF, An ZY, Li JW, Dong ZK, Jin WL. MG53/TRIM72: multi-organ repair protein and beyond. Front Physiol 2024; 15:1377025. [PMID: 38681139 PMCID: PMC11046001 DOI: 10.3389/fphys.2024.1377025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
MG53, a member of the tripartite motif protein family, possesses multiple functionalities due to its classic membrane repair function, anti-inflammatory ability, and E3 ubiquitin ligase properties. Initially recognized for its crucial role in membrane repair, the therapeutic potential of MG53 has been extensively explored in various diseases including muscle injury, myocardial damage, acute lung injury, and acute kidney injury. However, further research has revealed that the E3 ubiquitin ligase characteristics of MG53 also contribute to the pathogenesis of certain conditions such as diabetic cardiomyopathy, insulin resistance, and metabolic syndrome. Moreover, recent studies have highlighted the anti-tumor effects of MG53 in different types of cancer, such as small cell lung cancer, liver cancer, and colorectal cancer; these effects are closely associated with their E3 ubiquitin ligase activities. In summary, MG53 is a multifunctional protein that participates in important physiological and pathological processes of multiple organs and is a promising therapeutic target for various human diseases. MG53 plays a multi-organ protective role due to its membrane repair function and its exertion of anti-tumor effects due to its E3 ubiquitin ligase properties. In addition, the controversial aspect of MG53's E3 ubiquitin ligase properties potentially causing insulin resistance and metabolic syndrome necessitates further cross-validation for clarity.
Collapse
Affiliation(s)
- Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jian-Wen Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Zhao Q, Zhang Q, Zhao X, Tian Z, Sun M, He L. MG53: A new protagonist in the precise treatment of cardiomyopathies. Biochem Pharmacol 2024; 222:116057. [PMID: 38367817 DOI: 10.1016/j.bcp.2024.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Cardiomyopathies (CMs) are highly heterogeneous progressive heart diseases characterised by structural and functional abnormalities of the heart, whose intricate pathogenesis has resulted in a lack of effective treatment options. Mitsugumin 53 (MG53), also known as Tripartite motif protein 72 (TRIM72), is a tripartite motif family protein from the immuno-proteomic library expressed primarily in the heart and skeletal muscle. Recent studies have identified MG53 as a potential cardioprotective protein that may play a crucial role in CMs. Therefore, the objective of this review is to comprehensively examine the underlying mechanisms mediated by MG53 responsible for myocardial protection, elucidate the potential role of MG53 in various CMs as well as its dominant status in the diagnosis and prognosis of human myocardial injury, and evaluate the potential therapeutic value of recombinant human MG53 (rhMG53) in CMs. It is expected to yield novel perspectives regarding the clinical diagnosis and therapeutic treatment of CMs.
Collapse
Affiliation(s)
- Qianru Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, PR China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Zheng Tian
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China.
| | - Lian He
- Department of Pathology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, Liaoning, PR China.
| |
Collapse
|
3
|
Xu B, Wang C, Chen H, Zhang L, Gong L, Zhong L, Yang J. Protective role of MG53 against ischemia/reperfusion injury on multiple organs: A narrative review. Front Physiol 2022; 13:1018971. [PMID: 36479346 PMCID: PMC9720843 DOI: 10.3389/fphys.2022.1018971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 12/19/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common clinical problem after coronary angioplasty, cardiopulmonary resuscitation, and organ transplantation, which can lead to cell damage and death. Mitsugumin 53 (MG53), also known as Trim72, is a conservative member of the TRIM family and is highly expressed in mouse skeletal and cardiac muscle, with minimal amounts in humans. MG53 has been proven to be involved in repairing cell membrane damage. It has a protective effect on I/R injury in multiple oxygen-dependent organs, such as the heart, brain, lung, kidney, and liver. Recombinant human MG53 also plays a unique role in I/R, sepsis, and other aspects, which is expected to provide new ideas for related treatment. This article briefly reviews the pathophysiology of I/R injury and how MG53 mitigates multi-organ I/R injury.
Collapse
Affiliation(s)
- Bowen Xu
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hongping Chen
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lihui Zhang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
4
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Deficient Sarcolemma Repair in ALS: A Novel Mechanism with Therapeutic Potential. Cells 2022; 11:cells11203263. [PMID: 36291129 PMCID: PMC9600524 DOI: 10.3390/cells11203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane (sarcolemma) of skeletal muscle myofibers is susceptible to injury caused by physical and chemical stresses during normal daily movement and/or under disease conditions. These acute plasma membrane disruptions are normally compensated by an intrinsic membrane resealing process involving interactions of multiple intracellular proteins including dysferlin, annexin, caveolin, and Mitsugumin 53 (MG53)/TRIM72. There is new evidence for compromised muscle sarcolemma repair mechanisms in Amyotrophic Lateral Sclerosis (ALS). Mitochondrial dysfunction in proximity to neuromuscular junctions (NMJs) increases oxidative stress, triggering MG53 aggregation and loss of its function. Compromised membrane repair further worsens sarcolemma fragility and amplifies oxidative stress in a vicious cycle. This article is to review existing literature supporting the concept that ALS is a disease of oxidative-stress induced disruption of muscle membrane repair that compromise the integrity of the NMJs and hence augmenting muscle membrane repair mechanisms could represent a viable therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Lyle W. Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jianjie Ma
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| |
Collapse
|
5
|
Paleo BJ, McElhanon KE, Bulgart HR, Banford KK, Beck EX, Sattler KM, Goines BN, Ratcliff SL, Crowe KE, Weisleder N. Reduced Sarcolemmal Membrane Repair Exacerbates Striated Muscle Pathology in a Mouse Model of Duchenne Muscular Dystrophy. Cells 2022; 11:1417. [PMID: 35563723 PMCID: PMC9100510 DOI: 10.3390/cells11091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common X-linked degenerative muscle disorder that involves mutations in the DMD gene that frequently reduce the expression of the dystrophin protein, compromising the structural integrity of the sarcolemmal membrane and leaving it vulnerable to injury during cycles of muscle contraction and relaxation. This results in an increased frequency of sarcolemma disruptions that can compromise the barrier function of the membrane and lead to death of the myocyte. Sarcolemmal membrane repair processes can potentially compensate for increased membrane disruptions in DMD myocytes. Previous studies demonstrated that TRIM72, a muscle-enriched tripartite motif (TRIM) family protein also known as mitsugumin 53 (MG53), is a component of the cell membrane repair machinery in striated muscle. To test the importance of membrane repair in striated muscle in compensating for the membrane fragility in DMD, we crossed TRIM72/MG53 knockout mice into the mdx mouse model of DMD. These double knockout (DKO) mice showed compromised sarcolemmal membrane integrity compared to mdx mice, as measured by immunoglobulin G staining and ex vivo muscle laser microscopy wounding assays. We also found a significant decrease in muscle ex vivo contractile function as compared to mdx mice at both 6 weeks and 1.5 years of age. As the DKO mice aged, they developed more extensive fibrosis in skeletal muscles compared to mdx. Our findings indicate that TRIM72/MG53-mediated membrane repair can partially compensate for the sarcolemmal fragility associated with DMD and that the loss of membrane repair results in increased pathology in the DKO mice.
Collapse
Affiliation(s)
- Brian J. Paleo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kevin E. McElhanon
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Hannah R. Bulgart
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kassidy K. Banford
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Eric X Beck
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kristina M. Sattler
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Briana N. Goines
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Shelby L. Ratcliff
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Kelly E. Crowe
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| |
Collapse
|
6
|
Whitson BA, Tan T, Gong N, Zhu H, Ma J. Muscle multiorgan crosstalk with MG53 as a myokine for tissue repair and regeneration. Curr Opin Pharmacol 2021; 59:26-32. [PMID: 34052525 PMCID: PMC8513491 DOI: 10.1016/j.coph.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Through stress and injury to tissues, the cell membrane is damaged and can lead to cell death and a cascade of inflammatory events. Soluble factors that mitigate and repair membrane injury are important to normal homeostasis and are a potential therapeutic intervention for regenerative medicine. A myokine is a type of naturally occurring factors that come from muscle and have impact on remote organs. MG53, a tripartite motif-containing family protein, is such a myokine which has protective effects on lungs, kidneys, liver, heart, eye, and brain. Three mechanisms of action for the beneficial regenerative medicine potential of MG53 have been identified and consist of 1) repair of acute injury to the cellular membrane, 2) anti-inflammatory effects associated with chronic injuries, and 3) rejuvenation of stem cells for tissue regeneration. As such, MG53 has the potential to be a novel and effective regeneration medicine therapeutic.
Collapse
Affiliation(s)
- Bryan A Whitson
- Department of Surgery Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tao Tan
- Department of Surgery Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Zhu
- Department of Surgery Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jianjie Ma
- Department of Surgery Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
MG53, A Tissue Repair Protein with Broad Applications in Regenerative Medicine. Cells 2021; 10:cells10010122. [PMID: 33440658 PMCID: PMC7827922 DOI: 10.3390/cells10010122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Under natural conditions, injured cells can be repaired rapidly through inherent biological processes. However, in the case of diabetes, cardiovascular disease, muscular dystrophy, and other degenerative conditions, the natural repair process is impaired. Repair of injury to the cell membrane is an important aspect of physiology. Inadequate membrane repair function is implicated in the pathophysiology of many human disorders. Recent studies show that Mitsugumin 53 (MG53), a TRIM family protein, plays a key role in repairing cell membrane damage and facilitating tissue regeneration. Clarifying the role of MG53 and its molecular mechanism are important for the application of MG53 in regenerative medicine. In this review, we analyze current research dissecting MG53′s function in cell membrane repair and tissue regeneration, and highlight the development of recombinant human MG53 protein as a potential therapeutic agent to repair multiple-organ injuries.
Collapse
|
8
|
Xie H, Wang Y, Zhu T, Feng S, Yan Z, Zhu Z, Ni J, Ni J, Du R, Zhu J, Ding F, Liu S, Han H, Zhang H, Zhao J, Zhang R, Quan W, Yan X. Serum MG53/TRIM72 Is Associated With the Presence and Severity of Coronary Artery Disease and Acute Myocardial Infarction. Front Physiol 2020; 11:617845. [PMID: 33391037 PMCID: PMC7773634 DOI: 10.3389/fphys.2020.617845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Mitsugumin 53 or Tripartite motif 72 (MG53/TRIM72), a myokine/cardiokine belonging to the tripartite motif family, can protect the heart from ischemic injury and regulate lipid metabolism in rodents. However, its biological function in humans remains unclear. This study sought to investigate the relationship between circulating MG53 levels and coronary artery disease (CAD). Methods: The concentration of MG53 was measured by enzyme-linked immunosorbent assay (ELISA) in serum samples from 639 patients who underwent angiography, including 205 controls, 222 patients with stable CAD, and 212 patients with acute myocardial infarction (AMI). Logistic and linear regression analyses were used to analyze the relationship between MG53 and CAD. Results: MG53 levels were increased in patients with stable CAD and were highest in patients with AMI. Additionally, patients with comorbidities, such as chronic kidney disease (CKD) and diabetes also had a higher concentration of MG53. We found that MG53 is a significant diagnostic marker of CAD and AMI, as analyzed by logistic regression models. Multivariate linear regression models revealed that serum MG53 was significantly corelated positively with SYNTAX scores. Global Registry of Acute Coronary Events (GRACE) scores also correlated with serum MG53 levels, indicating that MG53 levels were associated with the severity of CAD and AMI after adjusting for multiple risk factors and clinical biomarkers. Conclusion: MG53 is a valuable diagnostic marker whose serum levels correlate with the presence and severity of stable CAD and AMI, and may represent a novel biomarker for diagnosing CAD and indicating the severity of CAD.
Collapse
Affiliation(s)
- Hongyang Xie
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianqi Zhu
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Feng
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zijun Yan
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbin Zhu
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwei Ni
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run Du
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhou Zhu
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenghua Ding
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengjun Liu
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Han
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Zhang
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Zhao
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Quan
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiang Yan
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Benissan-Messan DZ, Zhu H, Zhong W, Tan T, Ma J, Lee PHU. Multi-Cellular Functions of MG53 in Muscle Calcium Signaling and Regeneration. Front Physiol 2020; 11:583393. [PMID: 33240103 PMCID: PMC7677405 DOI: 10.3389/fphys.2020.583393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022] Open
Abstract
Since its identification in 2009, multiple studies have indicated the importance of MG53 in muscle physiology. The protein is produced in striated muscles but has physiologic implications reaching beyond the confines of striated muscles. Roles in muscle regeneration, calcium homeostasis, excitation-contraction coupling, myogenesis, and the mitochondria highlight the protein's wide-reaching impact. Numerous therapeutic applications could potentially emerge from these physiologic roles. This review summarizes the current literature regarding the role of MG53 in the skeletal muscle. Therapeutic applications are discussed.
Collapse
Affiliation(s)
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Weina Zhong
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Tao Tan
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Peter H. U. Lee
- Department of Surgery, The Ohio State University, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States
| |
Collapse
|
10
|
Xie H, Yan Z, Feng S, Zhu T, Zhu Z, Ni J, Ni J, Du R, Zhu J, Ding F, Liu S, Han H, Zhang H, Zhao J, Zhang R, Quan W, Yan X. Prognostic Value of Circulating MG53 Levels in Acute Myocardial Infarction. Front Cardiovasc Med 2020; 7:596107. [PMID: 33195485 PMCID: PMC7655532 DOI: 10.3389/fcvm.2020.596107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Mitsugumin 53 (MG53), a muscle-specific protein belonging to the TRIM family, has been demonstrated to protect the heart against oxidative injury. Although previous studies indicated that ischemic hearts released MG53 into circulation in mice, its effects in humans remains unknown. We aimed to evaluate the prognostic value of MG53 in patients with ST-segment elevation myocardial infarction (STEMI). Methods: Serum levels of MG53 were measured in 300 patients with STEMI, all patients were followed for 3 years. The primary endpoint was major adverse cardiovascular events (MACE), defined as a composite of cardiovascular (CV) death, heart failure causing-rehospitalization, recurrent myocardial infarction (MI), and stroke. Results: Patients with a higher concentration of serum MG53 tended to be older, with a history of diabetes. MG53 levels were also highly associated with indicators reflecting heart function, such as left ventricular ejection fraction (LVEF), N terminal pro B type natriuretic peptide (NT-pro-BNP), and cardiac troponin I (cTnI) at baseline. Kaplan-Meier survival curves demonstrated that patients with MG53 levels above the cutoff value (132.17 pg/ml) were more likely to have MACEs. Moreover, it was found to be a significant predictor of CV death (HR: 6.12; 95% CI: 2.10–17.86; p = 0.001). Furthermore, the C-statistic and Integrated Discrimination Improvement (IDI) values for MACEs were improved with MG53 as an independent risk factor or when combined with cTnI. Conclusions: MG53 is a valuable prognostic marker of MACE in patients with AMI, independent of established conventional risk factors, highlighting the significance of MG53 in risk stratification post-MI.
Collapse
Affiliation(s)
- Hongyang Xie
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zijun Yan
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Feng
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianqi Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbin Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwei Ni
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run Du
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhou Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenghua Ding
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengjun Liu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Han
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Zhang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Zhao
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Quan
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiang Yan
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
The short isoform of extended synaptotagmin-2 controls Ca 2+ dynamics in T cells via interaction with STIM1. Sci Rep 2020; 10:14433. [PMID: 32879390 PMCID: PMC7468131 DOI: 10.1038/s41598-020-71489-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
Ca2+ release-activated Ca2+ (CRAC) channels elevate cytoplasmic Ca2+ concentration, which is essential for T cell activation, differentiation and effector functions. T cell receptor stimulation induces depletion of the endoplasmic reticulum (ER) Ca2+ stores, which is sensed by stromal interaction molecule 1 (STIM1). STIM1 translocates to the ER-plasma membrane (PM) junctions to interact with ORAI1, the pore subunit of the CRAC channels. Here, we show that two members of the extended synaptotagmin (E-Syt) family, E-Syt1, and the short isoform of E-Syt2 (E-Syt2S), contribute to activation of CRAC channels in T cells. Knockdown or deletion of both ESYT1 and ESYT2 reduced store-operated Ca2+ entry (SOCE) and ORAI1-STIM1 clustering in Jurkat T cells. Further, depletion of E-Syts in primary T cells decreased Ca2+ entry and cytokine production. While the ER-PM junctions were reduced in both HeLa and Jurkat T cells deleted for ESYT1 and ESYT2, SOCE was impaired only in Jurkat T cells, suggesting that the membrane-tethering function of E-Syts is distinct from their role in SOCE. Mechanistically, E-Syt2S, the predominant isoform of E-Syt2 in T cells, recruited STIM1 to the junctions via a direct interaction. This study demonstrates a membrane-tethering-independent role of E-Syts in activation of CRAC channels in T cells.
Collapse
|
12
|
Cong X, Nagre N, Herrera J, Pearson AC, Pepper I, Morehouse R, Ji HL, Jiang D, Hubmayr RD, Zhao X. TRIM72 promotes alveolar epithelial cell membrane repair and ameliorates lung fibrosis. Respir Res 2020; 21:132. [PMID: 32471489 PMCID: PMC7257505 DOI: 10.1186/s12931-020-01384-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Background Chronic tissue injury was shown to induce progressive scarring in fibrotic diseases such as idiopathic pulmonary fibrosis (IPF), while an array of repair/regeneration and stress responses come to equilibrium to determine the outcome of injury at the organ level. In the lung, type I alveolar epithelial (ATI) cells constitute the epithelial barrier, while type II alveolar epithelial (ATII) cells play a pivotal role in regenerating the injured distal lungs. It had been demonstrated that eukaryotic cells possess repair machinery that can quickly patch the damaged plasma membrane after injury, and our previous studies discovered the membrane-mending role of Tripartite motif containing 72 (TRIM72) that expresses in a limited number of tissues including the lung. Nevertheless, the role of alveolar epithelial cell (AEC) repair in the pathogenesis of IPF has not been examined yet. Method In this study, we tested the specific roles of TRIM72 in the repair of ATII cells and the development of lung fibrosis. The role of membrane repair was accessed by saponin assay on isolated primary ATII cells and rat ATII cell line. The anti-fibrotic potential of TRIM72 was tested with bleomycin-treated transgenic mice. Results We showed that TRIM72 was upregulated following various injuries and in human IPF lungs. However, TRIM72 expression in ATII cells of the IPF lungs had aberrant subcellular localization. In vitro studies showed that TRIM72 repairs membrane injury of immortalized and primary ATIIs, leading to inhibition of stress-induced p53 activation and reduction in cell apoptosis. In vivo studies demonstrated that TRIM72 protects the integrity of the alveolar epithelial layer and reduces lung fibrosis. Conclusion Our results suggest that TRIM72 protects injured lungs and ameliorates fibrosis through promoting post-injury repair of AECs.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Nagaraja Nagre
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA.
| | - Jeremy Herrera
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Pearson
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Robell Morehouse
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Hong-Long Ji
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Dianhua Jiang
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Rolf D Hubmayr
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA. .,National Institute of General Medical Sciences, Bethesda, MD, USA.
| |
Collapse
|
13
|
Zhang JR, Li XX, Hu WN, Li CY. Emerging Role of TRIM Family Proteins in Cardiovascular Disease. Cardiology 2020; 145:390-400. [PMID: 32305978 DOI: 10.1159/000506150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022]
Abstract
Ubiquitination is one of the basic mechanisms of cell protein homeostasis and degradation and is accomplished by 3 enzymes, E1, E2, and E3. Tripartite motif-containing proteins (TRIMs) constitute the largest subfamily of RING E3 ligases, with >70 current members in humans and mice. These members are involved in multiple biological processes, including growth, differentiation, and apoptosis as well as disease and tumorigenesis. Accumulating evidence has shown that many TRIM proteins are associated with various cardiac processes and pathologies, such as heart development, signal transduction, protein degradation, autophagy mediation, ion channel regulation, congenital heart disease, and cardiomyopathies. In this review, we provide an overview of the TRIM family and discuss its involvement in the regulation of cardiac proteostasis and pathophysiology and its potential therapeutic implications.
Collapse
Affiliation(s)
- Jing-Rui Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin-Xin Li
- Department of Respiratory Medicine, Tangshan People's Hospital, Tangshan, China
| | - Wan-Ning Hu
- Department of Cardiology, Laboratory of Molecular Biology, Tangshan Gongren Hospital, Tangshan, China,
| | - Chang-Yi Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Cardiology, Laboratory of Molecular Biology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
14
|
Zhou X, Park KH, Yamazaki D, Lin PH, Nishi M, Ma Z, Qiu L, Murayama T, Zou X, Takeshima H, Zhou J, Ma J. TRIC-A Channel Maintains Store Calcium Handling by Interacting With Type 2 Ryanodine Receptor in Cardiac Muscle. Circ Res 2019; 126:417-435. [PMID: 31805819 DOI: 10.1161/circresaha.119.316241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE Trimeric intracellular cation (TRIC)-A and B are distributed to endoplasmic reticulum/sarcoplasmic reticulum intracellular Ca2+ stores. The crystal structure of TRIC has been determined, confirming the homotrimeric structure of a potassium channel. While the pore architectures of TRIC-A and TRIC-B are conserved, the carboxyl-terminal tail (CTT) domains of TRIC-A and TRIC-B are different from each other. Aside from its recognized role as a counterion channel that participates in excitation-contraction coupling of striated muscles, the physiological function of TRIC-A in heart physiology and disease has remained largely unexplored. OBJECTIVE In cardiomyocytes, spontaneous Ca2+ waves, triggered by store overload-induced Ca2+ release mediated by the RyR2 (type 2 ryanodine receptor), develop extrasystolic contractions often associated with arrhythmic events. Here, we test the hypothesis that TRIC-A is a physiological component of RyR2-mediated Ca2+ release machinery that directly modulates store overload-induced Ca2+ release activity via CTT. METHODS AND RESULTS We show that cardiomyocytes derived from the TRIC-A-/- (TRIC-A knockout) mice display dysregulated Ca2+ movement across sarcoplasmic reticulum. Biochemical studies demonstrate a direct interaction between CTT-A and RyR2. Modeling and docking studies reveal potential sites on RyR2 that show differential interactions with CTT-A and CTT-B. In HEK293 (human embryonic kidney) cells with stable expression of RyR2, transient expression of TRIC-A, but not TRIC-B, leads to apparent suppression of spontaneous Ca2+ oscillations. Ca2+ measurements using the cytosolic indicator Fura-2 and the endoplasmic reticulum luminal store indicator D1ER suggest that TRIC-A enhances Ca2+ leak across the endoplasmic reticulum by directly targeting RyR2 to modulate store overload-induced Ca2+ release. Moreover, synthetic CTT-A peptide facilitates RyR2 activity in lipid bilayer reconstitution system, enhances Ca2+ sparks in permeabilized TRIC-A-/- cardiomyocytes, and induces intracellular Ca2+ release after microinjection into isolated cardiomyocytes, whereas such effects were not observed with the CTT-B peptide. In response to isoproterenol stimulation, the TRIC-A-/- mice display irregular ECG and develop more fibrosis than the WT (wild type) littermates. CONCLUSIONS In addition to the ion-conducting function, TRIC-A functions as an accessory protein of RyR2 to modulate sarcoplasmic reticulum Ca2+ handling in cardiac muscle.
Collapse
Affiliation(s)
- Xinyu Zhou
- From the Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (X. Zhou, K.H.P., P.-h.L., J.M.)
| | - Ki Ho Park
- From the Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (X. Zhou, K.H.P., P.-h.L., J.M.)
| | - Daiju Yamazaki
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Japan (D.Y., M.N., H.T.)
| | - Pei-Hui Lin
- From the Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (X. Zhou, K.H.P., P.-h.L., J.M.)
| | - Miyuki Nishi
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Japan (D.Y., M.N., H.T.)
| | - Zhiwei Ma
- Department of Physics and Astronomy, Dalton Cardiovascular Research Center (Z.M., L.Q., X. Zou), University of Missouri, Columbia.,Department of Biochemistry (Z.M., L.Q., X. Zou), University of Missouri, Columbia
| | - Liming Qiu
- Department of Physics and Astronomy, Dalton Cardiovascular Research Center (Z.M., L.Q., X. Zou), University of Missouri, Columbia.,Department of Biochemistry (Z.M., L.Q., X. Zou), University of Missouri, Columbia
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T.M.)
| | - Xiaoqin Zou
- Department of Physics and Astronomy, Dalton Cardiovascular Research Center (Z.M., L.Q., X. Zou), University of Missouri, Columbia.,Department of Biochemistry (Z.M., L.Q., X. Zou), University of Missouri, Columbia
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Japan (D.Y., M.N., H.T.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington (J.Z.)
| | - Jianjie Ma
- From the Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus (X. Zhou, K.H.P., P.-h.L., J.M.)
| |
Collapse
|
15
|
Huang J, Wang K, Shiflett LA, Brotto L, Bonewald LF, Wacker MJ, Dallas SL, Brotto M. Fibroblast growth factor 9 (FGF9) inhibits myogenic differentiation of C2C12 and human muscle cells. Cell Cycle 2019; 18:3562-3580. [PMID: 31735119 PMCID: PMC6927711 DOI: 10.1080/15384101.2019.1691796] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis and sarcopenia (osteosarcopenia (OS)) are twin-aging diseases. The biochemical crosstalk between muscle and bone seems to play a role in OS. We have previously shown that osteocytes produce soluble factors with beneficial effects on muscle and vice versa. Recently, enhanced FGF9 production was observed in the OmGFP66 osteogenic cell line. To test its role in myogenic differentiation, C2C12 myoblasts were treated with recombinant FGF9. FGF9 as low as 10 ng/mL inhibited myogenic differentiation, suggesting that FGF9 might be a potential inhibitory factor produced from bone cells with effects on muscle cells. FGF9 (10–50 ng/mL) significantly decreased mRNA expression of MyoG and Mhc while increasing the expression of Myostatin. Consistent with the phenotype, RT-qPCR array revealed that FGF9 (10 ng/mL) increased the expression of Icam1 while decreased the expression of Wnt1 and Wnt6 decreased, respectively. FGF9 decreased caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) of C2C12 myotubes and reduced the expression of genes (i.e. Cacna1s, RyR2, Naftc3) directly associated with intracellular Ca2+ homeostasis. Myogenic differentiation in human skeletal muscle cells was similarly inhibited by FGF9 but required higher doses of 200 ng/mL FGF9. FGF9 was also shown to stimulate C2C12 myoblast proliferation. FGF2 and the FGF9 subfamily members FGF16 and FGF20 also inhibited C2C12 myoblast differentiation and enhanced proliferation. Intriguingly, the differentiation inhibition was independent of proliferation enhancement. These findings suggest that FGF9 may modulate myogenesis via a complex signaling mechanism.
Collapse
Affiliation(s)
- Jian Huang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Lora A Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Leticia Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN USA
| | - Michael J Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, the University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
16
|
Flucher BE, Campiglio M. STAC proteins: The missing link in skeletal muscle EC coupling and new regulators of calcium channel function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1101-1110. [PMID: 30543836 DOI: 10.1016/j.bbamcr.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/19/2023]
Abstract
Excitation-contraction coupling is the signaling process by which action potentials control calcium release and consequently the force of muscle contraction. Until recently, three triad proteins were known to be essential for skeletal muscle EC coupling: the voltage-gated calcium channel CaV1.1 acting as voltage sensor, the SR calcium release channel RyR1 representing the only relevant calcium source, and the auxiliary CaV β1a subunit. Whether CaV1.1 and RyR1 are directly coupled or whether their interaction is mediated by another triad protein is still unknown. The recent identification of the adaptor protein STAC3 as fourth essential component of skeletal muscle EC coupling prompted vigorous research to reveal its role in this signaling process. Accumulating evidence supports its possible involvement in linking CaV1.1 and RyR1 in skeletal muscle EC coupling, but also indicates a second, much broader role of STAC proteins in the regulation of calcium/calmodulin-dependent feedback regulation of L-type calcium channels.
Collapse
Affiliation(s)
- Bernhard E Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, Schöpfstraße 41, A6020 Innsbruck, Austria.
| | - Marta Campiglio
- Department of Physiology and Medical Physics, Medical University Innsbruck, Schöpfstraße 41, A6020 Innsbruck, Austria
| |
Collapse
|
17
|
Thapa K, Wu KC, Sarma A, Grund EM, Szeto A, Mendez AJ, Gesta S, Vishnudas VK, Narain NR, Sarangarajan R. Dysregulation of the calcium handling protein, CCDC47, is associated with diabetic cardiomyopathy. Cell Biosci 2018; 8:45. [PMID: 30140426 PMCID: PMC6098598 DOI: 10.1186/s13578-018-0244-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Diabetes mellitus is associated with an increased risk in diabetic cardiomyopathy (DCM) that is distinctly not attributed to co-morbidities with other vasculature diseases. To date, while dysregulation of calcium handling is a key hallmark in cardiomyopathy, studies have been inconsistent in the types of alterations involved. In this study human cardiomyocytes were exposed to an environmental nutritional perturbation of high glucose, fatty acids, and l-carnitine to model DCM and iTRAQ-coupled LC–MS/MS proteomic analysis was used to capture proteins affected by the perturbation. The proteins captured were then compared to proteins currently annotated in the cardiovascular disease (CVD) gene ontology (GO) database to identify proteins not previously described as being related to CVD. Subsequently, GO analysis for calcium regulating proteins and endoplasmic/sarcoplasmic reticulum (ER/SR) associated proteins was carried out. Results Here, we identified CCDC47 (calumin) as a unique calcium regulating protein altered in our in vitro nutritional perturbation model. The cellular and functional role of CCDC47 was then assessed in rat cardiomyocytes. In rat H9C2 myocytes, overexpression of CCDC47 resulted in increase in ionomycin-induced calcium release and reuptake. Of interest, in a diet-induced obese (DIO) rat model of DCM, CCDC47 mRNA expression was increased in the atrium and ventricle of the heart, but CCDC47 protein expression was significantly increased only in the atrium of DIO rats compared to lean control rats. Notably, no changes in ANP, BNP, or β-MHC were observed between DIO rats and lean control rats. Conclusions Together, our in vitro and in vivo studies demonstrate that CCDC47 is a unique calcium regulating protein that is associated with early onset hypertrophic cardiomyopathy. Electronic supplementary material The online version of this article (10.1186/s13578-018-0244-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khampaseuth Thapa
- Berg, LLC, 500 Old Connecticut Path, Bldg B (3rd Floor), Framingham, MA 01701 USA
| | - Kai Connie Wu
- Berg, LLC, 500 Old Connecticut Path, Bldg B (3rd Floor), Framingham, MA 01701 USA
| | - Aishwarya Sarma
- Berg, LLC, 500 Old Connecticut Path, Bldg B (3rd Floor), Framingham, MA 01701 USA
| | - Eric M Grund
- Berg, LLC, 500 Old Connecticut Path, Bldg B (3rd Floor), Framingham, MA 01701 USA
| | - Angela Szeto
- 2Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Armando J Mendez
- 2Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Stephane Gesta
- Berg, LLC, 500 Old Connecticut Path, Bldg B (3rd Floor), Framingham, MA 01701 USA
| | - Vivek K Vishnudas
- Berg, LLC, 500 Old Connecticut Path, Bldg B (3rd Floor), Framingham, MA 01701 USA
| | - Niven R Narain
- Berg, LLC, 500 Old Connecticut Path, Bldg B (3rd Floor), Framingham, MA 01701 USA
| | | |
Collapse
|
18
|
Wu WS, Zhu L, Patil S, Gokul K, Reilly S, Chan J, Tekumalla P, Vishnudas V, Kiebish MA, Sarangarajan R, Akmaev VR, Kellogg MD, Narain NR. Human CCDC47 sandwich immunoassay development with electrochemiluminescence technology. J Immunol Methods 2017; 452:12-19. [PMID: 28974366 DOI: 10.1016/j.jim.2017.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 11/26/2022]
Abstract
Coiled-Coil Domain Containing 47 (CCDC47) is an endoplasmic reticulum (ER) transmembrane protein involved in calcium signaling through utilization of its calcium binding-acidic luminal domain. CCDC47 also interacts with ERAD (endoplasmic reticulum-associated degradation) complex and is involved in ER stress relief. In this report, we developed human CCDC47 monoclonal antibodies and a sandwich immunoassay for CCDC47 measurement in biological matrices. Specificity of developed antibodies were confirmed by immunoblot and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of immunoprecipitated cell lysates. To achieve high analytical sensitivity, traditional colorimetric enzyme-linked immunosorbent assay (ELISA) and electrochemiluminescence (ECL) technology were compared, and 3 logs of increased sensitivity was observed with the use of ECL. A CCDC47 sandwich ECL assay was subsequently developed and performances evaluated for calibration curves, precision and accuracy, as well as selectivity and interferences for sample measurement. Sample stability was also characterized for freeze/thaw cycles and short/long term storage conditions.
Collapse
Affiliation(s)
- Wenfang S Wu
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA; Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Liang Zhu
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Saurabh Patil
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Karthiga Gokul
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Sean Reilly
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Joyce Chan
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | | | - Vivek Vishnudas
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | | | | | | | - Mark D Kellogg
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA; Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Niven R Narain
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| |
Collapse
|
19
|
A focus on extracellular Ca 2+ entry into skeletal muscle. Exp Mol Med 2017; 49:e378. [PMID: 28912570 PMCID: PMC5628281 DOI: 10.1038/emm.2017.208] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
The main task of skeletal muscle is contraction and relaxation for body movement and posture maintenance. During contraction and relaxation, Ca2+ in the cytosol has a critical role in activating and deactivating a series of contractile proteins. In skeletal muscle, the cytosolic Ca2+ level is mainly determined by Ca2+ movements between the cytosol and the sarcoplasmic reticulum. The importance of Ca2+ entry from extracellular spaces to the cytosol has gained significant attention over the past decade. Store-operated Ca2+ entry with a low amplitude and relatively slow kinetics is a main extracellular Ca2+ entryway into skeletal muscle. Herein, recent studies on extracellular Ca2+ entry into skeletal muscle are reviewed along with descriptions of the proteins that are related to extracellular Ca2+ entry and their influences on skeletal muscle function and disease.
Collapse
|
20
|
Van Ry PM, Fontelonga TM, Barraza-Flores P, Sarathy A, Nunes AM, Burkin DJ. ECM-Related Myopathies and Muscular Dystrophies: Pros and Cons of Protein Therapies. Compr Physiol 2017; 7:1519-1536. [PMID: 28915335 DOI: 10.1002/cphy.c150033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Extracellular matrix (ECM) myopathies and muscular dystrophies are a group of genetic diseases caused by mutations in genes encoding proteins that provide critical links between muscle cells and the extracellular matrix. These include structural proteins of the ECM, muscle cell receptors, enzymes, and intracellular proteins. Loss of adhesion within the myomatrix results in progressive muscle weakness. For many ECM muscular dystrophies, symptoms can occur any time after birth and often result in reduced life expectancy. There are no cures for the ECM-related muscular dystrophies and treatment options are limited to palliative care. Several therapeutic approaches have been explored to treat muscular dystrophies including gene therapy, gene editing, exon skipping, embryonic, and adult stem cell therapy, targeting genetic modifiers, modulating inflammatory responses, or preventing muscle degeneration. Recently, protein therapies that replace components of the defective myomatrix or enhance muscle and/or extracellular matrix integrity and function have been explored. Preclinical studies for many of these biologics have been promising in animal models of these muscle diseases. This review aims to summarize the ECM muscular dystrophies for which protein therapies are being developed and discuss the exciting potential and possible limitations of this approach for treating this family of devastating genetic muscle diseases. © 2017 American Physiological Society. Compr Physiol 7:1519-1536, 2017.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Apurva Sarathy
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA.,Departamento de Biologia Animal, Centro de Ecologia, Evolucao e Alteracoes Ambientais, Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
21
|
Zhang Y, Wu HK, Lv F, Xiao RP. MG53: Biological Function and Potential as a Therapeutic Target. Mol Pharmacol 2017; 92:211-218. [DOI: 10.1124/mol.117.108241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023] Open
|
22
|
Tan T, Ko YG, Ma J. Dual function of MG53 in membrane repair and insulin signaling. BMB Rep 2017; 49:414-23. [PMID: 27174502 PMCID: PMC5070728 DOI: 10.5483/bmbrep.2016.49.8.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
MG53 is a member of the TRIM-family protein that acts as a key component of the cell membrane repair machinery. MG53 is also an E3-ligase that ubiquinates insulin receptor substrate-1 and controls insulin signaling in skeletal muscle cells. Since its discovery in 2009, research efforts have been devoted to translate this basic discovery into clinical applications in human degenerative and metabolic diseases. This review article highlights the dual function of MG53 in cell membrane repair and insulin signaling, the mechanism that underlies the control of MG53 function, and the therapeutic value of targeting MG53 function in regenerative medicine. [BMB Reports 2016; 49(8): 414-423]
Collapse
Affiliation(s)
- Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Immunological Disorders: Regulation of Ca 2+ Signaling in T Lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:397-424. [PMID: 28900926 DOI: 10.1007/978-3-319-57732-6_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engagement of T cell receptors (TCRs) with cognate antigens triggers cascades of signaling pathways in helper T cells. TCR signaling is essential for the effector function of helper T cells including proliferation, differentiation, and cytokine production. It also modulates effector T cell fate by inducing cell death, anergy (nonresponsiveness), exhaustion, and generation of regulatory T cells. One of the main axes of TCR signaling is the Ca2+-calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway. Stimulation of TCRs triggers depletion of intracellular Ca2+ store and, in turn, activates store-operated Ca2+ entry (SOCE) to raise the intracellular Ca2+ concentration. SOCE in T cells is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which have been very well characterized in terms of their electrophysiological properties. Identification of STIM1 as a sensor to detect depletion of the endoplasmic reticulum (ER) Ca2+ store and Orai1 as the pore subunit of CRAC channels has dramatically advanced our understanding of the regulatory mechanism of Ca2+ signaling in T cells. In this review, we discuss our current understanding of Ca2+ signaling in T cells with specific focus on the mechanism of CRAC channel activation and regulation via protein interactions. In addition, we will discuss the role of CRAC channels in effector T cells, based on the analyses of genetically modified animal models.
Collapse
|
24
|
Blazek AD, Paleo BJ, Weisleder N. Plasma Membrane Repair: A Central Process for Maintaining Cellular Homeostasis. Physiology (Bethesda) 2016; 30:438-48. [PMID: 26525343 DOI: 10.1152/physiol.00019.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane repair is a conserved cellular response mediating active resealing of membrane disruptions to maintain homeostasis and prevent cell death and progression of multiple diseases. Cell membrane repair repurposes mechanisms from various cellular functions, including vesicle trafficking, exocytosis, and endocytosis, to mend the broken membrane. Recent studies increased our understanding of membrane repair by establishing the molecular machinery contributing to membrane resealing. Here, we review some of the key proteins linked to cell membrane repair.
Collapse
Affiliation(s)
- Alisa D Blazek
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Brian J Paleo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
25
|
Treves S, Jungbluth H, Voermans N, Muntoni F, Zorzato F. Ca 2+ handling abnormalities in early-onset muscle diseases: Novel concepts and perspectives. Semin Cell Dev Biol 2016; 64:201-212. [PMID: 27427513 DOI: 10.1016/j.semcdb.2016.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022]
Abstract
The physiological process by which Ca2+ is released from the sarcoplasmic reticulum is called excitation-contraction coupling; it is initiated by an action potential which travels deep into the muscle fiber where it is sensed by the dihydropyridine receptor, a voltage sensing L-type Ca2+channel localized on the transverse tubules. Voltage-induced conformational changes in the dihydropyridine receptor activate the ryanodine receptor Ca2+ release channel of the sarcoplasmic reticulum. The released Ca2+ binds to troponin C, enabling contractile thick-thin filament interactions. The Ca2+ is subsequently transported back into the sarcoplasmic reticulum by specialized Ca2+ pumps (SERCA), preparing the muscle for a new cycle of contraction. Although other proteins are involved in excitation-contraction coupling, the mechanism described above emphasizes the unique role played by the two Ca2+ channels (the dihydropyridine receptor and the ryanodine receptor), the SERCA Ca2+ pumps and the exquisite spatial organization of the membrane compartments endowed with the proteins responsible for this mechanism to function rapidly and efficiently. Research over the past two decades has uncovered the fine details of excitation-contraction coupling under normal conditions while advances in genomics have helped to identify mutations in novel genes in patients with neuromuscular disorders. While it is now clear that many patients with congenital muscle diseases carry mutations in genes encoding proteins directly involved in Ca2+ homeostasis, it has become apparent that mutations are also present in genes encoding for proteins not thought to be directly involved in Ca2+ regulation. Ongoing research in the field now focuses on understanding the functional effect of individual mutations, as well as understanding the role of proteins not specifically located in the sarcoplasmic reticulum which nevertheless are involved in Ca2+ regulation or excitation-contraction coupling. The principal challenge for the future is the identification of drug targets that can be pharmacologically manipulated by small molecules, with the ultimate aim to improve muscle function and quality of life of patients with congenital muscle disorders. The aim of this review is to give an overview of the most recent findings concerning Ca2+ dysregulation and its impact on muscle function in patients with congenital muscle disorders due to mutations in proteins involved in excitation-contraction coupling and more broadly on Ca2+ homeostasis.
Collapse
Affiliation(s)
- Susan Treves
- Departments of Biomedicine and Anesthesia, Basel University Hospital, 4031 Basel, Switzerland; Department of Life Sciences, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy.
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St. Thomas' Hospital, London, United Kingdom; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, United Kingdom; Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, United Kingdom
| | - Nicol Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, United Kingdom
| | - Francesco Zorzato
- Departments of Biomedicine and Anesthesia, Basel University Hospital, 4031 Basel, Switzerland; Department of Life Sciences, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
26
|
Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A 2016; 113:2762-7. [PMID: 26929330 DOI: 10.1073/pnas.1524229113] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Orai1 and stromal interaction molecule 1 (STIM1) mediate store-operated Ca(2+) entry (SOCE) in immune cells. STIM1, an endoplasmic reticulum (ER) Ca(2+) sensor, detects store depletion and interacts with plasma membrane (PM)-resident Orai1 channels at the ER-PM junctions. However, the molecular composition of these junctions in T cells remains poorly understood. Here, we show that junctophilin-4 (JP4), a member of junctional proteins in excitable cells, is expressed in T cells and localized at the ER-PM junctions to regulate Ca(2+) signaling. Silencing or genetic manipulation of JP4 decreased ER Ca(2+) content and SOCE in T cells, impaired activation of the nuclear factor of activated T cells (NFAT) and extracellular signaling-related kinase (ERK) signaling pathways, and diminished expression of activation markers and cytokines. Mechanistically, JP4 directly interacted with STIM1 via its cytoplasmic domain and facilitated its recruitment into the junctions. Accordingly, expression of this cytoplasmic fragment of JP4 inhibited SOCE. Furthermore, JP4 also formed a complex with junctate, a Ca(2+)-sensing ER-resident protein, previously shown to mediate STIM1 recruitment into the junctions. We propose that the junctate-JP4 complex located at the junctions cooperatively interacts with STIM1 to maintain ER Ca(2+) homeostasis and mediate SOCE in T cells.
Collapse
|
27
|
Abstract
Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body.
Collapse
Affiliation(s)
- Sandra T Cooper
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia; and Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia
| | - Paul L McNeil
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia; and Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
28
|
Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers. J Muscle Res Cell Motil 2015; 36:501-15. [DOI: 10.1007/s10974-015-9421-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 01/24/2023]
|
29
|
Andersen Ø, Johnsen H, De Rosa MC, Præbel K, Stjelja S, Kirubakaran TG, Pirolli D, Jentoft S, Fevolden SE. Evolutionary history and adaptive significance of the polymorphic Pan I in migratory and stationary populations of Atlantic cod (Gadus morhua). Mar Genomics 2015; 22:45-54. [DOI: 10.1016/j.margen.2015.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 11/27/2022]
|
30
|
Abstract
Ca(2+) release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled Ca(2+) influx into cells is store-operated Ca(2+) entry (SOCE), which is activated by the reduction of Ca(2+) concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR Ca(2+) sensors and Orai proteins as Ca(2+) channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed.
Collapse
Affiliation(s)
- Zui Pan
- Department of Internal Medicine-Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Marco Brotto
- Muscle Biology Research Group-MUBIG, Schools of Nursing & Medicine, University of Missouri-Kansas City, MO, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
31
|
Treatment of acute lung injury by targeting MG53-mediated cell membrane repair. Nat Commun 2014; 5:4387. [PMID: 25034454 PMCID: PMC4109002 DOI: 10.1038/ncomms5387] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/13/2014] [Indexed: 12/27/2022] Open
Abstract
Injury to lung epithelial cells has a role in multiple lung diseases. We previously identified mitsugumin 53 (MG53) as a component of the cell membrane repair machinery in striated muscle cells. Here we show that MG53 also has a physiological role in the lung and may be used as a treatment in animal models of acute lung injury. Mice lacking MG53 show increased susceptibility to ischemia-reperfusion and over-ventilation induced injury to the lung when compared with wild type mice. Extracellular application of recombinant human MG53 (rhMG53) protein protects cultured lung epithelial cells against anoxia/reoxygenation-induced injuries. Intravenous delivery or inhalation of rhMG53 reduces symptoms in rodent models of acute lung injury and emphysema. Repetitive administration of rhMG53 improves pulmonary structure associated with chronic lung injury in mice. Our data indicate a physiological function for MG53 in the lung and suggest that targeting membrane repair may be an effective means for treatment or prevention of lung diseases.
Collapse
|
32
|
Landstrom AP, Beavers DL, Wehrens XHT. The junctophilin family of proteins: from bench to bedside. Trends Mol Med 2014; 20:353-62. [PMID: 24636942 PMCID: PMC4041816 DOI: 10.1016/j.molmed.2014.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/25/2022]
Abstract
Excitable tissues rely on junctional membrane complexes to couple cell surface signals to intracellular channels. The junctophilins have emerged as a family of proteins critical in coordinating the maturation and maintenance of this cellular ultrastructure. Within skeletal and cardiac muscle, junctophilin 1 and junctophilin 2, respectively, couple sarcolemmal and intracellular calcium channels. In neuronal tissue, junctophilin 3 and junctophilin 4 may have an emerging role in coupling membrane neurotransmitter receptors and intracellular calcium channels. These important physiological roles are highlighted by the pathophysiology which results when these proteins are perturbed, and a growing body of literature has associated junctophilins with the pathogenesis of human disease.
Collapse
Affiliation(s)
- Andrew P Landstrom
- Department of Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - David L Beavers
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Zhou X, Lin P, Yamazaki D, Park KH, Komazaki S, Chen SRW, Takeshima H, Ma J. Trimeric intracellular cation channels and sarcoplasmic/endoplasmic reticulum calcium homeostasis. Circ Res 2014; 114:706-16. [PMID: 24526676 DOI: 10.1161/circresaha.114.301816] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trimeric intracellular cation channels (TRIC) represents a novel class of trimeric intracellular cation channels. Two TRIC isoforms have been identified in both the human and the mouse genomes: TRIC-A, a subtype predominantly expressed in the sarcoplasmic reticulum (SR) of muscle cells, and TRIC-B, a ubiquitous subtype expressed in the endoplasmic reticulum (ER) of all tissues. Genetic ablation of either TRIC-A or TRIC-B leads to compromised K(+) permeation and Ca(2+) release across the SR/ER membrane, supporting the hypothesis that TRIC channels provide a counter balancing K(+) flux that reduces SR/ER membrane depolarization for maintenance of the electrochemical gradient that drives SR/ER Ca(2+) release. TRIC-A and TRIC-B seem to have differential functions in Ca(2+) signaling in excitable and nonexcitable cells. Tric-a(-/-) mice display defective Ca(2+) sparks and spontaneous transient outward currents in arterial smooth muscle and develop hypertension, in addition to skeletal muscle dysfunction. Knockout of TRIC-B results in abnormal IP3 receptor-mediated Ca(2+) release in airway epithelial cells, respiratory defects, and neonatal lethality. Double knockout mice lacking both TRIC-A and TRIC-B show embryonic lethality as a result of cardiac arrest. Such an aggravated lethality indicates that TRIC-A and TRIC-B share complementary physiological functions in Ca(2+) signaling in embryonic cardiomyocytes. Tric-a(-/-) and Tric-b(+/-) mice are viable and susceptible to stress-induced heart failure. Recent evidence suggests that TRIC-A directly modulates the function of the cardiac ryanodine receptor 2 Ca(2+) release channel, which in turn controls store-overload-induced Ca(2+) release from the SR. Thus, the TRIC channels, in addition to providing a countercurrent for SR/ER Ca(2+) release, may also function as accessory proteins that directly modulate the ryanodine receptor/IP3 receptor channel functions.
Collapse
Affiliation(s)
- Xinyu Zhou
- From the Department of Surgery, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus (X.Z., P.L., K.H.P., J.M.); Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan (D.Y., H.T.); Department of Anatomy, Saitama Medical University, Saitama, Japan (S.K.); and Departments of Physiology and Pharmacology, and Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada (W.C.)
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Srikanth S, Gwack Y. Molecular regulation of the pore component of CRAC channels, Orai1. CURRENT TOPICS IN MEMBRANES 2014; 71:181-207. [PMID: 23890116 DOI: 10.1016/b978-0-12-407870-3.00008-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Store-operated Ca(2+) entry (SOCE) is a fundamental mechanism ubiquitously employed by cells to elevate intracellular Ca(2+) concentrations ([Ca(2+)]i). Increased intracellular Ca(2+) ions act as a second messenger that can stimulate a variety of downstream signaling pathways affecting proliferation, secretion, differentiation, and death of cells. In immune cells, immune receptor stimulation induces endoplasmic reticulum Ca(2+) store depletion that subsequently activates Ca(2+)-release-activated-Ca(2+) (CRAC) channels, a prototype of store-operated Ca(2+) (SOC) channels. Identification of Orai1 as the pore subunit of CRAC channels has provided the much-needed molecular tool to dissect the mechanism of activation and regulation of these channels. In this review, we discuss the recent advances in understanding the regulatory mechanisms and posttranslational modifications that regulate diverse aspects of CRAC channel function.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
35
|
Levy JR, Campbell KP, Glass DJ. MG53's new identity. Skelet Muscle 2013; 3:25. [PMID: 24175977 PMCID: PMC4177543 DOI: 10.1186/2044-5040-3-25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/21/2013] [Indexed: 11/29/2022] Open
Abstract
Mitsugumin 53 (MG53) is a relatively newly identified tripartite motif-containing (TRIM) family muscle-specific E3 ubiquitin ligase that is expressed in skeletal muscle and the heart. It has been postulated to facilitate repair by targeting the site of an injury, and acting as a scaffold for assembly of a repair complex made up of dysferlin, annexin V, caveolin-3, and polymerase I and transcript release factor (PTRF). A recent letter published in Nature by Song et al. proposes an alternate function for MG53: as an E3 ligase that targets the insulin receptor and insulin receptor substrate 1 (IRS1) for degradation, therefore regulating muscle insulin signaling. This work is exciting, as it not only presents a novel role for MG53, but also suggests that muscle insulin signaling has a systemic influence on insulin resistance and the metabolic syndrome.
Collapse
Affiliation(s)
| | | | - David J Glass
- Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Alloush J, Roof SR, Beck EX, Ziolo MT, Weisleder N. Expression levels of sarcolemmal membrane repair proteins following prolonged exercise training in mice. INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS 2013; 50:428-435. [PMID: 24772964 PMCID: PMC4090941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Membrane repair is a conserved cellular process, where intracellular vesicles translocate to sites of plasma membrane injury to actively reseal membrane disruptions. Such membrane disruptions commonly occur in the course of normal physiology, particularly in skeletal muscles due to repeated contraction producing small tears in the sarcolemmal membrane. Here, we investigated whether prolonged exercise could produce adaptive changes in expression levels of proteins associated with the membrane repair process, including mitsugumin 53/tripartite motif-containing protein 72 (MG53/TRIM72), dysferlin and caveolin-3 (cav3). Mice were exercised using a treadmill running protocol and protein levels were measured by immunoblotting. The specificity of the antibodies used was established by immunoblot testing of various tissue lysates from both mice and rats. We found that MG53/TRIM72 immunostaining on isolated mouse skeletal muscle fibers showed protein localization at sites of membrane disruption created by the isolation of these muscle fibers. However, no significant changes in the expression levels of the tested membrane repair proteins were observed following prolonged treadmill running for eight weeks (30 to 80 min/day). These findings suggest that any compensation occurring in the membrane repair process in skeletal muscle following prolonged exercise does not affect the expression levels of these three key membrane repair proteins.
Collapse
Affiliation(s)
- Jenna Alloush
- The Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Steve R Roof
- The Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Eric X Beck
- The Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Mark T Ziolo
- The Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Noah Weisleder
- The Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
- TRIM-edicine, Inc., 675 US Highway 1, North Brunswick, NJ 08902 USA
| |
Collapse
|
37
|
Srikanth S, Ribalet B, Gwack Y. Regulation of CRAC channels by protein interactions and post-translational modification. Channels (Austin) 2013; 7:354-63. [PMID: 23454861 DOI: 10.4161/chan.23801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is a widespread mechanism to elevate the intracellular Ca(2+) concentrations and stimulate downstream signaling pathways affecting proliferation, secretion, differentiation and death in different cell types. In immune cells, immune receptor stimulation induces intracellular Ca(2+) store depletion that subsequently activates Ca(2+)-release-activated-Ca(2+) (CRAC) channels, a prototype of store-operated Ca(2+) (SOC) channels. CRAC channel opening leads to activation of diverse downstream signaling pathways affecting proliferation, differentiation, cytokine production and cell death. Recent identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and Orai1 as the pore subunit of CRAC channels has provided the much-needed molecular tools to dissect the mechanism of activation and regulation of CRAC channels. In this review, we discuss the recent advances in understanding the associating partners and posttranslational modifications of Orai1 and STIM1 proteins that regulate diverse aspects of CRAC channel function.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| | - Bernard Ribalet
- Department of Physiology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| | - Yousang Gwack
- Department of Physiology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| |
Collapse
|
38
|
Srikanth S, Gwack Y. Orai1-NFAT signalling pathway triggered by T cell receptor stimulation. Mol Cells 2013; 35:182-94. [PMID: 23483280 PMCID: PMC3887911 DOI: 10.1007/s10059-013-0073-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022] Open
Abstract
T cell receptor (TCR) stimulation plays a crucial role in development, homeostasis, proliferation, cell death, cytokine production, and differentiation of T cells. Thus, in depth understanding of TCR signalling is crucial for development of therapy targeting inflammatory diseases, improvement of vaccination efficiency, and cancer therapy utilizing T cell-based strategies. TCR activation turns on various signalling pathways, one of the important one being the Ca(2+)-calcineurin-nuclear factor of activated T cells (NFAT) signalling pathway. Stimulation of TCRs triggers depletion of intracellular Ca(2+) store and in turn, initiates store-operated Ca(2+) entry (SOCE), one of the major mechanisms to raise the intracellular Ca(2+) concentrations in T cells. Ca(2+)-release-activated-Ca(2+) (CRAC) channels are a prototype of store-operated Ca(2+) (SOC) channels in immune cells that are very well characterized. Recent identification of STIM1 as the endoplasmic reticulum (ER) Ca(2+) sensor and Orai1 as the pore subunit has dramatically advanced the understanding of CRAC channels and provides a molecular tool to investigate the physiological outcomes of Ca(2+) signalling during immune responses. In this review, we focus on our current understanding of CRAC channel activation, regulation, and downstream calcineurin-NFAT signaling pathway.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095,
USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095,
USA
| |
Collapse
|
39
|
TRIC channels supporting efficient Ca2+ release from intracellular stores. Pflugers Arch 2012; 465:187-95. [DOI: 10.1007/s00424-012-1197-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 12/22/2022]
|
40
|
Landstrom AP, Ackerman MJ. Beyond the cardiac myofilament: hypertrophic cardiomyopathy- associated mutations in genes that encode calcium-handling proteins. Curr Mol Med 2012; 12:507-18. [PMID: 22515980 DOI: 10.2174/156652412800620020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/30/2011] [Accepted: 01/11/2012] [Indexed: 12/30/2022]
Abstract
Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium-handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.
Collapse
Affiliation(s)
- A P Landstrom
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
41
|
Abstract
Store-operated Ca(2+) (SOC) entry is one of the major mechanisms to raise intracellular Ca(2+) concentration in non-excitable cells. Ca(2+)-release-activated Ca(2+) (CRAC) channels are a subtype of SOC channels that are extensively characterized in immune cells. Identification of STIM1 as an endoplasmic reticulum Ca(2+) sensor and Orai1 as the pore subunit has dramatically advanced the molecular understanding of CRAC channels. Recent efforts have focused on understanding the physiological aspects of CRAC channels at an organism level using transgenic animal models and at a molecular level using electrophysiological and biochemical tools. In this review, we summarize our current understanding of the interacting partners of Orai and STIM proteins in the regulation of CRAC channel activity and other non-CRAC channel-related functions.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
42
|
Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A 2012; 109:8682-7. [PMID: 22586105 DOI: 10.1073/pnas.1200667109] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Orai1 and stromal interaction molecule (STIM)1 are critical components of Ca(2+) release-activated Ca(2+) (CRAC) channels. Orai1 is a pore subunit of CRAC channels, and STIM1 acts as an endoplasmic reticulum (ER) Ca(2+) sensor that detects store depletion. Upon store depletion after T-cell receptor stimulation, STIM1 translocates and coclusters with Orai1 at sites of close apposition of the plasma membrane (PM) and the ER membrane. However, the molecular components of these ER-PM junctions remain poorly understood. Using affinity protein purification, we uncovered junctate as an interacting partner of Orai1-STIM1 complex. Furthermore, we identified a Ca(2+)-binding EF-hand motif in the ER-luminal region of junctate. Mutation of this EF-hand domain of junctate impaired its Ca(2+) binding and resulted in partial activation of CRAC channels and clustering of STIM1 independently of store depletion. In addition to the known mechanisms of STIM1 clustering (i.e., phosphoinositide and Orai1 binding), our study identifies an alternate mechanism to recruit STIM1 into the ER-PM junctions via binding to junctate. We propose that junctate, a Ca(2+)-sensing ER protein, is a structural component of the ER-PM junctions where Orai1 and STIM1 cluster and interact in T cells.
Collapse
|
43
|
Satoh K, Akatsu H, Yamamoto T, Kosaka K, Yokota H, Yamada T. Mitsugumin 29 is transcriptionally induced in senile plaque-associated astrocytes. Brain Res 2012; 1441:9-16. [DOI: 10.1016/j.brainres.2011.12.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 09/27/2011] [Accepted: 12/31/2011] [Indexed: 11/29/2022]
|
44
|
SRP-35, a newly identified protein of the skeletal muscle sarcoplasmic reticulum, is a retinol dehydrogenase. Biochem J 2012; 441:731-41. [PMID: 21995425 DOI: 10.1042/bj20111457] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the present study we provide evidence that SRP-35, a protein we identified in rabbit skeletal muscle sarcoplasmic reticulum, is an all-trans-retinol dehydrogenase. Analysis of the primary structure and tryptic digestion revealed that its N-terminus encompasses a short hydrophobic sequence bound to the sarcoplasmic reticulum membrane, whereas its C-terminal catalytic domain faces the myoplasm. SRP-35 is also expressed in liver and adipocytes, where it appears in the post-microsomal supernatant; however, in skeletal muscle, SRP-35 is enriched in the longitudinal sarcoplasmic reticulum. Sequence comparison predicts that SRP-35 is a short-chain dehydrogenase/reductase belonging to the DHRS7C [dehydrogenase/reductase (short-chain dehydrogenase/reductase family) member 7C] subfamily. Retinol is the substrate of SRP-35, since its transient overexpression leads to an increased production of all-trans-retinaldehyde. Transfection of C2C12 myotubes with a fusion protein encoding SRP-35-EYFP (enhanced yellow fluorescent protein) causes a decrease of the maximal Ca²⁺ released via RyR (ryanodine receptor) activation induced by KCl or 4-chloro-m-chresol. The latter result could be mimicked by the addition of retinoic acid to the C2C12 cell tissue culture medium, a treatment which caused a significant reduction of RyR1 expression. We propose that in skeletal muscle SRP-35 is involved in the generation of all-trans-retinaldehyde and may play an important role in the generation of intracellular signals linking Ca2+ release (i.e. muscle activity) to metabolism.
Collapse
|
45
|
Weisleder N, Takeshima H, Ma J. Mitsugumin 53 (MG53) facilitates vesicle trafficking in striated muscle to contribute to cell membrane repair. Commun Integr Biol 2011; 2:225-6. [PMID: 19641737 DOI: 10.4161/cib.2.3.8077] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 02/02/2009] [Indexed: 11/19/2022] Open
Abstract
Repair of the plasma membrane following damage is an important aspect of normal cellular physiology, and disruption of this process is observed in many pathologic states. In a recent series of publications, we resolved that Mitsugumin 53 (MG53) is a novel, muscle-specific member of the tripartite motif/RING B-box Coiled Coil (TRIM/RBCC) family of proteins (TRIM72) that contributes to vesicle trafficking in the course of normal cellular physiology. MG53 can bind phosphatidylserine (PS) with some specificity, and interacts with caveolin-3 (Cav-3) as part of its function in vesicle trafficking. As part of the response to membrane damage in muscle cells, MG53 acts in an oxidation-dependent manner to facilitate vesicle translocation to the sites of membrane injury where these vesicles are involved in patching the membrane. Here we discuss these findings and examine the implications of this work in the field of membrane repair. Further discussion is provided about potential therapeutic applications for MG53.
Collapse
Affiliation(s)
- Noah Weisleder
- Department of Physiology and Biophysics; Robert Wood Johnson Medical School; Piscataway, NJ USA
| | | | | |
Collapse
|
46
|
Silverio ALF, Saier MH. Bioinformatic characterization of the trimeric intracellular cation-specific channel protein family. J Membr Biol 2011; 241:77-101. [PMID: 21519847 DOI: 10.1007/s00232-011-9364-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/26/2011] [Indexed: 12/29/2022]
Abstract
Trimeric intracellular cation-specific (TRIC) channels are integral to muscle excitation-contraction coupling. TRIC channels provide counter-ionic flux when calcium is rapidly transported from intracellular stores to the cell cytoplasm. Until recently, knowledge of the presence of these proteins was limited to animals. We analyzed the TRIC family and identified a profusion of prokaryotic family members with topologies and motifs similar to those of their eukaryotic counterparts. Prokaryotic members far outnumber eukaryotic members, and although none has been functionally characterized, the evidence suggests that they function as secondary carriers. The presence of fused N- or C-terminal domains of known biochemical functions as well as genomic context analyses provide clues about the functions of these prokaryotic homologs. They are proposed to function in metabolite (e.g., amino acid/nucleotide) efflux. Phylogenetic analysis revealed that TRIC channel homologs diverged relatively early during evolutionary history and that horizontal gene transfer was frequent in prokaryotes but not in eukaryotes. Topological analyses of TRIC channels revealed that these proteins possess seven putative transmembrane segments (TMSs), which arose by intragenic duplication of a three-TMS polypeptide-encoding genetic element followed by addition of a seventh TMS at the C terminus to give the precursor of all current TRIC family homologs. We propose that this family arose in prokaryotes.
Collapse
Affiliation(s)
- Abe L F Silverio
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
47
|
Treves S, Vukcevic M, Griesser J, Armstrong CF, Zhu MX, Zorzato F. Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions. J Cell Sci 2010; 123:4170-81. [PMID: 21062895 DOI: 10.1242/jcs.068387] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Junctate is a 33 kDa integral protein of sarco(endo)plasmic reticulum membranes that forms a macromolecular complex with inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptors and TRPC3 channels. TIRF microscopy shows that junctate enhances the number of fluorescent puncta on the plasma membrane. The size and distribution of these puncta are not affected by the addition of agonists that mobilize Ca(2+) from Ins(1,4,5)P(3)-sensitive stores. Puncta are associated with a significantly larger number of peripheral junctions between endoplasmic reticulum and plasma membrane, which are further enhanced upon stable co-expression of junctate and TRPC3. The gap between the membranes of peripheral junctions is bridged by regularly spaced electron-dense structures of 10 nm. Ins(1,4,5)P(3) inhibits the interaction of the cytoplasmic N-terminus of junctate with the ligand-binding domain of the Ins(1,4,5)P(3) receptor. Furthermore, Ca(2+) influx evoked by activation of Ins(1,4,5)P(3) receptors is increased where puncta are located. We conclude that stable peripheral junctions between the plasma membrane and endoplasmic reticulum are the anatomical sites of agonist-activated Ca(2+) entry.
Collapse
Affiliation(s)
- Susan Treves
- Department of Anesthesia, Basel University Hospital, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Zhao X, Yamazaki D, Park KH, Komazaki S, Tjondrokoesoemo A, Nishi M, Lin P, Hirata Y, Brotto M, Takeshima H, Ma J. Ca2+ overload and sarcoplasmic reticulum instability in tric-a null skeletal muscle. J Biol Chem 2010; 285:37370-6. [PMID: 20858894 DOI: 10.1074/jbc.m110.170084] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The sarcoplasmic reticulum (SR) of skeletal muscle contains K(+), Cl(-), and H(+) channels may facilitate charge neutralization during Ca(2+) release. Our recent studies have identified trimeric intracellular cation (TRIC) channels on SR as an essential counter-ion permeability pathway associated with rapid Ca(2+) release from intracellular stores. Skeletal muscle contains TRIC-A and TRIC-B isoforms as predominant and minor components, respectively. Here we test the physiological function of TRIC-A in skeletal muscle. Biochemical assay revealed abundant expression of TRIC-A relative to the skeletal muscle ryanodine receptor with a molar ratio of TRIC-A/ryanodine receptor ∼5:1. Electron microscopy with the tric-a(-/-) skeletal muscle showed Ca(2+) overload inside the SR with frequent formation of Ca(2+) deposits compared with the wild type muscle. This elevated SR Ca(2+) pool in the tric-a(-/-) muscle could be released by caffeine, whereas the elemental Ca(2+) release events, e.g. osmotic stress-induced Ca(2+) spark activities, were significantly reduced likely reflecting compromised counter-ion movement across the SR. Ex vivo physiological test identified the appearance of "alternan" behavior with isolated tric-a(-/-) skeletal muscle, i.e. transient and drastic increase in contractile force appeared within the decreasing force profile during repetitive fatigue stimulation. Inhibition of SR/endoplasmic reticulum Ca(2+ ATPase) function could lead to aggravation of the stress-induced alternans in the tric-a(-/-) muscle. Our data suggests that absence of TRIC-A may lead to Ca(2+) overload in SR, which in combination with the reduced counter-ion movement may lead to instability of Ca(2+) movement across the SR membrane. The observed alternan behavior with the tric-a(-/-) muscle may reflect a skeletal muscle version of store overload-induced Ca(2+) release that has been reported in the cardiac muscle under stress conditions.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Corona BT, Balog EM, Doyle JA, Rupp JC, Luke RC, Ingalls CP. Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am J Physiol Cell Physiol 2009; 298:C365-76. [PMID: 19940065 DOI: 10.1152/ajpcell.00365.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Junctophilins (JP1 and JP2) are expressed in skeletal muscle and are the primary proteins involved in transverse (T)-tubule and sarcoplasmic reticulum (SR) membrane apposition. During the performance of eccentric contractions, the apposition of T-tubule and SR membranes may be disrupted, resulting in excitation-contraction (EC) coupling failure and thus reduced force-producing capacity. In this study, we made three primary observations: 1) through the first 3 days after the performance of 50 eccentric contractions in vivo by the left hindlimb anterior crural muscles of female mice, both JP1 and JP2 were significantly reduced by approximately 50% and 35%, respectively, while no reductions were observed after the performance of nonfatiguing concentric contractions; 2) following the performance of a repeated bout of 50 eccentric contractions in vivo, only JP1 was immediately reduced ( approximately 30%) but recovered by 3-day postinjury in tandem with the recovery of strength and EC coupling; and 3) following the performance of 10 eccentric contractions at either 15 degrees or 35 degrees C by isolated mouse extensor digitorum longus (EDL) muscle, isometric force, EC coupling, and JP1 and JP2 were only reduced after the eccentric contractions performed at 35 degrees C. Regression analysis of JP1 and JP2 content in tibialis anterior and EDL muscles from each set of experiments indicated that JP damage is significantly associated with early (0-3 days) strength deficits after performance of eccentric contractions (R = 0.49; P < 0.001). As a whole, the results of this study indicate that JP damage plays a role in early force deficits due to EC coupling failure following the performance of eccentric contractions.
Collapse
Affiliation(s)
- B T Corona
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
50
|
Treves S, Vukcevic M, Maj M, Thurnheer R, Mosca B, Zorzato F. Minor sarcoplasmic reticulum membrane components that modulate excitation-contraction coupling in striated muscles. J Physiol 2009; 587:3071-9. [PMID: 19403606 DOI: 10.1113/jphysiol.2009.171876] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In striated muscle, activation of contraction is initiated by membrane depolarisation caused by an action potential, which triggers the release of Ca(2+) stored in the sarcoplasmic reticulum by a process called excitation-contraction coupling. Excitation-contraction coupling occurs via a highly sophisticated supramolecular signalling complex at the junction between the sarcoplasmic reticulum and the transverse tubules. It is generally accepted that the core components of the excitation-contraction coupling machinery are the dihydropyridine receptors, ryanodine receptors and calsequestrin, which serve as voltage sensor, Ca(2+) release channel, and Ca(2+) storage protein, respectively. Nevertheless, a number of additional proteins have been shown to be essential both for the structural formation of the machinery involved in excitation-contraction coupling and for its fine tuning. In this review we discuss the functional role of minor sarcoplasmic reticulum protein components. The definition of their roles in excitation-contraction coupling is important in order to understand how mutations in genes involved in Ca(2+) signalling cause neuromuscular disorders.
Collapse
Affiliation(s)
- Susan Treves
- Departments of Anesthesia and Biomedicine, Basel University Hospital, Switzerland
| | | | | | | | | | | |
Collapse
|