1
|
Van der Vreken A, Vanderkerken K, De Bruyne E, De Veirman K, Breckpot K, Menu E. Fueling CARs: metabolic strategies to enhance CAR T-cell therapy. Exp Hematol Oncol 2024; 13:66. [PMID: 38987856 PMCID: PMC11238373 DOI: 10.1186/s40164-024-00535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
CAR T cells are widely applied for relapsed hematological cancer patients. With six approved cell therapies, for Multiple Myeloma and other B-cell malignancies, new insights emerge. Profound evidence shows that patients who fail CAR T-cell therapy have, aside from antigen escape, a more glycolytic and weakened metabolism in their CAR T cells, accompanied by a short lifespan. Recent advances show that CAR T cells can be metabolically engineered towards oxidative phosphorylation, which increases their longevity via epigenetic and phenotypical changes. In this review we elucidate various strategies to rewire their metabolism, including the design of the CAR construct, co-stimulus choice, genetic modifications of metabolic genes, and pharmacological interventions. We discuss their potential to enhance CAR T-cell functioning and persistence through memory imprinting, thereby improving outcomes. Furthermore, we link the pharmacological treatments with their anti-cancer properties in hematological malignancies to ultimately suggest novel combination strategies.
Collapse
Affiliation(s)
- Arne Van der Vreken
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center, Team Laboratory of Cellular and Molecular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eline Menu
- Translational Oncology Research Center, Team Hematology and Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium.
| |
Collapse
|
2
|
Chang HF, Schirra C, Pattu V, Krause E, Becherer U. Lytic granule exocytosis at immune synapses: lessons from neuronal synapses. Front Immunol 2023; 14:1177670. [PMID: 37275872 PMCID: PMC10233144 DOI: 10.3389/fimmu.2023.1177670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Regulated exocytosis is a central mechanism of cellular communication. It is not only the basis for neurotransmission and hormone release, but also plays an important role in the immune system for the release of cytokines and cytotoxic molecules. In cytotoxic T lymphocytes (CTLs), the formation of the immunological synapse is required for the delivery of the cytotoxic substances such as granzymes and perforin, which are stored in lytic granules and released via exocytosis. The molecular mechanisms of their fusion with the plasma membrane are only partially understood. In this review, we discuss the molecular players involved in the regulated exocytosis of CTL, highlighting the parallels and differences to neuronal synaptic transmission. Additionally, we examine the strengths and weaknesses of both systems to study exocytosis.
Collapse
|
3
|
Zhang L, Zhang W, Li Z, Lin S, Zheng T, Hao B, Hou Y, Zhang Y, Wang K, Qin C, Yue L, Jin J, Li M, Fan L. Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: a review. J Exp Clin Cancer Res 2022; 41:227. [PMID: 35864520 PMCID: PMC9306053 DOI: 10.1186/s13046-022-02439-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
CD8+ T cells play a central role in anti-tumor immunity. Naïve CD8+ T cells are active upon tumor antigen stimulation, and then differentiate into functional cells and migrate towards the tumor sites. Activated CD8+ T cells can directly destroy tumor cells by releasing perforin and granzymes and inducing apoptosis mediated by the death ligand/death receptor. They also secrete cytokines to regulate the immune system against tumor cells. Mitochondria are the central hub of metabolism and signaling, required for polarization, and migration of CD8+ T cells. Many studies have demonstrated that mitochondrial dysfunction impairs the anti-tumor activity of CD8+ T cells through various pathways. Mitochondrial energy metabolism maladjustment will cause a cellular energy crisis in CD8+ T cells. Abnormally high levels of mitochondrial reactive oxygen species will damage the integrity and architecture of biofilms of CD8+ T cells. Disordered mitochondrial dynamics will affect the mitochondrial number and localization within cells, further affecting the function of CD8+ T cells. Increased mitochondria-mediated intrinsic apoptosis will decrease the lifespan and quantity of CD8+ T cells. Excessively low mitochondrial membrane potential will cause the release of cytochrome c and apoptosis of CD8+ T cells, while excessively high will exacerbate oxidative stress. Dysregulation of mitochondrial Ca2+ signaling will affect various physiological pathways in CD8+ T cells. To some extent, mitochondrial abnormality in CD8+ T cells contributes to cancer development. So far, targeting mitochondrial energy metabolism, mitochondrial dynamics, mitochondria-mediated cell apoptosis, and other mitochondrial physiological processes to rebuild the anti-tumor function of CD8+ T cells has proved effective in some cancer models. Thus, mitochondria in CD8+ T cells may be a potential and powerful target for cancer treatment in the future.
Collapse
|
4
|
Huang Y, Si X, Shao M, Teng X, Xiao G, Huang H. Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. J Hematol Oncol 2022; 15:38. [PMID: 35346311 PMCID: PMC8960222 DOI: 10.1186/s13045-022-01255-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Short persistence and early exhaustion of T cells are major limits to the efficacy and broad application of immunotherapy. Exhausted T and chimeric antigen receptor (CAR)-T cells upregulate expression of genes associated with terminated T cell differentiation, aerobic glycolysis and apoptosis. Among cell exhaustion characteristics, impaired mitochondrial function and dynamics are considered hallmarks. Here, we review the mitochondrial characteristics of exhausted T cells and particularly discuss different aspects of mitochondrial metabolism and plasticity. Furthermore, we propose a novel strategy of rewiring mitochondrial metabolism to emancipate T cells from exhaustion and of targeting mitochondrial plasticity to boost CAR-T cell therapy efficacy.
Collapse
Affiliation(s)
- Yue Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiaohui Si
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mi Shao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Gang Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China. .,Institute of Immunology, Zhejiang University, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
5
|
Cassioli C, Baldari CT. Lymphocyte Polarization During Immune Synapse Assembly: Centrosomal Actin Joins the Game. Front Immunol 2022; 13:830835. [PMID: 35222415 PMCID: PMC8873515 DOI: 10.3389/fimmu.2022.830835] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions among immune cells are essential for the development of adaptive immune responses. The immunological synapse (IS) provides a specialized platform for integration of signals and intercellular communication between T lymphocytes and antigen presenting cells (APCs). In the T cell the reorganization of surface molecules at the synaptic interface is initiated by T cell receptor binding to a cognate peptide-major histocompatibility complex on the APC surface and is accompanied by a polarized remodelling of the cytoskeleton and centrosome reorientation to a subsynaptic position. Although there is a general agreement on polarizing signals and mechanisms driving centrosome reorientation during IS assembly, the primary events that prepare for centrosome repositioning remain largely unexplored. It has been recently shown that in resting lymphocytes a local polymerization of filamentous actin (F-actin) at the centrosome contributes to anchoring this organelle to the nucleus. During early stages of IS formation centrosomal F-actin undergoes depletion, allowing for centrosome detachment from the nucleus and its polarization towards the synaptic membrane. We recently demonstrated that in CD4+ T cells the reduction in centrosomal F-actin relies on the activity of a centrosome-associated proteasome and implicated the ciliopathy-related Bardet-Biedl syndrome 1 protein in the dynein-dependent recruitment of the proteasome 19S regulatory subunit to the centrosome. In this short review we will feature our recent findings that collectively provide a new function for BBS proteins and the proteasome in actin dynamics, centrosome polarization and T cell activation.
Collapse
|
6
|
Lin W, Zhou S, Feng M, Yu Y, Su Q, Li X. Soluble CD83 Regulates Dendritic Cell-T Cell Immunological Synapse Formation by Disrupting Rab1a-Mediated F-Actin Rearrangement. Front Cell Dev Biol 2021; 8:605713. [PMID: 33585445 PMCID: PMC7874230 DOI: 10.3389/fcell.2020.605713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Dendritic cell-T cell (DC-T) contacts play an important role in T cell activation, clone generation, and development. Regulating the cytoskeletal protein rearrangement of DCs can modulate DC-T contact and affect T cell activation. However, inhibitory factors on cytoskeletal regulation in DCs remain poorly known. We showed that a soluble form of CD83 (sCD83) inhibited T cell activation by decreasing DC-T contact and synapse formation between DC and T cells. This negative effect of sCD83 on DCs was mediated by disruption of F-actin rearrangements, leading to alter expression and localization of major histocompatibility complex class II (MHC-II) and immunological synapse formation between DC and T cells. Furthermore, sCD83 was found to decrease GTP-binding activity of Rab1a, which further decreased colocalization and expression of LRRK2 and F-actin rearrangements in DCs, leading to the loss of MHC-II at DC-T synapses and reduced DC-T synapse formation. Further, sCD83-treated DCs alleviated symptoms of experimental autoimmune uveitis in mice and decreased the number of T cells in the eyes and lymph nodes of these animals. Our findings demonstrate a novel signaling pathway of sCD83 on regulating DC-T contact, which may be harnessed to develop new immunosuppressive therapeutics for autoimmune disease.
Collapse
Affiliation(s)
- Wei Lin
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Shuping Zhou
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Meng Feng
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Yong Yu
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Qinghong Su
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Xiaofan Li
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
7
|
Rahman J, Singh P, Merle NS, Niyonzima N, Kemper C. Complement's favourite organelle-Mitochondria? Br J Pharmacol 2020; 178:2771-2785. [PMID: 32840864 PMCID: PMC8359399 DOI: 10.1111/bph.15238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
The complement system, well known for its central role in innate immunity, is currently emerging as an unexpected, cell‐autonomous, orchestrator of normal cell physiology. Specifically, an intracellularly active complement system—the complosome—controls key pathways of normal cell metabolism during immune cell homeostasis and effector function. So far, we know little about the exact structure and localization of intracellular complement components within and among cells. A common scheme, however, is that they operate in crosstalk with other intracellular immune sensors, such as inflammasomes, and that they impact on the activity of key subcellular compartments. Among cell compartments, mitochondria appear to have built a particularly early and strong relationship with the complosome and extracellularly active complement—not surprising in view of the strong impact of the complosome on metabolism. In this review, we will hence summarize the current knowledge about the close complosome–mitochondria relationship and also discuss key questions surrounding this novel research area.
Collapse
Affiliation(s)
- Jubayer Rahman
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Nicolas S Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Nathalie Niyonzima
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Activation and degranulation of CAR-T cells using engineered antigen-presenting cell surfaces. PLoS One 2020; 15:e0238819. [PMID: 32976541 PMCID: PMC7518621 DOI: 10.1371/journal.pone.0238819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
Adoptive cell transfer of Chimeric Antigen Receptor (CAR)-T cells showed promising results in patients with B cell malignancies. However, the detailed mechanism of CAR-T cell interaction with the target tumor cells is still not well understood. This work provides a systematic method for analyzing the activation and degranulation of second-generation CAR-T cells utilizing antigen-presenting cell surfaces. Antigen-presenting cell surfaces composed of circular micropatterns of CAR-specific anti-idiotype antibodies have been developed to mimic the interaction of CAR-T cells with target tumor cells using micro-contact printing. The levels of activation and degranulation of fixed non-transduced T cells (NT), CD19.CAR-T cells, and GD2.CAR-T cells on the antigen-presenting cell surfaces were quantified and compared by measuring the intensity of the CD3ζ chain phosphorylation and the Lysosome-Associated Membrane Protein 1 (LAMP-1), respectively. The size and morphology of the cells were also measured. The intracellular Ca2+ flux of NT and CAR-T cells upon engagement with the antigen-presenting cell surface was reported. Results suggest that NT and CD19.CAR-T cells have comparable activation levels, while NT have higher degranulation levels than CD19.CAR-T cells and GD2.CAR-T cells. The findings show that antigen-presenting cell surfaces allow a quantitative analysis of the molecules involved in synapse formation in different CAR-T cells in a systematic, reproducible manner.
Collapse
|
9
|
The Swing of Lipids at Peroxisomes and Endolysosomes in T Cell Activation. Int J Mol Sci 2020; 21:ijms21082859. [PMID: 32325900 PMCID: PMC7215844 DOI: 10.3390/ijms21082859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The immune synapse (IS) is a well-known intercellular communication platform, organized at the interphase between the antigen presenting cell (APC) and the T cell. After T cell receptor (TCR) stimulation, signaling from plasma membrane proteins and lipids is amplified by molecules and downstream pathways for full synapse formation and maintenance. This secondary signaling event relies on intracellular reorganization at the IS, involving the cytoskeleton and components of the secretory/recycling machinery, such as the Golgi apparatus and the endolysosomal system (ELS). T cell activation triggers a metabolic reprogramming that involves the synthesis of lipids, which act as signaling mediators, and an increase of mitochondrial activity. Then, this mitochondrial activity results in elevated reactive oxygen species (ROS) production that may lead to cytotoxicity. The regulation of ROS levels requires the concerted action of mitochondria and peroxisomes. In this review, we analyze this reprogramming and the signaling implications of endolysosomal, mitochondrial, peroxisomal, and lipidic systems in T cell activation.
Collapse
|
10
|
Oheim M, Salomon A, Weissman A, Brunstein M, Becherer U. Calibrating Evanescent-Wave Penetration Depths for Biological TIRF Microscopy. Biophys J 2019; 117:795-809. [PMID: 31439287 DOI: 10.1016/j.bpj.2019.07.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022] Open
Abstract
Roughly half of a cell's proteins are located at or near the plasma membrane. In this restricted space, the cell senses its environment, signals to its neighbors, and exchanges cargo through exo- and endocytotic mechanisms. Ligands bind to receptors, ions flow across channel pores, and transmitters and metabolites are transported against concentration gradients. Receptors, ion channels, pumps, and transporters are the molecular substrates of these biological processes, and they constitute important targets for drug discovery. Total internal reflection fluorescence (TIRF) microscopy suppresses the background from the cell's deeper layers and provides contrast for selectively imaging dynamic processes near the basal membrane of live cells. The optical sectioning of TIRF is based on the excitation confinement of the evanescent wave generated at the glass/cell interface. How deep the excitation light actually penetrates the sample is difficult to know, making the quantitative interpretation of TIRF data problematic. Nevertheless, many applications like superresolution microscopy, colocalization, Förster resonance energy transfer, near-membrane fluorescence recovery after photobleaching, uncaging or photoactivation/switching as well as single-particle tracking require the quantitative interpretation of evanescent-wave-excited images. Here, we review existing techniques for characterizing evanescent fields, and we provide a roadmap for comparing TIRF data across images, experiments, and laboratories.
Collapse
Affiliation(s)
- Martin Oheim
- Université de Paris, CNRS, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France.
| | - Adi Salomon
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel
| | - Adam Weissman
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel
| | - Maia Brunstein
- Université de Paris, CNRS, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France; Chaire d'Excellence Junior, Université Sorbonne Paris Cité, Paris, France
| | - Ute Becherer
- Saarland University, Department of Physiology, CIPMM, Homburg/Saar, Germany
| |
Collapse
|
11
|
Ilan-Ber T, Ilan Y. The role of microtubules in the immune system and as potential targets for gut-based immunotherapy. Mol Immunol 2019; 111:73-82. [DOI: 10.1016/j.molimm.2019.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
|
12
|
Simula L, Campanella M, Campello S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation. Pharmacol Res 2019; 146:104317. [PMID: 31220561 DOI: 10.1016/j.phrs.2019.104317] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/05/2023]
Abstract
Mitochondria are dynamic organelles whose processes of fusion and fission are tightly regulated by specialized proteins, known as mitochondria-shaping proteins. Among them, Drp1 is the main pro-fission protein and its activity is tightly regulated to ensure a strict control over mitochondria shape according to the cell needs. In the recent years, mitochondrial dynamics emerged as a new player in the regulation of fundamental processes during T cell life. Indeed, the morphology of mitochondria directly regulates T cell differentiation, this by affecting the engagment of alternative metabolic routes upon activation. Further, Drp1-dependent mitochondrial fission sustains both T cell clonal expansion and T cell migration and invasivness. By this review, we aim at discussing the most recent findings about the roles played by the Drp1-dependent mitochondrial fission in T cells, and at highlighting how its pharmacological modulation could open the way to future therapeutic approaches to modulate T cell response.
Collapse
Affiliation(s)
- Luca Simula
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy; Dept. of Paediatric Haemato-Oncology, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, London, United Kingdom; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Silvia Campello
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
13
|
Lin W, Buscher K, Wang B, Fan Z, Song N, Li P, Yue Y, Li B, Li C, Bi H. Soluble CD83 Alleviates Experimental Autoimmune Uveitis by Inhibiting Filamentous Actin-Dependent Calcium Release in Dendritic Cells. Front Immunol 2018; 9:1567. [PMID: 30050530 PMCID: PMC6052908 DOI: 10.3389/fimmu.2018.01567] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023] Open
Abstract
Soluble CD83 (sCD83) is the extracellular domain of the membrane-bound CD83 molecule, and known for its immunoregulatory functions. Whether and how sCD83 participates in the pathogenesis of uveitis, a serious inflammatory disease of the eye that can cause visual disability and blindness, is unknown. By flow cytometry and imaging studies, we show that sCD83 alleviates experimental autoimmune uveitis (EAU) through a novel mechanism. During onset and recovery of EAU, the level of sCD83 rises in the serum and aqueous humor, and CD83+ leukocytes infiltrate the inflamed eye. Systemic or topical application of sCD83 exerts a protective effect by decreasing inflammatory cytokine expression, reducing ocular and splenic leukocyte including CD4+ T cells and dendritic cells (DCs). Mechanistically, sCD83 induces tolerogenic DCs by decreasing the synaptic expression of co-stimulatory molecules and hampering the calcium response in DCs. These changes are caused by a disruption of the cytoskeletal rearrangements at the DC–T cell contact zone, leading to altered localization of calcium microdomains and suppressed T-cell activation. Thus, the ability of sCD83 to modulate DC-mediated inflammation in the eye could be harnessed to develop new immunosuppressive therapeutics for autoimmune uveitis.
Collapse
Affiliation(s)
- Wei Lin
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China.,Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Immunology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Konrad Buscher
- Department of Nephrology and Rheumatology, University Hospital Muenster, Münster, Germany.,Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - Beibei Wang
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - Nannan Song
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Peng Li
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Yingying Yue
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Cuiling Li
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Hongsheng Bi
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Raft-dependent endocytic movement and intracellular cluster formation during T cell activation triggered by concanavalin A. J Biosci Bioeng 2017; 124:685-693. [PMID: 28711300 DOI: 10.1016/j.jbiosc.2017.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/10/2023]
Abstract
Certain food ingredients can stimulate the human immune system. A lectin, concanavalin A (ConA), from Canavalia ensiformis (jack bean) is one of the most well-known food-derived immunostimulants and mediates activation of cell-mediated immunity through T cell proliferation. Generally, T cell activation is known to be triggered by the interaction between T cells and antigen-presenting cells (APCs) via a juxtacrine (contact-dependent) signaling pathway. The mechanism has been well characterized and is referred to as formation of the immunological synapse (IS). We were interested in the mechanism behind the T cell activation by food-derived ConA which might be different from that of T cell activation by APCs. The purpose of this study was to characterize T cell activation by ConA with regard to (i) movement of raft domain, (ii) endocytic vesicular transport, (iii) the cytoskeleton (actin and microtubules), and (iv) cholesterol composition. We found that raft-dependent endocytic movement was important for T cell activation by ConA and this movement was dependent on actin, microtubules, and cholesterol. The T cell signaling mechanism triggered by ConA can be defined as endocrine signaling which is distinct from the activation process triggered by interaction between T cells and APCs by juxtacrine signaling. Therefore, we hypothesized that T cell activation by ConA includes both two-dimensional superficial raft movement on the membrane surface along actin filaments and three-dimensional endocytic movement toward the inside of the cell along microtubules. These findings are important for developing new methods for immune stimulation and cancer therapy based on the function of ConA.
Collapse
|
15
|
Bost A, Shaib AH, Schwarz Y, Niemeyer BA, Becherer U. Large dense-core vesicle exocytosis from mouse dorsal root ganglion neurons is regulated by neuropeptide Y. Neuroscience 2017; 346:1-13. [PMID: 28089870 DOI: 10.1016/j.neuroscience.2017.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Peptidergic dorsal root ganglion (DRG) neurons transmit sensory and nociceptive information from the periphery to the central nervous system. Their synaptic activity is profoundly affected by neuromodulatory peptides stored and released from large dense-core vesicles (LDCVs). However, the mechanism of peptide secretion from DRG neurons is poorly understood. Using total internal reflection fluorescence microscopy (TIRFM), we visualized individual LDCVs loaded with fluorescent neuropeptide Y (NPY) and analyzed their stimulation-dependent release. We tested several protocols and found an overall low stimulation-secretion coupling that increased after raising intracellular Ca2+ concentration by applying a weak pre-stimulus. Interestingly, the stimulation protocol also influenced the mechanism of LDCV fusion. Depolarization of DRG neurons with a solution containing 60mM KCl triggered full fusion, kiss-and-run, and kiss-and-stay exocytosis with equal frequency. In contrast, field electrode stimulation primarily induced full fusion exocytosis. Finally, our results indicate that NPY can promote LDCV secretion. These results shed new light on the mechanism of NPY action during modulation of DRG neuron activity, an important pathway in the treatment of chronic pain.
Collapse
Affiliation(s)
- Anneka Bost
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Ali H Shaib
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Yvonne Schwarz
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Ute Becherer
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
16
|
Kamiński MM, Liedmann S, Milasta S, Green DR. Polarization and asymmetry in T cell metabolism. Semin Immunol 2016; 28:525-534. [DOI: 10.1016/j.smim.2016.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
|
17
|
H/KDEL receptors mediate host cell intoxication by a viral A/B toxin in yeast. Sci Rep 2016; 6:31105. [PMID: 27493088 PMCID: PMC4974620 DOI: 10.1038/srep31105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/13/2016] [Indexed: 01/14/2023] Open
Abstract
A/B toxins such as cholera toxin, Pseudomonas exotoxin and killer toxin K28 contain a KDEL-like amino acid motif at one of their subunits which ensures retrograde toxin transport through the secretory pathway of a target cell. As key step in host cell invasion, each toxin binds to distinct plasma membrane receptors that are utilized for cell entry. Despite intensive efforts, some of these receptors are still unknown. Here we identify the yeast H/KDEL receptor Erd2p as membrane receptor of K28, a viral A/B toxin carrying an HDEL motif at its cell binding β-subunit. While initial toxin binding to the yeast cell wall is unaffected in cells lacking Erd2p, binding to spheroplasts and in vivo toxicity strongly depend on the presence of Erd2p. Consistently, Erd2p is not restricted to membranes of the early secretory pathway but extends to the plasma membrane where it binds and internalizes HDEL-cargo such as K28 toxin, GFP(HDEL) and Kar2p. Since human KDEL receptors are fully functional in yeast and restore toxin sensitivity in the absence of endogenous Erd2p, toxin uptake by H/KDEL receptors at the cell surface might likewise contribute to the intoxication efficiency of A/B toxins carrying a KDEL-motif at their cytotoxic A-subunit(s).
Collapse
|
18
|
Lin W, Suo Y, Deng Y, Fan Z, Zheng Y, Wei X, Chu Y. Morphological change of CD4(+) T cell during contact with DC modulates T-cell activation by accumulation of F-actin in the immunology synapse. BMC Immunol 2015; 16:49. [PMID: 26306899 PMCID: PMC4549951 DOI: 10.1186/s12865-015-0108-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The changes in T-cell morphology during immunological synapse (IS) formation are essential for T-cell activation. Previous researches have shown that T cell changed from spherical to elongated and/or flattened during in contact with B cell. As most powerful antigen presenting cell, dendritic cell (DC) has a strong ability to activate T cells. However, the morphological change of T cell which contacts DC and the relationship between morphological change and T-cell activation are not very clear. Thus, we studied the morphological change of CD4(+) T cell during contact with DC. RESULTS Using live-cell imaging, we discovered diversity in the T-cell morphological changes during contact with DCs. The elongation-flattening of CD4(+) T cells correlated with a low-level Ca(2+) response and a loss of T-cell receptor (TCR) signalling molecules in the IS, including zeta-chain associated protein kinase 70 (ZAP-70), phospholipase C-γ (PLC-γ) and protein kinase C-θ (PKC-θ), whereas rounding-flattening correlated with sufficient CD4(+) T-cell activation. Different morphological changes were correlated with the different amount of accumulated filamentous actin (F-actin) in the IS. Disruption of F-actin by cytochalasin D impaired the morphological change and the localisation of calcium microdomains in the IS and decreased the calcium response in CD4(+) T cells. CONCLUSION Our study discovered the diversity in morphological change of T cells during contacted with DCs. During this process, the different morphological changes of T cells modulate T-cell activation by the different amount of F-actin accumulation in the IS, which controls the distribution of calcium microdomains to affect T-cell activation.
Collapse
Affiliation(s)
- Wei Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yuanzhen Suo
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yuting Deng
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zhichao Fan
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yijie Zheng
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Yiwei Chu
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
19
|
Christo SN, Diener KR, Hayball JD. The functional contribution of calcium ion flux heterogeneity in T cells. Immunol Cell Biol 2015; 93:694-704. [PMID: 25823995 DOI: 10.1038/icb.2015.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 12/30/2022]
Abstract
The role of intracellular calcium ion oscillations in T-cell physiology is being increasingly appreciated by studies that describe how unique temporal and spatial calcium ion signatures can control different signalling pathways. Within this review, we provide detailed mechanisms of calcium ion oscillations, and emphasise the pivotal role that calcium signalling plays in directing crucial events pertaining to T-cell functionality. We also describe methods of calcium ion quantification, and take the opportunity to discuss how a deeper understanding of calcium signalling combined with new detection and quantification methodologies can be used to better design immunotherapies targeting T-cell responses.
Collapse
Affiliation(s)
- Susan N Christo
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Virgili N, Mancera P, Chanvillard C, Wegner A, Wappenhans B, Rodríguez MJ, Infante-Duarte C, Espinosa-Parrilla JF, Pugliese M. Diazoxide attenuates autoimmune encephalomyelitis and modulates lymphocyte proliferation and dendritic cell functionality. J Neuroimmune Pharmacol 2014; 9:558-68. [PMID: 24939091 DOI: 10.1007/s11481-014-9551-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 12/14/2022]
Abstract
Activation of mitochondrial ATP-sensitive potassium (KATP) channels is postulated as an effective mechanism to confer cardio and neuroprotection, especially in situations associated to oxidative stress. Pharmacological activation of these channels inhibits glia-mediated neuroinflammation. In this way, diazoxide, an old-known mitochondrial KATP channel opener, has been proposed as an effective and safe treatment for different neurodegenerative diseases, demonstrating efficacy in different animal models, including the experimental autoimmune encephalomyelitis (EAE), an animal model for Multiple Sclerosis. Although neuroprotection and modulation of glial reactivity could alone explain the positive effects of diazoxide administration in EAE mice, little is known of its effects on the immune system and the autoimmune reaction that triggers the EAE pathology. The aim of the present work was to study the effects of diazoxide in autoimmune key processes related with EAE, such as antigen presentation and lymphocyte activation and proliferation. Results show that, although diazoxide treatment inhibited in vitro and ex-vivo lymphocyte proliferation from whole splenocytes it had no effect in isolated CD4(+) T cells. In any case, treatment had no impact in lymphocyte activation. Diazoxide can also slightly decrease CD83, CD80, CD86 and major histocompatibility complex class II expression in cultured dendritic cells, demonstrating a possible role in modulating antigen presentation. Taken together, our results indicate that diazoxide treatment attenuates autoimmune encephalomyelitis pathology without immunosuppressive effect.
Collapse
Affiliation(s)
- N Virgili
- Neurotec Pharma S.L., Bioincubadora PCB-Santander, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Babich A, Burkhardt JK. Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation. Immunol Rev 2014; 256:80-94. [PMID: 24117814 DOI: 10.1111/imr.12123] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca(2+) mobilization and cytoskeletal reorganization are key hallmarks of T-cell activation, and their interdependence has long been recognized. Recent advances in the field have elucidated the molecular pathways that underlie these events and have revealed several points of intersection. Ca(2+) signaling can be divided into two phases: initial events leading to release of Ca(2+) from endoplasmic reticulum stores, and a second phase involving STIM 1 (stromal interaction molecule 1) clustering and CRAC (calcium release activated calcium) channel activation. Cytoskeletal dynamics promote both phases. During the first phase, the actin cytoskeleton promotes mechanotransduction and serves as a dynamic scaffold for microcluster assembly. Proteins that drive actin polymerization such as WASp (Wiskott-Aldrich syndrome protein) and HS1 (hematopoietic lineage cell-specific protein 1) promote signaling through PLCγ1 (phospholipase Cγ1) and release of Ca(2+) from endoplasmic reticulum stores. During the second phase, the WAVE (WASP-family verprolin homologous protein) complex and the microtubule cytoskeleton promote STIM 1 clustering at sites of plasma membrane apposition, opening Orai channels. In addition, gross cell shape changes and organelle movements buffer local Ca(2+) levels, leading to sustained Ca(2+) mobilization. Conversely, elevated intracellular Ca(2+) activates cytoskeletal remodeling. This can occur indirectly, via calpain activity, and directly, via Ca(2+) -dependent cytoskeletal regulatory proteins such as myosin II and L-plastin. While it is true that the cytoskeleton regulates Ca(2+) responses and vice versa, interdependence between Ca(2+) and the cytoskeleton also encompasses signaling events that occur in parallel, downstream of shared intermediates. Inositol cleavage by PLCγ1 simultaneously triggers both endoplasmic reticulum store release and diacylglycerol-dependent microtubule organizing center reorientation, while depleting the pool of phosphatidylinositol-4,5-bisphosphate, an activator of multiple actin-regulatory proteins. The close interdependence of Ca(2+) signaling and cytoskeletal dynamics in T cells provides positive feedback mechanisms for T-cell activation and allows for finely tuned responses to extracellular cues.
Collapse
Affiliation(s)
- Alexander Babich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
22
|
Potts MB, Kim HS, Fisher KW, Hu Y, Carrasco YP, Bulut GB, Ou YH, Herrera-Herrera ML, Cubillos F, Mendiratta S, Xiao G, Hofree M, Ideker T, Xie Y, Huang LJS, Lewis RE, MacMillan JB, White MA. Using functional signature ontology (FUSION) to identify mechanisms of action for natural products. Sci Signal 2013; 6:ra90. [PMID: 24129700 DOI: 10.1126/scisignal.2004657] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells. We used cell-based screening and computational analysis to match gene expression signatures produced by natural products to those produced by small interfering RNA (siRNA) and synthetic microRNA (miRNA) libraries. With this strategy, we matched proteins and miRNAs with diverse biological processes and also identified putative protein targets and mechanisms of action for several previously undescribed marine-derived natural products. We confirmed mechanistic relationships for selected siRNAs, miRNAs, and compounds with functional roles in autophagy, chemotaxis mediated by discoidin domain receptor 2, or activation of the kinase AKT. Thus, this approach may be an effective method for screening new drugs while simultaneously identifying their targets.
Collapse
Affiliation(s)
- Malia B Potts
- 1Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Salles A, Billaudeau C, Sergé A, Bernard AM, Phélipot MC, Bertaux N, Fallet M, Grenot P, Marguet D, He HT, Hamon Y. Barcoding T cell calcium response diversity with methods for automated and accurate analysis of cell signals (MAAACS). PLoS Comput Biol 2013; 9:e1003245. [PMID: 24086124 PMCID: PMC3784497 DOI: 10.1371/journal.pcbi.1003245] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/15/2013] [Indexed: 01/24/2023] Open
Abstract
We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. The adaptive immune response to pathogen invasion requires the stimulation of lymphocytes by antigen-presenting cells. We hypothesized that investigating the dynamics of the T lymphocyte activation by monitoring intracellular calcium fluctuations might help explain the high specificity and selectivity of this phenomenon. However, the quantitative and exhaustive analysis of calcium fluctuations by video microscopy in the context of cell-to-cell contact is a tough challenge. To tackle this, we developed a complete solution named MAAACS (Methods for Automated and Accurate Analysis of Cell Signals), in order to automate the detection, cell tracking, raw data ordering and analysis of calcium signals. Our algorithm revealed that, when in contact with antigen-presenting cells, T lymphocytes generate oscillating calcium signals and not a massive and sustained calcium response as was originally thought. We anticipate our approach providing many more new insights into the molecular mechanisms triggering adaptive immunity.
Collapse
Affiliation(s)
- Audrey Salles
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Cyrille Billaudeau
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Arnauld Sergé
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
- * E-mail: (AS); (YH)
| | - Anne-Marie Bernard
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Marie-Claire Phélipot
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Nicolas Bertaux
- Institut Fresnel, Centre National de la Recherche Scientifique (CNRS) UMR7249, Marseille, France
- École Centrale Marseille, Technopôle de Château-Gombert, Marseille, France
| | - Mathieu Fallet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Pierre Grenot
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Didier Marguet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Hai-Tao He
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Yannick Hamon
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
- * E-mail: (AS); (YH)
| |
Collapse
|
24
|
Gill T, Levine AD. Mitochondria-derived hydrogen peroxide selectively enhances T cell receptor-initiated signal transduction. J Biol Chem 2013; 288:26246-26255. [PMID: 23880762 DOI: 10.1074/jbc.m113.476895] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
T cell receptor (TCR)-initiated signal transduction is reported to increase production of intracellular reactive oxygen species, such as superoxide (O2˙(-)) and hydrogen peroxide (H2O2), as second messengers. Although H2O2 can modulate signal transduction by inactivating protein phosphatases, the mechanism and the subcellular localization of intracellular H2O2 as a second messenger of the TCR are not known. The antioxidant enzyme superoxide dismutase (SOD) catalyzes the dismutation of highly reactive O2˙(-) into H2O2 and thus acts as an intracellular generator of H2O2. As charged O2˙(-) is unable to diffuse through intracellular membranes, cells express distinct SOD isoforms in the cytosol (Cu,Zn-SOD) and mitochondria (Mn-SOD), where they locally scavenge O2˙(-) leading to production of H2O2. A 2-fold organelle-specific overexpression of either SOD in Jurkat T cell lines increases intracellular production of H2O2 but does not alter the levels of intracellular H2O2 scavenging enzymes such as catalase, membrane-bound peroxiredoxin1 (Prx1), and cytosolic Prx2. We report that overexpression of Mn-SOD enhances tyrosine phosphorylation of TCR-associated membrane proximal signal transduction molecules Lck, LAT, ZAP70, PLCγ1, and SLP76 within 1 min of TCR cross-linking. This increase in mitochondrial H2O2 specifically modulates MAPK signaling through the JNK/cJun pathway, whereas overexpressing Cu,Zn-SOD had no effect on any of these TCR-mediated signaling molecules. As mitochondria translocate to the immunological synapse during TCR activation, we hypothesize this translocation provides the effective concentration of H2O2 required to selectively modulate downstream signal transduction pathways.
Collapse
Affiliation(s)
- Tejpal Gill
- From the Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4952
| | - Alan D Levine
- From the Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4952.
| |
Collapse
|
25
|
Joseph N, Reicher B, Barda-Saad M. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:557-68. [PMID: 23860253 DOI: 10.1016/j.bbamem.2013.07.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/30/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
Abstract
During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
26
|
Macintyre AN, Rathmell JC. Activated lymphocytes as a metabolic model for carcinogenesis. Cancer Metab 2013; 1:5. [PMID: 24280044 PMCID: PMC3834493 DOI: 10.1186/2049-3002-1-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/04/2012] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming is a key event in tumorigenesis to support cell growth, and cancer cells frequently become both highly glycolytic and glutamine dependent. Similarly, T lymphocytes (T cells) modify their metabolism after activation by foreign antigens to shift from an energetically efficient oxidative metabolism to a highly glycolytic and glutamine-dependent metabolic program. This metabolic transition enables T cell growth, proliferation, and differentiation. In both activated T cells and cancer cells metabolic reprogramming is achieved by similar mechanisms and offers similar survival and cell growth advantages. Activated T cells thus present a useful model with which to study the development of tumor metabolism. Here, we review the metabolic similarities and distinctions between activated T cells and cancer cells, and discuss both the common signaling pathways and master metabolic regulators that lead to metabolic rewiring. Ultimately, understanding how and why T cells adopt a cancer cell-like metabolic profile may identify new therapeutic strategies to selectively target tumor metabolism or inflammatory immune responses.
Collapse
Affiliation(s)
- Andrew N Macintyre
- Department of Pharmacology and Cancer Biology, Department of Immunology, Sarah W, Stedman Nutrition and Metabolism Center, Duke University, Durham, NC, 27710, USA.
| | | |
Collapse
|
27
|
Khalaf H, Bengtsson T. Altered T-cell responses by the periodontal pathogen Porphyromonas gingivalis. PLoS One 2012; 7:e45192. [PMID: 22984628 PMCID: PMC3440346 DOI: 10.1371/journal.pone.0045192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Several studies support an association between the chronic inflammatory diseases periodontitis and atherosclerosis with a crucial role for the periodontal pathogen Porphyromonas gingivalis. However, the interplay between this pathogen and the adaptive immune system, including T-cells, is sparsely investigated. Here we used Jurkat T-cells to determine the effects of P. gingivalis on T-cell-mediated adaptive immune responses. We show that viable P. gingivalis targets IL-2 expression at the protein level. Initial cellular events, including ROS production and [Ca(2+)](i), were elevated in response to P. gingivalis, but AP-1 and NF-κB activity dropped below basal levels and T-cells were unable to sustain stable IL-2 accumulation. IL-2 was partially restored by Leupeptin, but not by Cathepsin B Inhibitor, indicating an involvement of Rgp proteinases in the suppression of IL-2 accumulation. This was further confirmed by purified Rgp that caused a dose-dependent decrease in IL-2 levels. These results provide new insights of how this periodontal pathogen evades the host adaptive immune system by inhibiting IL-2 accumulation and thus attenuating T-cell proliferation and cellular communication.
Collapse
Affiliation(s)
- Hazem Khalaf
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| | | |
Collapse
|
28
|
Quintana A, Hoth M. Mitochondrial dynamics and their impact on T cell function. Cell Calcium 2012; 52:57-63. [PMID: 22425631 DOI: 10.1016/j.ceca.2012.02.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 12/23/2022]
Abstract
Energy supply is the most prominent function of mitochondria, but in addition, mitochondria are indispensable for a multitude of other important cellular functions including calcium (Ca(2+)) signaling and buffering, the supply of metabolites and the sequestration of apoptotic factors. The efficiency of those functions highly depends on the proper positioning of mitochondria within the cytosol. In lymphocytes, mitochondria preferentially localize into the vicinity (∼200nm) of the immune synapse (IS). This localization is regulated by motor-based cytoskeleton-mediated transport, the fusion/fission dynamics of mitochondria, and probably also through tethering with the ER. IS formation also induces the accumulation of CRAC/ORAI1 Ca(2+) channels, the CRAC/ORAI channel activator STIM1, K(+) channels and plasma membrane Ca(2+) ATPase (PMCA) within the IS. Such a large agglomeration of Ca(2+) binding organelles and proteins highlights the IS as a critical cellular compartment for Ca(2+) dependent lymphocyte activation. At the IS, Ca(2+) microdomains generated beneath open CRAC/ORAI channels provide a rapid, robust and reliable mechanism for driving cellular responses in mast cells and T cells. Here, we discuss the relevance of motor-based mitochondrial transport, fusion, fission and tethering for mitochondrial localization in T cells and the importance of subplasmalemmal mitochondria to control local CRAC/ORAI1-dependent Ca(2+) microdomains at the IS for efficient T lymphocyte activation.
Collapse
Affiliation(s)
- Ariel Quintana
- La Jolla Institute for Allergy& Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
29
|
Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J 2011; 30:3895-912. [PMID: 21847095 DOI: 10.1038/emboj.2011.289] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 07/19/2011] [Indexed: 12/24/2022] Open
Abstract
Cell polarization enables restriction of signalling into microdomains. Polarization of lymphocytes following formation of a mature immunological synapse (IS) is essential for calcium-dependent T-cell activation. Here, we analyse calcium microdomains at the IS with total internal reflection fluorescence microscopy. We find that the subplasmalemmal calcium signal following IS formation is sufficiently low to prevent calcium-dependent inactivation of ORAI channels. This is achieved by localizing mitochondria close to ORAI channels. Furthermore, we find that plasma membrane calcium ATPases (PMCAs) are re-distributed into areas beneath mitochondria, which prevented PMCA up-modulation and decreased calcium export locally. This nano-scale distribution-only induced following IS formation-maximizes the efficiency of calcium influx through ORAI channels while it decreases calcium clearance by PMCA, resulting in a more sustained NFAT activity and subsequent activation of T cells.
Collapse
|
30
|
Frossi B, D'Incà F, Crivellato E, Sibilano R, Gri G, Mongillo M, Danelli L, Maggi L, Pucillo CE. Single-cell dynamics of mast cell-CD4+ CD25+ regulatory T cell interactions. Eur J Immunol 2011; 41:1872-82. [PMID: 21509780 DOI: 10.1002/eji.201041300] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/18/2011] [Accepted: 04/14/2011] [Indexed: 01/21/2023]
Abstract
The biological behavior of immune cells is determined by their intrinsic properties and interactions with other cell populations within their microenvironment. Several studies have confirmed the existence of tight spatial interactions between mast cells (MCs) and Tregs in different settings. For instance, we have recently identified the functional cross-talk between MCs and Tregs, through the OX40L-OX40 axis, as a new mechanism of reciprocal influence. However, there is scant information regarding the single-cell dynamics of this process. In this study, time-lapse video microscopy revealed direct interactions between Tregs and MCs in both murine and human cell co-cultures, resulting in the inhibition of the MC degranulation response. MCs incubated with WT, but not OX40-deficient, Tregs mediated numerous and long-lasting interactions and displayed different morphological features lacking the classical signs of exocytosis. MC degranulation and Ca2+ mobilization upon activation were inhibited by Tregs on a single-cell basis, without affecting overall cytokine secretion. Transmission electron microscopy showed ultrastructural evidence of vesicle-mediated secretion reconcilable with the morphological pattern of piecemeal degranulation. Our results suggest that MC morphological and functional changes following MC-Treg interactions can be ascribed to cell-cell contact and represent a transversal, non-species-specific mechanism of immune response regulation. Further research, looking at the molecular composition of this interaction will broaden our understanding of its contribution to immunity.
Collapse
Affiliation(s)
- Barbara Frossi
- Department of Biomedical Science and Technology, M.A.T.I. Centre of Excellence, University of Udine, Udine, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Contento RL, Campello S, Trovato AE, Magrini E, Anselmi F, Viola A. Adhesion shapes T cells for prompt and sustained T-cell receptor signalling. EMBO J 2010; 29:4035-47. [PMID: 20953162 DOI: 10.1038/emboj.2010.258] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/24/2010] [Indexed: 11/09/2022] Open
Abstract
During T-cell migration, cell polarity is orchestrated by chemokine receptors and adhesion molecules and involves the functional redistribution of molecules and organelles towards specific cell compartments. In contrast, it is generally believed that the cell polarity established when T cells meet antigen-presenting cells (APCs) is controlled by the triggered T-cell receptor (TCR). Here, we show that, during activation of human T lymphocytes by APCs, chemokines and LFA-1 establish cell polarity independently of TCR triggering. Chemokine-induced LFA-1 activation results in fast recruitment of MTOC and mitochondria towards the potential APC, a process required to amplify TCR Ca(2+) signalling at the upcoming immunological synapse, to promote nuclear translocation of transcriptional factor NFATc2 and boost CD25 expression. Our data show that the initial adhesive signals delivered by chemokines and LFA-1 shape and prepare T cells for antigen recognition.
Collapse
Affiliation(s)
- Rita Lucia Contento
- Department of Translational Medicine, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Peraza-Reyes L, Crider DG, Pon LA. Mitochondrial manoeuvres: latest insights and hypotheses on mitochondrial partitioning during mitosis in Saccharomyces cerevisiae. Bioessays 2010; 32:1040-9. [PMID: 20886527 DOI: 10.1002/bies.201000083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 12/22/2022]
Abstract
Movement and positional control of mitochondria and other organelles are coordinated with cell cycle progression in the budding yeast, Saccharomyces cerevisiae. Recent studies have revealed a checkpoint that inhibits cytokinesis when there are severe defects in mitochondrial inheritance. An established checkpoint signaling pathway, the mitotic exit network (MEN), participates in this process. Here, we describe mitochondrial motility during inheritance in budding yeast, emerging evidence for mitochondrial quality control during inheritance, and organelle inheritance checkpoints for mitochondria and other organelles.
Collapse
Affiliation(s)
- Leonardo Peraza-Reyes
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
33
|
Krummel MF, Cahalan MD. The immunological synapse: a dynamic platform for local signaling. J Clin Immunol 2010; 30:364-72. [PMID: 20390326 PMCID: PMC2874029 DOI: 10.1007/s10875-010-9393-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/16/2010] [Indexed: 01/06/2023]
Abstract
The immunological synapse (IS) as a concept has evolved from a static view of the junction between T cells and their antigen-presenting cell partners. The entire process of IS formation and extinction is now known to entail a dynamic reorganization of membrane domains and proteins within and adjacent to those domains. Discussion The entire process is also intricately tied to the motility machinery—both as that machinery directs “scanning” prior to T-cell receptor engagement and as it is appropriated during the ongoing developments at the IS. While the synapse often remains dynamic in order to encourage surveillance of new antigen-presenting surfaces, cytoskeletal forces also regulate the development of signals, likely including the assembly of ion channels. In both neuronal and immunological synapses, localized Ca2+ signals and accumulation or depletion of ions in microdomains accompany the concentration of signaling molecules in the synapse. Such spatiotemporal signaling in the synapse greatly accelerates kinetics and provides essential checkpoints to validate effective cell–cell communication.
Collapse
Affiliation(s)
- Matthew F Krummel
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue HSW-0511, San Francisco, CA 94143, USA.
| | | |
Collapse
|
34
|
Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep 2010; 11:678-84. [PMID: 20725092 DOI: 10.1038/embor.2010.115] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 07/15/2010] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are highly dynamic organelles, the location, size and distribution of which are controlled by a family of proteins that modulate mitochondrial fusion and fission. Recent evidence indicates that mitochondrial morphology is crucial for cell physiology, as changes in mitochondrial shape have been linked to neurodegeneration, calcium signalling, lifespan and cell death. Because immune cells contain few mitochondria, these organelles have been considered to have only a marginal role in this physiological context-which is conversely well characterized from the point of view of signalling. Nevertheless, accumulating evidence shows that mitochondrial dynamics have an impact on the migration and activation of immune cells and on the innate immune response. Here, we discuss the roles of mitochondrial dynamics in cell pathophysiology and consider how studying dynamics in the context of the immune system could increase our knowledge about the role of dynamics in key signalling cascades.
Collapse
|
35
|
Nicolaou SA, Neumeier L, Takimoto K, Lee SM, Duncan HJ, Kant SK, Mongey AB, Filipovich AH, Conforti L. Differential calcium signaling and Kv1.3 trafficking to the immunological synapse in systemic lupus erythematosus. Cell Calcium 2009; 47:19-28. [PMID: 19959227 DOI: 10.1016/j.ceca.2009.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 10/27/2009] [Accepted: 11/02/2009] [Indexed: 11/24/2022]
Abstract
Systemic lupus erythematosus (SLE) T cells exhibit several activation signaling anomalies including defective Ca(2+) response and increased NF-AT nuclear translocation. The duration of the Ca(2+) signal is critical in the activation of specific transcription factors and a sustained Ca(2+) response activates NF-AT. Yet, the distribution of Ca(2+) responses in SLE T cells is not known. Furthermore, the mechanisms responsible for Ca(2+) alterations are not fully understood. Kv1.3 channels control Ca(2+) homeostasis in T cells. We reported a defect in Kv1.3 trafficking to the immunological synapse (IS) of SLE T cells that might contribute to the Ca(2+) defect. The present study compares single T cell quantitative Ca(2+) responses upon formation of the IS in SLE, normal, and rheumatoid arthritis (RA) donors. Also, we correlated cytosolic Ca(2+) concentrations and Kv1.3 trafficking in the IS by two-photon microscopy. We found that sustained [Ca(2+)](i) elevations constitute the predominant response to antigen stimulation of SLE T cells. This defect is selective to SLE as it was not observed in RA T cells. Further, we observed that in normal T cells termination of Ca(2+) influx is accompanied by Kv1.3 permanence in the IS, while Kv1.3 premature exit from the IS correlates with sustained Ca(2+) responses in SLE T cells. Thus, we propose that Kv1.3 trafficking abnormalities contribute to the altered distribution in Ca(2+) signaling in SLE T cells. Overall these defects may explain in part the T cell hyperactivity and dysfunction documented in SLE patients.
Collapse
Affiliation(s)
- Stella A Nicolaou
- Department of Internal Medicine, University of Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schwindling C, Quintana A, Krause E, Hoth M. Mitochondria Positioning Controls Local Calcium Influx in T Cells. THE JOURNAL OF IMMUNOLOGY 2009; 184:184-90. [DOI: 10.4049/jimmunol.0902872] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Abstract
For more than 25 years, it has been widely appreciated that Ca2+ influx is essential to trigger T-lymphocyte activation. Patch clamp analysis, molecular identification, and functional studies using blockers and genetic manipulation have shown that a unique contingent of ion channels orchestrates the initiation, intensity, and duration of the Ca2+ signal. Five distinct types of ion channels--Kv1.3, KCa3.1, Orai1+ stromal interacting molecule 1 (STIM1) [Ca2+-release activating Ca2+ (CRAC) channel], TRPM7, and Cl(swell)--comprise a network that performs functions vital for ongoing cellular homeostasis and for T-cell activation, offering potential targets for immunomodulation. Most recently, the roles of STIM1 and Orai1 have been revealed in triggering and forming the CRAC channel following T-cell receptor engagement. Kv1.3, KCa3.1, STIM1, and Orai1 have been found to cluster at the immunological synapse following contact with an antigen-presenting cell; we discuss how channels at the synapse might function to modulate local signaling. Immuno-imaging approaches are beginning to shed light on ion channel function in vivo. Importantly, the expression pattern of Ca2+ and K+ channels and hence the functional network can adapt depending upon the state of differentiation and activation, and this allows for different stages of an immune response to be targeted specifically.
Collapse
Affiliation(s)
- Michael D Cahalan
- Department of Physiology and Biophysics, and the Institute for Immunology, University of California, Irvine, Irvine, CA 92697-4561, USA.
| | | |
Collapse
|
38
|
Kummerow C, Junker C, Kruse K, Rieger H, Quintana A, Hoth M. The immunological synapse controls local and global calcium signals in T lymphocytes. Immunol Rev 2009; 231:132-47. [DOI: 10.1111/j.1600-065x.2009.00811.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Sweeney Z, Minatti A, Button D, Patrick S. Small-Molecule Inhibitors of Store-Operated Calcium Entry. ChemMedChem 2009; 4:706-18. [DOI: 10.1002/cmdc.200800452] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|