1
|
Abdullah TM, Whatmore J, Bremer E, Slibinskas R, Michalak M, Eggleton P. Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells. Cancer Immunol Immunother 2021; 71:1655-1669. [PMID: 34800147 PMCID: PMC9188521 DOI: 10.1007/s00262-021-03072-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/27/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone, but can appear surface bound on cancers cells, including ovarian cancers (OC). We investigated at what stage of cell viability, CRT appeared associated with surface of human OC cells. CRT on pre-apoptotic tumour cells is thought to initiate their eradication via a process termed immunogenic cell death (ICD). METHODS We treated OC cells with the chemotherapeutic-doxorubicin (DX) known to induce translocation of CRT to some tumour cell surfaces, with and without the ER stressor-thapsigargin (TG)-and/or an ER stress inhibitor-TUDCA. We monitored translocation/release of CRT in pre-apoptotic cells by flow cytometry, immunoblotting and ELISA. We investigated the difference in binding of FITC-CRT to pre-apoptotic, apoptotic and necrotic cells and the ability of extracellular CRT to generate immature dendritic cells from THP-1 monocytes. RESULTS Dx-treatment increased endogenously released CRT and extracellular FITC_CRT binding to human pre-apoptotic OC cells. DX and TG also promoted cell death in OC cells which also increased CRT release. These cellular responses were significantly inhibited by TUDCA, suggesting that ER stress is partially responsible for the changes in CRT cellular distribution. Extracellular CRT induces maturation of THP-1 towards a imDC phenotype, an important component of ICD. CONCLUSION Collectively, these cellular responses suggest that ER stress is partially responsible for the changes in CRT cellular distribution. ER-stress regulates in part the release and binding of CRT to human OC cells where it may play a role in ICD.
Collapse
Affiliation(s)
- Trefa M Abdullah
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,College of Pharmacy, Department Biochemistry and Clinical Chemistry, University of Sulaimani, Iraqi Kurdistan Region, Sulaimani, Iraq
| | - Jacqueline Whatmore
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| | - Edwin Bremer
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Experimental Hematology, Section Immunohematology, Cancer Research Center Groningen (CRCG), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rimantas Slibinskas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, 10257, Vilnius, Lithuania
| | - Marek Michalak
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Paul Eggleton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Revolo Biotherapeutics, New Orleans, LA, 70130, USA
| |
Collapse
|
2
|
Agellon LB, Michalak M. A View of the Endoplasmic Reticulum Through the Calreticulin Lens. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:1-11. [PMID: 34050859 DOI: 10.1007/978-3-030-67696-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Calreticulin is well known as an ER-resident protein that serves as the major endoplasmic reticulum (ER) Ca2+ binding protein. This protein has been the major topic of discussion in an international workshop that has been meeting for a quarter of a century. In sharing information about this protein, the field also witnessed remarkable insights into the importance of the ER as an organelle and the role of ER Ca2+ in coordinating ER and cellular functions. Recent technological advances have helped to uncover the contributions of calreticulin in maintaining Ca2+ homeostasis in the ER and to unravel its involvement in a multitude of cellular processes as highlighted in this collection of articles. The continuing revelations of unexpected involvement of calreticulin and Ca2+ in many critical aspects of cellular function promises to further improve insights into the significance of this protein in the promotion of physiology as well as prevention of pathology.
Collapse
Affiliation(s)
- Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Kang MG, Choi HW, Lee JH, Choi YJ, Choi HJ, Shin JH, Suh SP, Szardenings M, Kim HR, Shin MG. Coexistence of JAK2 and CALR mutations and their clinical implications in patients with essential thrombocythemia. Oncotarget 2016; 7:57036-57049. [PMID: 27486987 PMCID: PMC5302971 DOI: 10.18632/oncotarget.10958] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023] Open
Abstract
Janus kinase 2 (JAK2) and calreticulin (CALR) constitute the two most frequent mutations in essential thrombocythemia (ET), and both are reported to be mutually exclusive. Hence, we examined a cohort of 123 myeloproliferative neoplasm (MPN) patients without BCR-ABL1 rearrangement and additional ET patients (n=96) for coexistence of JAK2 and CALR mutations. The frequency of CALR mutations was 20.3% in 123 MPN patients; 31.1% in ET (n=74), 25% in primary myelofibrosis (n=4) and 2.2% in polycythemia vera (n=45). JAK2 and CALR mutations coexisted in 7 (4.2%) of 167 ET patients. Clinical characteristics, progression-free survival (PFS), and elapsed time to achieve partial remission across 4 groups (JAK2+/CALR+, JAK2+/CALR-, JAK2-/CALR+, JAK2-/CALR-) were reviewed. The JAK2+/CALR- group had higher leukocyte counts and hemoglobin levels and more frequent thrombotic events than JAK2-/CALR- group. JAK2 mutations have a greater effect on the disease phenotype and the clinical features of MPN patients rather than do CALR mutation. JAK2+ groups showed a tendency of poor PFS than JAK2- groups regardless of CALR mutation. CALR+ was a predictor of late response to the treatment. Our study also showed that thrombosis was more frequent in ET patients with type 2 CALR mutations than in those with type 1 CALR mutations.
Collapse
Affiliation(s)
- Min-Gu Kang
- 1 Departments of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, South Korea
- 2 Brain Korea 21 Plus Project, Chonnam National University Medical School, Gwangju, South Korea
| | - Hyun-Woo Choi
- 1 Departments of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, South Korea
| | - Jun Hyung Lee
- 1 Departments of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, South Korea
| | - Yong Jun Choi
- 1 Departments of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, South Korea
| | - Hyun-Jung Choi
- 1 Departments of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, South Korea
| | - Jong-Hee Shin
- 1 Departments of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, South Korea
| | - Soon-Pal Suh
- 1 Departments of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, South Korea
| | - Michael Szardenings
- 4 Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Hye-Ran Kim
- 5 College of Korean Medicine, Dongshin University, Naju, Jeollanam-do, South Korea
| | - Myung-Geun Shin
- 1 Departments of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, South Korea
- 2 Brain Korea 21 Plus Project, Chonnam National University Medical School, Gwangju, South Korea
- 3 Environmental Health Center for Childhood Leukemia and Cancer, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, South Korea
| |
Collapse
|
4
|
Eggleton P, Michalak M, Bremer E. Editorial: Endoplasmic Reticulum and Its Role in Tumor Immunity. Front Oncol 2015; 5:252. [PMID: 26636034 PMCID: PMC4646977 DOI: 10.3389/fonc.2015.00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/30/2015] [Indexed: 01/05/2023] Open
Affiliation(s)
| | - Marek Michalak
- University of Exeter Medical School , Exeter , UK ; Department of Biochemistry, University of Alberta , Edmonton, AB , Canada
| | - Edwin Bremer
- University of Exeter Medical School , Exeter , UK ; Laboratory for Translational Surgical Oncology, Department of Surgery, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
5
|
Wang J, Hao J, He N, Ji C, Ma D. The Mutation Profile of Calreticulin in Patients with Myeloproliferative Neoplasms and Acute Leukemia. Turk J Haematol 2015; 33:180-6. [PMID: 26377485 PMCID: PMC5111462 DOI: 10.4274/tjh.2015.0220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Calreticulin (CALR) plays important roles in cell proliferation, apoptosis, and immune responses. CALR mutations were described recently in Janus kinase 2 gene (JAK2)-negative or MPL-negative primary myelofibrosis (PMF) and essential thrombocythemia (ET) patients. CALR trails JAK2 as the second most mutated gene in myeloproliferative neoplasms (MPNs). However, little is known about CALR mutation in Chinese patients with leukemia. In the present study, a cohort of 305 Chinese patients with hematopoietic neoplasms was screened for CALR mutations, with the aim of uncovering the frequency of CALR mutations in leukemia and MPNs. MATERIALS AND METHODS Polymerase chain reaction and direct sequencing were performed to analyze mutations of CALR in 305 patients with hematopoietic malignancies, including 135 acute myeloid leukemia patients, 57 acute lymphoblastic leukemia patients, and 113 MPN patients. RESULTS CALR mutations were found in 10.6% (12 of 113) of samples from patients with MPNs. CALR mutations were determined in 11.3% (6 of 53), 21.7% (5 of 23), and 9.1% (1/11) of patients with ET, PMF, and unclassifiable MPN, respectively. CONCLUSION We showed that MPN patients carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels compared to those with mutated JAK2. However, all of the leukemia patients had negative results for CALR mutations.
Collapse
Affiliation(s)
| | | | | | | | - Daoxin Ma
- Qilu Hospital of Shandong University, Department of Hematology, Shandong, China, Phone: +86 531 82169887, E-mail:
| |
Collapse
|
6
|
Kim SY, Im K, Park SN, Kwon J, Kim JA, Lee DS. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable. Am J Clin Pathol 2015; 143:635-44. [PMID: 25873496 DOI: 10.1309/ajcpuaac16liwzmm] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES We investigated mutation profiles of CALR, JAK2, and MPL in 199 Korean patients with myeloproliferative neoplasms (MPNs). METHODS In total, 199 patients with MPN (54 primary myelofibrosis [PMF], 79 essential thrombocythemia [ET], 58 polycythemia vera [PV], and eight MPN-unclassifiable [MPN-U]) and 4 patients with acute panmyelosis with myelofibrosis (APMF) were retrospectively subjected to Sanger sequencing for CALR, JAK2, and MPL. RESULTS The overall frequency of CALR mutations was 12.6% (type 1 mutation, 16 patients; type 2 mutation, nine patients): most frequent in MPN-U (37.5%), followed by ET (17.7%) and PMF (14.8%). CALR mutations were not found in PV or APMF. CALR and JAK2 or MPL mutations were mutually exclusive. In PMF, the CALR mutations were associated with lower levels of leukocytes, lower bone marrow cellularity, and higher number of megakaryocytes. Patients with CALR-mutated ET more frequently progressed to the accelerated or blast phases compared with patients with JAK2 mutations. CALR mutations were frequently observed in the JAK2-negative MPNs, most frequently in MPN-U. CONCLUSIONS The prognostic significance of CALR mutations likely differs among the MPN subtypes.
Collapse
Affiliation(s)
- Seon Young Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyongok Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Si Nae Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiseok Kwon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Ah Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
de Bruyn M, Wiersma VR, Helfrich W, Eggleton P, Bremer E. The ever-expanding immunomodulatory role of calreticulin in cancer immunity. Front Oncol 2015; 5:35. [PMID: 25750898 PMCID: PMC4335099 DOI: 10.3389/fonc.2015.00035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/31/2015] [Indexed: 01/03/2023] Open
Abstract
Calreticulin is a pleiotropic molecule that normally resides in the lumen of the endoplasmic reticulum (ER). Here, it has various functions, ranging from regulation of calcium homeostasis to ensuring proper protein folding. More recently, calreticulin gained special interest for its extracellular functions, where it has direct immunomodulatory activity. In this respect, calreticulin activates dendritic cells and macrophages. In addition, certain anti-cancer therapies induce the translocation of calreticulin from the ER to the cell surface of dying cancer cells, where calreticulin dictates the immunogenicity of these cells. Interestingly, treatment with tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) also induces membrane calreticulin exposure on cancer cells. As shown here, calreticulin directly interacts with TRAIL and its receptor-signaling complex, as well as with other TNF family members. Of note, TRAIL is a well known immunomodulatory molecule, and is expressed on the surface of natural killer T-cells. Therefore, calreticulin may have an as yet unrecognized wide(r) impact on immunity, with the TNF-ligand family modulating virtually all aspects of the immune response.
Collapse
Affiliation(s)
- Marco de Bruyn
- Department of Gynecologic Oncology, University Medical Center Groningen (UMCG), University of Groningen , Groningen , Netherlands
| | - Valerie R Wiersma
- Department of Surgery, Translational Surgical Oncology, University Medical Center Groningen (UMCG), University of Groningen , Groningen , Netherlands
| | - Wijnand Helfrich
- Department of Surgery, Translational Surgical Oncology, University Medical Center Groningen (UMCG), University of Groningen , Groningen , Netherlands
| | | | - Edwin Bremer
- Department of Surgery, Translational Surgical Oncology, University Medical Center Groningen (UMCG), University of Groningen , Groningen , Netherlands ; University of Exeter Medical School , Exeter , UK
| |
Collapse
|
8
|
An W, Wan Y, Guo Y, Chen X, Ren Y, Zhang J, Chang L, Wei W, Zhang P, Zhu X. CALR mutation screening in pediatric primary myelofibrosis. Pediatr Blood Cancer 2014; 61:2256-62. [PMID: 25176567 DOI: 10.1002/pbc.25211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/11/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND Primary myelofibrosis (PMF) is quite rare in children. Mutations of JAK2(V617F) or MPL(W515K/L) were absent in pediatric patients with PMF according to previous studies. Recently, mutations in calreticulin (CALR) were described in adult patients with JAK2/MPL-unmutated PMF. Our study aimed to analyze the clinical and genetic features of Chinese pediatric patients with PMF. PROCEDURES We retrospectively investigated 14 pediatric patients diagnosed as PMF according to WHO 2008 criteria. Direct sequencing was performed for the existence of genetic alterations in JAK2, MPL, TET2, CBL, ASXL1, IDH1, IDH2, SRSF2, EZH2, DNMT3A and CALR. RESULTS In our cohort, all patients had anemia, three patients (21%) had splenomegaly, six patients (43%) had micromegakaryocytes at time of diagnosis. No patient had spontaneous remission and six patients (43%) transformed to acute myelocytic leukemia. In nine patients with evaluable cytogenetic information, three subjects (33%) had abnormal karyotypes. The median survival from time of diagnosis was 28 months. Seven patients (50%) had type 2 mutations of CALR. No patient had mutations in the other candidate genes. There was no statistical differences in age, gender, hemoglobin, WBC, neutrophil and platelet counts, percentage of circulating blast, overall survival and leukemia transformation between patients with and without CALR mutation. CONCLUSION Our study documented that Chinese pediatric patients with PMF in our cohort had its own clinical characteristics and poor outcome. CALR mutations were detected in 50% of our pediatric patients with PMF. Based on our study, CALR mutations screening could be used as molecular marker for diagnosis of pediatric patients with PMF.
Collapse
Affiliation(s)
- Wenbin An
- Pediatric Blood Diseases Centre, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tefferi A, Wassie EA, Guglielmelli P, Gangat N, Belachew AA, Lasho TL, Finke C, Ketterling RP, Hanson CA, Pardanani A, Wolanskyj AP, Maffioli M, Casalone R, Pacilli A, Vannucchi AM, Passamonti F. Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol 2014; 89:E121-4. [PMID: 24753125 DOI: 10.1002/ajh.23743] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/24/2023]
Abstract
CALR (calreticulin) trails JAK2 as the second most mutated gene in essential thrombocythemia (ET). Mutant CALR in ET is a result of frameshift mutations, caused by exon 9 deletions or insertions; type-1, 52-bp deletion (p.L367fs*46), and type-2, 5-bp TTGTC insertion (p.K385fs*47) variants constitute more than 80% of these mutations. The current study includes a total of 1027 patients divided into test (n = 402) and validation (n = 625) cohorts. Among the 402 ET patients in the test cohort, 227 (57%) harbored JAK2, 11 (3%) Myeloproliferative leukemia virus oncogene (MPL), and 114 (28%) CALR mutations; 12% were wild-type for all three mutations (i.e., triple-negative). Among the 114 patients with CALR mutations, 51 (45%) displayed type-1 and 44 (39%) type-2 variants; compared to mutant JAK2, both variants were associated with higher platelet and lower hemoglobin and leukocyte counts. However, male sex was associated with only type-1 (P = 0.005) and younger age with type-2 (P = 0.001) variants. Notably, platelet count was significantly higher in type-2 vs. type-1 CALR-mutated patients (P = 0.03) and the particular observation was validated in the validation cohort that included 111 CALR-mutated ET patients (P = 0.002). These findings, coupled with the recent demonstration of preferential expression of mutant and wild-type CALR in megakaryocytes, suggest differential effects of CALR variants on thrombopoiesis.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology; Department of Medicine; Mayo Clinic; Rochester Minnesota
| | - Emnet A. Wassie
- Division of Hematology; Department of Medicine; Mayo Clinic; Rochester Minnesota
| | - Paola Guglielmelli
- Laboratorio Congiunto MMPC; Department of experimental and clinical medicine; University of Florence; Florence Italy
| | - Naseema Gangat
- Division of Hematology; Department of Medicine; Mayo Clinic; Rochester Minnesota
| | - Alem A. Belachew
- Division of Hematology; Department of Medicine; Mayo Clinic; Rochester Minnesota
| | - Terra L. Lasho
- Division of Hematology; Department of Medicine; Mayo Clinic; Rochester Minnesota
| | - Christy Finke
- Division of Hematology; Department of Medicine; Mayo Clinic; Rochester Minnesota
| | | | | | - Animesh Pardanani
- Division of Hematology; Department of Medicine; Mayo Clinic; Rochester Minnesota
| | | | - Margherita Maffioli
- Division of Hematology; Genetic Unit, Medical Genetic and Cytogenetics Laboratory, SSD, SMEL, University Hospital Ospedale di Circolo e Fondazione Macchi; Varese Italy
| | - Rosario Casalone
- Division of Hematology; Genetic Unit, Medical Genetic and Cytogenetics Laboratory, SSD, SMEL, University Hospital Ospedale di Circolo e Fondazione Macchi; Varese Italy
| | - Annalisa Pacilli
- Laboratorio Congiunto MMPC; Department of experimental and clinical medicine; University of Florence; Florence Italy
| | - Alessandro M. Vannucchi
- Laboratorio Congiunto MMPC; Department of experimental and clinical medicine; University of Florence; Florence Italy
| | - Francesco Passamonti
- Division of Hematology; Genetic Unit, Medical Genetic and Cytogenetics Laboratory, SSD, SMEL, University Hospital Ospedale di Circolo e Fondazione Macchi; Varese Italy
| |
Collapse
|
10
|
Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C, Mannarelli C, Belachew AA, Pancrazzi A, Wassie EA, Ketterling RP, Hanson CA, Pardanani A, Vannucchi AM. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia 2014; 28:1494-500. [DOI: 10.1038/leu.2014.57] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/30/2014] [Indexed: 12/14/2022]
|
11
|
Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH, Maffioli M, Caramazza D, Passamonti F, Pardanani A. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014; 28:1472-7. [PMID: 24402162 DOI: 10.1038/leu.2014.3] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/31/2013] [Indexed: 12/12/2022]
Abstract
Calreticulin (CALR) mutations were recently described in JAK2 and MPL unmutated primary myelofibrosis (PMF) and essential thrombocythemia. In the current study, we compared the clinical, cytogenetic and molecular features of patients with PMF with or without CALR, JAK2 or MPL mutations. Among 254 study patients, 147 (58%) harbored JAK2, 63 (25%) CALR and 21 (8.3%) MPL mutations; 22 (8.7%) patients were negative for all three mutations, whereas one patient expressed both JAK2 and CALR mutations. Study patients were also screened for ASXL1 (31%), EZH2 (6%), IDH (4%), SRSF2 (12%), SF3B1 (7%) and U2AF1 (16%) mutations. In univariate analysis, CALR mutations were associated with younger age (P<0.0001), higher platelet count (P<0.0001) and lower DIPSS-plus score (P=0.02). CALR-mutated patients were also less likely to be anemic, require transfusions or display leukocytosis. Spliceosome mutations were infrequent (P=0.0001) in CALR-mutated patients, but no other molecular or cytogenetic associations were evident. In multivariable analysis, CALR mutations had a favorable impact on survival that was independent of both DIPSS-plus risk and ASXL1 mutation status (P=0.001; HR 3.4 for triple-negative and 2.2 for JAK2-mutated). Triple-negative patients also displayed inferior LFS (P=0.003). The current study identifies 'CALR(-)ASXL1(+)' and 'triple-negative' as high-risk molecular signatures in PMF.
Collapse
Affiliation(s)
- A Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - T L Lasho
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - C M Finke
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - R A Knudson
- Division of Cytogenetics, Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - R Ketterling
- Division of Cytogenetics, Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - C H Hanson
- Division of Hematopathology, Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - M Maffioli
- Division of Hematology, Ospedale di Circolo, Fondazione Macchi, Varese, Italy
| | - D Caramazza
- Division of Hematology, Ospedale di Circolo, Fondazione Macchi, Varese, Italy
| | - F Passamonti
- Division of Hematology, Ospedale di Circolo, Fondazione Macchi, Varese, Italy
| | - A Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|