1
|
Arige V, Yule DI. Spatial and temporal crosstalk between the cAMP and Ca 2+ signaling systems. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119293. [PMID: 35588944 DOI: 10.1016/j.bbamcr.2022.119293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/31/2022]
Abstract
The ubiquitous secondary messengers, Ca2+ and cAMP, play a vital role in shaping a diverse array of physiological processes. More significantly, accumulating evidence over the past several decades underpin extensive crosstalk between these two canonical messengers in discrete sub-cellular nanodomains across various cell types. Within such specialized nanodomains, each messenger fine-tunes signaling to maintain homeostasis by manipulating the activities of cellular machinery accountable for the metabolism or activity of the complementary pathway. Interaction between these messengers is ensured by scaffolding proteins which tether components of the signaling machinery in close proximity. Disruption of dynamic communications between Ca2+ and cAMP at these loci consequently is linked to several pathological conditions. This review summarizes recent novel mechanisms underlying effective crosstalk between Ca2+ and cAMP in such nanodomains.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA..
| |
Collapse
|
2
|
Hofer AM. The Love Story between Orai Calcium Entry Channels and Adenylyl Cyclases Gets even more Complicated. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab044. [PMID: 35330952 PMCID: PMC8788800 DOI: 10.1093/function/zqab044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/07/2023]
|
3
|
Gamma-Aminobutyric Acid (GABA) Inhibits α-Melanocyte-Stimulating Hormone-Induced Melanogenesis through GABA A and GABA B Receptors. Int J Mol Sci 2021; 22:ijms22158257. [PMID: 34361022 PMCID: PMC8347673 DOI: 10.3390/ijms22158257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is considered the primary inhibitory neurotransmitter in the human cortex. However, whether GABA regulates melanogenesis has not been comprehensively elucidated. In this study, we reveal that GABA (20 mM) significantly inhibited α-melanocyte-stimulating hormone (α-MSH)-induced extracellular (from 354.9% ± 28.4% to 126.5% ± 16.0%) and intracellular melanin contents (from 236.7% ± 11.1% to 102.7% ± 23.1%) in B16F10 melanoma cells, without inducing cytotoxicity. In addition, α-MSH-induced hyperpigmentation in zebrafish larvae was inhibited from 246.3% ± 5.4% to 116.3% ± 3.1% at 40 mM GABA, displaying no apparent cardiotoxicity. We also clarify that the GABA-mediated antimelanogenic properties were related to the direct inhibition of microphthalmia-associated transcription factor (MITF) and tyrosinase expression by inhibiting cyclic adenosine monophosphate (cAMP) and cAMP response element-binding protein (CREB). Furthermore, under α-MSH stimulation, GABA-related antimelanogenic effects were mediated through the GABAA and GABAB receptors, with subsequent inhibition of Ca2+ accumulation. In B16F10 melanoma cells and zebrafish larvae, pretreatment with bicuculline, a GABAA receptor antagonist, and CGP 46381, a GABAB receptor antagonist, reversed the antimelanogenic effect of GABA following α-MSH treatment by upregulating Ca2+ accumulation. In conclusion, our results indicate that GABA inhibits α-MSH-induced melanogenesis. Hence, in addition to the health benefits of GABA in the central nervous system, it could ameliorate hyperpigmentation disorders.
Collapse
|
4
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
5
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
6
|
Crul T, Maléth J. Endoplasmic Reticulum-Plasma Membrane Contact Sites as an Organizing Principle for Compartmentalized Calcium and cAMP Signaling. Int J Mol Sci 2021; 22:4703. [PMID: 33946838 PMCID: PMC8124356 DOI: 10.3390/ijms22094703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic cells, ultimate specificity in activation and action-for example, by means of second messengers-of the myriad of signaling cascades is primordial. In fact, versatile and ubiquitous second messengers, such as calcium (Ca2+) and cyclic adenosine monophosphate (cAMP), regulate multiple-sometimes opposite-cellular functions in a specific spatiotemporal manner. Cells achieve this through segregation of the initiators and modulators to specific plasma membrane (PM) subdomains, such as lipid rafts and caveolae, as well as by dynamic close contacts between the endoplasmic reticulum (ER) membrane and other intracellular organelles, including the PM. Especially, these membrane contact sites (MCSs) are currently receiving a lot of attention as their large influence on cell signaling regulation and cell physiology is increasingly appreciated. Depletion of ER Ca2+ stores activates ER membrane STIM proteins, which activate PM-residing Orai and TRPC Ca2+ channels at ER-PM contact sites. Within the MCS, Ca2+ fluxes relay to cAMP signaling through highly interconnected networks. However, the precise mechanisms of MCS formation and the influence of their dynamic lipid environment on their functional maintenance are not completely understood. The current review aims to provide an overview of our current understanding and to identify open questions of the field.
Collapse
Affiliation(s)
- Tim Crul
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| |
Collapse
|
7
|
Ros O, Baudet S, Zagar Y, Loulier K, Roche F, Couvet S, Aghaie A, Atkins M, Louail A, Petit C, Metin C, Mechulam Y, Nicol X. SpiCee: A Genetic Tool for Subcellular and Cell-Specific Calcium Manipulation. Cell Rep 2021; 32:107934. [PMID: 32697983 DOI: 10.1016/j.celrep.2020.107934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium is a second messenger crucial to a myriad of cellular processes ranging from regulation of metabolism and cell survival to vesicle release and motility. Current strategies to directly manipulate endogenous calcium signals lack cellular and subcellular specificity. We introduce SpiCee, a versatile and genetically encoded chelator combining low- and high-affinity sites for calcium. This scavenger enables altering endogenous calcium signaling and functions in single cells in vitro and in vivo with biochemically controlled subcellular resolution. SpiCee paves the way to investigate local calcium signaling in vivo and directly manipulate this second messenger for therapeutic use.
Collapse
Affiliation(s)
- Oriol Ros
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Sarah Baudet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Alain Aghaie
- INSERM, Sorbonne Université, Institut Pasteur, UMR_S 1120, 75012 Paris, France
| | - Melody Atkins
- INSERM, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, 75005 Paris, France
| | - Alice Louail
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Christine Petit
- INSERM, Sorbonne Université, Institut Pasteur, UMR_S 1120, 75012 Paris, France; Collège de France, 75005 Paris, France
| | - Christine Metin
- INSERM, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, 75005 Paris, France
| | - Yves Mechulam
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS UMR 7654, 91128 Palaiseau, France
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
| |
Collapse
|
8
|
Brzezinska P, Simpson NJ, Hubert F, Jacobs AN, Umana MB, MacKeil JL, Burke-Kleinman J, Payne DM, Ferguson AV, Maurice DH. Phosphodiesterase 1C integrates store-operated calcium entry and cAMP signaling in leading-edge protrusions of migrating human arterial myocytes. J Biol Chem 2021; 296:100606. [PMID: 33789162 PMCID: PMC8095186 DOI: 10.1016/j.jbc.2021.100606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 01/17/2023] Open
Abstract
In addition to maintaining cellular ER Ca2+ stores, store-operated Ca2+ entry (SOCE) regulates several Ca2+-sensitive cellular enzymes, including certain adenylyl cyclases (ADCYs), enzymes that synthesize the secondary messenger cyclic AMP (cAMP). Ca2+, acting with calmodulin, can also increase the activity of PDE1-family phosphodiesterases (PDEs), which cleave the phosphodiester bond of cAMP. Surprisingly, SOCE-regulated cAMP signaling has not been studied in cells expressing both Ca2+-sensitive enzymes. Here, we report that depletion of ER Ca2+ activates PDE1C in human arterial smooth muscle cells (HASMCs). Inhibiting the activation of PDE1C reduced the magnitude of both SOCE and subsequent Ca2+/calmodulin–mediated activation of ADCY8 in these cells. Because inhibiting or silencing Ca2+-insensitive PDEs had no such effects, these data identify PDE1C-mediated hydrolysis of cAMP as a novel and important link between SOCE and its activation of ADCY8. Functionally, we showed that PDE1C regulated the formation of leading-edge protrusions in HASMCs, a critical early event in cell migration. Indeed, we found that PDE1C populated the tips of newly forming leading-edge protrusions in polarized HASMCs, and co-localized with ADCY8, the Ca2+ release activated Ca2+ channel subunit, Orai1, the cAMP-effector, protein kinase A, and an A-kinase anchoring protein, AKAP79. Because this polarization could allow PDE1C to control cAMP signaling in a hyper-localized manner, we suggest that PDE1C-selective therapeutic agents could offer increased spatial specificity in HASMCs over agents that regulate cAMP globally in cells. Similarly, such agents could also prove useful in regulating crosstalk between Ca2+/cAMP signaling in other cells in which dysregulated migration contributes to human pathology, including certain cancers.
Collapse
Affiliation(s)
- Paulina Brzezinska
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nicholas J Simpson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Fabien Hubert
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ariana N Jacobs
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - M Bibiana Umana
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jodi L MacKeil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jonah Burke-Kleinman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Darrin M Payne
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
9
|
Mougenot N, Mika D, Czibik G, Marcos E, Abid S, Houssaini A, Vallin B, Guellich A, Mehel H, Sawaki D, Vandecasteele G, Fischmeister R, Hajjar RJ, Dubois-Randé JL, Limon I, Adnot S, Derumeaux G, Lipskaia L. Cardiac adenylyl cyclase overexpression precipitates and aggravates age-related myocardial dysfunction. Cardiovasc Res 2020; 115:1778-1790. [PMID: 30605506 DOI: 10.1093/cvr/cvy306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
AIMS Increase of cardiac cAMP bioavailability and PKA activity through adenylyl-cyclase 8 (AC8) overexpression enhances contractile function in young transgenic mice (AC8TG). Ageing is associated with decline of cardiac contraction partly by the desensitization of β-adrenergic/cAMP signalling. Our objective was to evaluate cardiac cAMP signalling as age increases between 2 months and 12 months and to explore whether increasing the bioavailability of cAMP by overexpression of AC8 could prevent cardiac dysfunction related to age. METHODS AND RESULTS Cardiac cAMP pathway and contractile function were evaluated in AC8TG and their non-transgenic littermates (NTG) at 2- and 12 months old. AC8TG demonstrated increased AC8, PDE1, 3B and 4D expression at both ages, resulting in increased phosphodiesterase and PKA activity, and increased phosphorylation of several PKA targets including sarco(endo)plasmic-reticulum-calcium-ATPase (SERCA2a) cofactor phospholamban (PLN) and GSK3α/β a main regulator of hypertrophic growth and ageing. Confocal immunofluorescence revealed that the major phospho-PKA substrates were co-localized with Z-line in 2-month-old NTG but with Z-line interspace in AC8TG, confirming the increase of PKA activity in the compartment of PLN/SERCA2a. In both 12-month-old NTG and AC8TG, PLN and GSK3α/β phosphorylation was increased together with main localization of phospho-PKA substrates in Z-line interspaces. Haemodynamics demonstrated an increased contractile function in 2- and 12-month-old AC8TG, but not in NTG. In contrast, echocardiography and tissue Doppler imaging (TDI) performed in conscious mice unmasked myocardial dysfunction with a decrease of systolic strain rate in both old AC8TG and NTG. In AC8TG TDI showed a reduced strain rate even in 2-month-old animals. Development of age-related cardiac dysfunction was accelerated in AC8TG, leading to heart failure (HF) and premature death. Histological analysis confirmed early cardiomyocyte hypertrophy and interstitial fibrosis in AC8TG when compared with NTG. CONCLUSION Our data demonstrated an early and accelerated cardiac remodelling in AC8TG mice, leading to the development of HF and reduced lifespan. Age-related reorganization of cAMP/PKA signalling can accelerate cardiac ageing, partly through GSK3α/β phosphorylation.
Collapse
Affiliation(s)
| | - Delphine Mika
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Gabor Czibik
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Elizabeth Marcos
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Shariq Abid
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Amal Houssaini
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Benjamin Vallin
- Sorbonne Université Institute of Biology Paris-Seine, B2A, UMR8256, Paris, France
| | - Aziz Guellich
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Hind Mehel
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Daigo Sawaki
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France
| | | | - Rodolphe Fischmeister
- INSERM, UMR-S1180, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Luc Dubois-Randé
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Isabelle Limon
- Sorbonne Université Institute of Biology Paris-Seine, B2A, UMR8256, Paris, France
| | - Serge Adnot
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Geneviève Derumeaux
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Larissa Lipskaia
- INSERM, U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, DHU ATVB, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France.,Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Hofer AM. cAMPing out with the keepers of the gate: Adenylyl cyclases get cozy with Orai. Cell Calcium 2019; 82:102054. [PMID: 31402061 DOI: 10.1016/j.ceca.2019.102054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022]
Abstract
Calcium and cyclic AMP form the cornerstones of two ancient signaling systems represented in nearly every kingdom of life. Not surprisingly, these old and ubiquitous messenger molecules have co-evolved multiple means to regulate one another. Zhang et al. describe a new twist on this theme related to the intimate union between the calcium-activated adenylyl cyclase, AC8, and the store-operated Ca2+ channel, Orai1.
Collapse
Affiliation(s)
- Aldebaran M Hofer
- VA Boston Healthcare System and the Dept. of Surgery, Brigham & Women's Hospital and Harvard Medical School, 1400 VFW PKW, West Roxbury, MA 02132, USA.
| |
Collapse
|
11
|
Ali ES, Rychkov GY, Barritt GJ. Deranged hepatocyte intracellular Ca 2+ homeostasis and the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma. Cell Calcium 2019; 82:102057. [PMID: 31401389 DOI: 10.1016/j.ceca.2019.102057] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths in men, and the sixth in women. Non-alcoholic fatty liver disease (NAFLD) is now one of the major risk factors for HCC. NAFLD, which involves the accumulation of excess lipid in cytoplasmic lipid droplets in hepatocytes, can progress to non-alcoholic steatosis, fibrosis, and HCC. Changes in intracellular Ca2+ constitute important signaling pathways for the regulation of lipid and carbohydrate metabolism in normal hepatocytes. Recent studies of steatotic hepatocytes have identified lipid-induced changes in intracellular Ca2+, and have provided evidence that altered Ca2+ signaling exacerbates lipid accumulation and may promote HCC. The aims of this review are to summarise current knowledge of the lipid-induced changes in hepatocyte Ca2+ homeostasis, to comment on the mechanisms involved, and discuss the pathways leading from altered Ca2+ homeostasis to enhanced lipid accumulation and the potential promotion of HCC. In steatotic hepatocytes, lipid inhibits store-operated Ca2+ entry and SERCA2b, and activates Ca2+ efflux from the endoplasmic reticulum (ER) and its transfer to mitochondria. These changes are associated with changes in Ca2+ concentrations in the ER (decreased), cytoplasmic space (increased) and mitochondria (likely increased). They lead to: inhibition of lipolysis, lipid autophagy, lipid oxidation, and lipid secretion; activation of lipogenesis; increased lipid; ER stress, generation of reactive oxygen species (ROS), activation of Ca2+/calmodulin-dependent kinases and activation of transcription factor Nrf2. These all can potentially mediate the transition of NAFLD to HCC. It is concluded that lipid-induced changes in hepatocyte Ca2+ homeostasis are important in the initiation and progression of HCC. Further research is desirable to better understand the cause and effect relationships, the time courses and mechanisms involved, and the potential of Ca2+ transporters, channels, and binding proteins as targets for pharmacological intervention.
Collapse
Affiliation(s)
- Eunus S Ali
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Grigori Y Rychkov
- School of Medicine, The University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, South Australia, 5005, Australia
| | - Greg J Barritt
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
12
|
An S. The emerging role of extracellular Ca
2+
in osteo/odontogenic differentiation and the involvement of intracellular Ca
2+
signaling: From osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 2018; 234:2169-2193. [DOI: 10.1002/jcp.27068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and EndodonticsGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
13
|
Tam KC, Ali E, Hua J, Chataway T, Barritt GJ. Evidence for the interaction of peroxiredoxin-4 with the store-operated calcium channel activator STIM1 in liver cells. Cell Calcium 2018; 74:14-28. [PMID: 29804005 DOI: 10.1016/j.ceca.2018.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
Ca2+ entry through store-operated Ca2+ channels (SOCs) in the plasma membrane (PM) of hepatocytes plays a central role in the hormonal regulation of liver metabolism. SOCs are composed of Orai1, the channel pore protein, and STIM1, the activator protein, and are regulated by hormones and reactive oxygen species (ROS). In addition to Orai1, STIM1 also interacts with several other intracellular proteins. Most previous studies of the cellular functions of Orai1 and STIM1 have employed immortalised cells in culture expressing ectopic proteins tagged with a fluorescent polypeptide such as GFP. Little is known about the intracellular distributions of endogenous Orai1 and STIM1. The aims are to determine the intracellular distribution of endogenous Orai1 and STIM1 in hepatocytes and to identify novel STIM1 binding proteins. Subcellular fractions of rat liver were prepared by homogenisation and differential centrifugation. Orai1 and STIM1 were identified and quantified by western blot. Orai1 was found in the PM (0.03%), heavy (44%) and light (27%) microsomal fractions, and STIM1 in the PM (0.09%), and heavy (85%) and light (13%) microsomal fractions. Immunoprecipitation of STIM1 followed by LC/MS or western blot identified peroxiredoxin-4 (Prx-4) as a potential STIM1 binding protein. Prx-4 was found principally in the heavy microsomal fraction. Knockdown of Prx-4 using siRNA, or inhibition of Prx-4 using conoidin A, did not affect Ca2+ entry through SOCs but rendered SOCs susceptible to inhibition by H2O2. It is concluded that, in hepatocytes, a considerable proportion of endogenous Orai1 and STIM1 is located in the rough ER. In the rough ER, STIM1 interacts with Prx-4, and this interaction may contribute to the regulation by ROS of STIM1 and SOCs.
Collapse
Affiliation(s)
- Ka Cheung Tam
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Eunus Ali
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Jin Hua
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Tim Chataway
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Greg J Barritt
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
14
|
Frey E, Karney-Grobe S, Krolak T, Milbrandt J, DiAntonio A. TRPV1 Agonist, Capsaicin, Induces Axon Outgrowth after Injury via Ca 2+/PKA Signaling. eNeuro 2018; 5:ENEURO.0095-18.2018. [PMID: 29854941 PMCID: PMC5975717 DOI: 10.1523/eneuro.0095-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
Preconditioning nerve injuries activate a pro-regenerative program that enhances axon regeneration for most classes of sensory neurons. However, nociceptive sensory neurons and central nervous system neurons regenerate poorly. In hopes of identifying novel mechanisms that promote regeneration, we screened for drugs that mimicked the preconditioning response and identified a nociceptive ligand that activates a preconditioning-like response to promote axon outgrowth. We show that activating the ion channel TRPV1 with capsaicin induces axon outgrowth of cultured dorsal root ganglion (DRG) sensory neurons, and that this effect is blocked in TRPV1 knockout neurons. Regeneration occurs only in NF200-negative nociceptive neurons, consistent with a cell-autonomous mechanism. Moreover, we identify a signaling pathway in which TRPV1 activation leads to calcium influx and protein kinase A (PKA) activation to induce a preconditioning-like response. Finally, capsaicin administration to the mouse sciatic nerve activates a similar preconditioning-like response and induces enhanced axonal outgrowth, indicating that this pathway can be induced in vivo. These findings highlight the use of local ligands to induce regeneration and suggest that it may be possible to target selective neuronal populations for repair, including cell types that often fail to regenerate.
Collapse
Affiliation(s)
- Erin Frey
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott Karney-Grobe
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Trevor Krolak
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeff Milbrandt
- Department of Genetics, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Motiani RK, Tanwar J, Raja DA, Vashisht A, Khanna S, Sharma S, Srivastava S, Sivasubbu S, Natarajan VT, Gokhale RS. STIM1 activation of adenylyl cyclase 6 connects Ca 2+ and cAMP signaling during melanogenesis. EMBO J 2018; 37:embj.201797597. [PMID: 29311116 DOI: 10.15252/embj.201797597] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 11/09/2022] Open
Abstract
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions form functionally active microdomains that connect intracellular and extracellular environments. While the key role of these interfaces in maintenance of intracellular Ca2+ levels has been uncovered in recent years, the functional significance of ER-PM junctions in non-excitable cells has remained unclear. Here, we show that the ER calcium sensor protein STIM1 (stromal interaction molecule 1) interacts with the plasma membrane-localized adenylyl cyclase 6 (ADCY6) to govern melanogenesis. The physiological stimulus α-melanocyte-stimulating hormone (αMSH) depletes ER Ca2+ stores, thus recruiting STIM1 to ER-PM junctions, which in turn activates ADCY6. Using zebrafish as a model system, we further established STIM1's significance in regulating pigmentation in vivo STIM1 domain deletion studies reveal the importance of Ser/Pro-rich C-terminal region in this interaction. This mechanism of cAMP generation creates a positive feedback loop, controlling the output of the classical αMSH-cAMP-MITF axis in melanocytes. Our study thus delineates a signaling module that couples two fundamental secondary messengers to drive pigmentation. Given the central role of calcium and cAMP signaling pathways, this module may be operative during various other physiological processes and pathological conditions.
Collapse
Affiliation(s)
- Rajender K Motiani
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jyoti Tanwar
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Desingu Ayyappa Raja
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Ayushi Vashisht
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shivangi Khanna
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sachin Sharma
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonali Srivastava
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sridhar Sivasubbu
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Vivek T Natarajan
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Rajesh S Gokhale
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
16
|
Spirli C, Mariotti V, Villani A, Fabris L, Fiorotto R, Strazzabosco M. Adenylyl cyclase 5 links changes in calcium homeostasis to cAMP-dependent cyst growth in polycystic liver disease. J Hepatol 2017; 66:571-580. [PMID: 27826057 PMCID: PMC5316496 DOI: 10.1016/j.jhep.2016.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Genetic defects in polycystin-1 or -2 (PC1 or PC2) cause polycystic liver disease associated with autosomal dominant polycystic kidney disease (PLD-ADPKD). Progressive cyst growth is sustained by a cAMP-dependent Ras/ERK/HIFα pathway, leading to increased vascular endothelial growth factor A (VEGF-A) signaling. In PC2-defective cholangiocytes, cAMP production in response to [Ca2+]ER depletion is increased, while store-operated Ca2+ entry (SOCE), intracellular and endoplasmic reticulum [Ca2+]ER levels are reduced. We investigated whether the adenylyl cyclases, AC5 and AC6, which can be inhibited by Ca2+, are activated by the ER chaperone STIM1. This would result in cAMP/PKA-dependent Ras/ERK/HIFα pathway activation in PC2-defective cells, in response to [Ca2+]ER depletion. METHODS PC2/AC6 double conditional knockout (KO) mice were generated (Pkd2/AC6 KO) and compared to Pkd2 KO mice. The AC5 inhibitor SQ22,536 or AC5 siRNA were used in isolated cholangiocytes while the inhibitor was used in biliary organoid and animals; liver tissues were harvested for histochemical analysis. RESULTS When comparing Pkd2/AC6 KO to Pkd2 KO mice, no decrease in liver cyst size was found, and cellular cAMP after [Ca2+]ER depletion only decreased by 12%. Conversely, in PC2-defective cells, inhibition of AC5 significantly reduced cAMP production, pERK1/2 expression and VEGF-A secretion. AC5 inhibitors significantly reduced growth of biliary organoids derived from Pkd2 KO and Pkd2/AC6 KO mice. In vivo treatment with SQ22,536 significantly reduced liver cystic area and cell proliferation in PC2-defective mice. After [Ca2+]ER depletion in PC2-defective cells, STIM1 interacts with AC5 but not with Orai1, the Ca2+ channel that mediates SOCE. CONCLUSION [Ca2+]ER depletion in PC2-defective cells activates AC5 and results in stimulation of cAMP/ERK1-2 signaling, VEGF production and cyst growth. This mechanism may represent a novel therapeutic target. LAY SUMMARY Polycystic liver diseases are characterized by progressive cyst growth until their complications mandate surgery or liver transplantation. In this manuscript, we demonstrate that inhibiting cell proliferation, which is induced by increased levels of cAMP, may represent a novel therapeutic target to slow the progression of the disease.
Collapse
Affiliation(s)
- Carlo Spirli
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Valeria Mariotti
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA,Section of Digestive Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Ambra Villani
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua, Italy
| | - Romina Fiorotto
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale University, New Haven, CT, USA; Section of Digestive Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.
| |
Collapse
|
17
|
Tissue Specificity: Store-Operated Ca 2+ Entry in Cardiac Myocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:363-387. [PMID: 28900924 DOI: 10.1007/978-3-319-57732-6_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium (Ca2+) is a key regulator of cardiomyocyte contraction. The Ca2+ channels, pumps, and exchangers responsible for the cyclical cytosolic Ca2+ signals that underlie contraction are well known. In addition to those Ca2+ signaling components responsible for contraction, it has been proposed that cardiomyocytes express channels that promote the influx of Ca2+ from the extracellular milieu to the cytosol in response to depletion of intracellular Ca2+ stores. With non-excitable cells, this store-operated Ca2+ entry (SOCE) is usually easily demonstrated and is essential for prolonging cellular Ca2+ signaling and for refilling depleted Ca2+ stores. The role of SOCE in cardiomyocytes, however, is rather more elusive. While there is published evidence for increased Ca2+ influx into cardiomyocytes following Ca2+ store depletion, it has not been universally observed. Moreover, SOCE appears to be prominent in embryonic cardiomyocytes but declines with postnatal development. In contrast, there is overwhelming evidence that the molecular components of SOCE (e.g., STIM, Orai, and TRPC proteins) are expressed in cardiomyocytes from embryo to adult. Moreover, these proteins have been shown to contribute to disease conditions such as pathological hypertrophy, and reducing their expression can attenuate hypertrophic growth. It is plausible that SOCE might underlie Ca2+ influx into cardiomyocytes and may have important signaling functions perhaps by activating local Ca2+-sensitive processes. However, the STIM, Orai, and TRPC proteins appear to cooperate with multiple protein partners in signaling complexes. It is therefore possible that some of their signaling activities are not mediated by Ca2+ influx signals, but by protein-protein interactions.
Collapse
|
18
|
Metabolic Disorders and Cancer: Hepatocyte Store-Operated Ca2+ Channels in Nonalcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:595-621. [DOI: 10.1007/978-3-319-57732-6_30] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Pacheco J, Vaca L. STIM-TRP Pathways and Microdomain Organization: Auxiliary Proteins of the STIM/Orai Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:189-210. [DOI: 10.1007/978-3-319-57732-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Gupta A, Anderson H, Buo AM, Moorer MC, Ren M, Stains JP. Communication of cAMP by connexin43 gap junctions regulates osteoblast signaling and gene expression. Cell Signal 2016; 28:1048-57. [PMID: 27156839 DOI: 10.1016/j.cellsig.2016.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 11/30/2022]
Abstract
Connexin43 (Cx43) containing gap junctions play an important role in bone homeostasis, yet little is known about the second messengers communicated by Cx43 among bone cells. Here, we used MC3T3-E1 pre-osteoblasts and UMR106 rat osteosarcoma cells to test the hypothesis that cAMP is a second messenger communicated by bone cells through Cx43 containing gap junctions in a manner that is sufficient to impact osteoblast function. Overexpression of Cx43 markedly enhanced the activity of a cAMP-response element driven transcriptional luciferase reporter (CRE-luc) and increased phospho-CREB and phospho-ERK1/2 levels following expression of a constitutively active Gsα or by treatment with prostaglandin E2 (PGE2), 3-Isobutyl-1-methyl xanthine (IBMX) or forskolin. The Cx43-dependent potentiation of signaling in PGE2 treated cells was not accompanied by a further increase in cAMP levels, suggesting that the cAMP was shared between cells rather than Cx43 enhancing cAMP production. To support this, we developed a novel assay in which one set of cells expressing constitutively active Gsα (donor cells) were co-cultured with a second set of cells expressing a CRE-luc reporter (acceptor cells). Using this assay, activation of a CRE-luc reporter in the acceptor cells was both Cx43- and cell contact-dependent, indicating communication of cAMP among cells. Finally, we showed that Cx43 increased the cAMP-dependent mRNA expression of receptor activator of nuclear factor kappa B ligand (RANKL) and enhanced the repression of the sclerostin mRNA, implying a potential mechanism for the modulation of tissue remodeling. In total, these data demonstrate that Cx43 can communicate cAMP between cells and, more importantly, that the communicated cAMP is sufficient to impact signal transduction cascades and the expression of key bone effector molecules between interconnected cells.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hidayah Anderson
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Margaret Ren
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Niemeyer BA. Changing calcium: CRAC channel (STIM and Orai) expression, splicing, and posttranslational modifiers. Am J Physiol Cell Physiol 2016; 310:C701-9. [PMID: 26911279 DOI: 10.1152/ajpcell.00034.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A wide variety of cellular function depends on the dynamics of intracellular Ca(2+) signals. Especially for relatively slow and lasting processes such as gene expression, cell proliferation, and often migration, cells rely on the store-operated Ca(2+) entry (SOCE) pathway, which is particularly prominent in immune cells. SOCE is initiated by the sensor proteins (STIM1, STIM2) located within the endoplasmic reticulum (ER) registering the Ca(2+) concentration within the ER, and upon its depletion, cluster and trap Orai (Orai1-3) proteins located in the plasma membrane (PM) into ER-PM junctions. These regions become sites of highly selective Ca(2+) entry predominantly through Orai1-assembled channels, which, among other effector functions, is necessary for triggering NFAT translocation into the nucleus. What is less clear is how the spatial and temporal spread of intracellular Ca(2+) is shaped and regulated by differential expression of the individual SOCE genes and their splice variants, their heteromeric combinations and pre- and posttranslational modifications. This review focuses on principle mechanisms regulating expression, splicing, and targeting of Ca(2+) release-activated Ca(2+) (CRAC) channels.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
22
|
Son A, Park S, Shin DM, Muallem S. Orai1 and STIM1 in ER/PM junctions: roles in pancreatic cell function and dysfunction. Am J Physiol Cell Physiol 2016; 310:C414-22. [PMID: 26739495 DOI: 10.1152/ajpcell.00349.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane contact sites (MCS) are critical junctions that form between the endoplasmic reticulum (ER) and membranes of various organelles, including the plasma membrane (PM). Signaling complexes, including mediators of Ca(2+) signaling, are assembled within MCS, such as the ER/PM junction. This is most evident in polarized epithelial cells, such as pancreatic cells. Core Ca(2+) signaling proteins cluster at the apical pole, the site of inositol 1,4,5-trisphosphate-mediated Ca(2+) release and Orai1/transient receptor potential canonical-mediated store-dependent Ca(2+) entry. Recent advances have characterized the proteins that tether the membranes at MCS and the role of these proteins in modulating physiological and pathological intracellular signaling. This review discusses recent advances in the characterization of Ca(2+) signaling at ER/PM junctions and the relation of these junctions to physiological and pathological Ca(2+) signaling in pancreatic acini.
Collapse
Affiliation(s)
- Aran Son
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Seonghee Park
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
23
|
Shin DM, Son A, Park S, Kim MS, Ahuja M, Muallem S. The TRPCs, Orais and STIMs in ER/PM Junctions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:47-66. [PMID: 27161224 DOI: 10.1007/978-3-319-26974-0_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Ca(2+) second messenger is initiated at ER/PM junctions and propagates into the cell interior to convey the receptor information. The signal is maintained by Ca(2+) influx across the plasma membrane through the Orai and TRPC channels. These Ca(2+) influx channels form complexes at ER/PM junctions with the ER Ca(2+) sensor STIM1, which activates the channels. The function of STIM1 is modulated by other STIM isoforms like STIM1L, STIM2 and STIM2.1/STIM2β and by SARAF, which mediates the Ca(2+)-dependent inhibition of Orai channels. The ER/PM junctions are formed at membrane contact sites by tethering proteins that generate several types of ER/PM junctions, such as PI(4,5)P2-poor and PI(4,5)P2-rich domains. This chapter discusses several properties of the TRPC channels, the Orai channels and the STIMs, their key interacting proteins and how interaction of the STIMs with the channels gates their activity. The chapter closes by highlighting open questions and potential future directions in this field.
Collapse
Affiliation(s)
- Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, 120-752, South Korea.
| | - Aran Son
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | - Seonghee Park
- Department of Physiology, School of Medicine, EwhaWomans University, 911-1 Mok-6-dong, Yang Chun-gu, Seoul, 158-710, South Korea
| | - Min Seuk Kim
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, South Korea
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Hofer AM. Ca²⁺ signaling at membrane contact sites. Cell Calcium 2015; 58:331-2. [PMID: 26248790 DOI: 10.1016/j.ceca.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Aldebaran M Hofer
- Harvard Medical School and VA Boston Healthcare System, Boston, MA 02132, USA.
| |
Collapse
|