1
|
Sun YH, Kao HKJ, Thai PN, Smithers R, Chang CW, Pretto D, Yechikov S, Oppenheimer S, Bedolla A, Chalker BA, Ghobashy R, Nolta JA, Chan JW, Chiamvimonvat N, Lieu DK. The sinoatrial node extracellular matrix promotes pacemaker phenotype and protects automaticity in engineered heart tissues from cyclic strain. Cell Rep 2023; 42:113505. [PMID: 38041810 PMCID: PMC10790625 DOI: 10.1016/j.celrep.2023.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
The composite material-like extracellular matrix (ECM) in the sinoatrial node (SAN) supports the native pacemaking cardiomyocytes (PCMs). To test the roles of SAN ECM in the PCM phenotype and function, we engineered reconstructed-SAN heart tissues (rSANHTs) by recellularizing porcine SAN ECMs with hiPSC-derived PCMs. The hiPSC-PCMs in rSANHTs self-organized into clusters resembling the native SAN and displayed higher expression of pacemaker-specific genes and a faster automaticity compared with PCMs in reconstructed-left ventricular heart tissues (rLVHTs). To test the protective nature of SAN ECMs under strain, rSANHTs and rLVHTs were transplanted onto the murine thoracic diaphragm to undergo constant cyclic strain. All strained-rSANHTs preserved automaticity, whereas 66% of strained-rLVHTs lost their automaticity. In contrast to the strained-rLVHTs, PCMs in strained-rSANHTs maintained high expression of key pacemaker genes (HCN4, TBX3, and TBX18). These findings highlight the promotive and protective roles of the composite SAN ECM and provide valuable insights for pacemaking tissue engineering.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Hillary K J Kao
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Regan Smithers
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Che-Wei Chang
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Dalyir Pretto
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Sergey Yechikov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Sarah Oppenheimer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA; Bridges to Stem Cell Research Program, California State University, Sacramento, Sacramento, CA 95817, USA
| | - Amanda Bedolla
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA; Bridges to Stem Cell Research Program, California State University, Sacramento, Sacramento, CA 95817, USA
| | - Brooke A Chalker
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA; Bridges to Stem Cell Research Program, Cal Poly Humboldt, Humboldt, CA 95521, USA
| | - Rana Ghobashy
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA; Bridges to Stem Cell Research Program, California State University, Sacramento, Sacramento, CA 95817, USA
| | - Jan A Nolta
- Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - James W Chan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Deborah K Lieu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
2
|
Segal S, Yaniv Y. Ca 2+-Driven Selectivity of the Effect of the Cardiotonic Steroid Marinobufagenin on Rabbit Sinoatrial Node Function. Cells 2023; 12:1881. [PMID: 37508546 PMCID: PMC10378090 DOI: 10.3390/cells12141881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The synergy between Na+-K+ pumps, Na+-Ca2+ exchangers, membrane currents and the sarcoplasmic reticulum (SR) generates the coupled-clock system, which governs the spontaneous electrical activity of heart sinoatrial node cells (SANCs). Ca2+ mediates the degree of clock coupling via local Ca2+ release (LCR) from the SR and activation of cAMP/PKA signaling. Marinobufagenin (MBG) is a natural Na+-K+ pump inhibitor whose effect on SANCs has not been measured before. The following two hypotheses were tested to determine if and how MBG mediates between the Na+-K+ pump and spontaneous SAN activity: (i) MBG has a distinct effect on beat interval (BI) due to variable effects on LCR characteristics, and (ii) Ca2+ is an important mediator between MBG and SANC activity. Ca2+ transients were measured by confocal microscopy during application of increasing concentrations of MBG. To further support the hypothesis that Ca2+ mediates between MBG and SANC activity, Ca2+ was chelated by the addition of BAPTA. Dose response tests found that 100 nM MBG led to no change in BI in 6 SANCs (no BI change group), and to BI prolongation in 10 SANCs (BI change group). At the same concentration, the LCR period was prolonged in both groups, but more significantly in the BI change group. BAPTA-AM prolonged the BI in 12 SANCs. In the presence of BAPTA, 100 nM MBG had no effect on SANC BI or on the LCR period. In conclusion, the MBG effects on SANC function are mediated by the coupled clock system, and Ca2+ is an important regulator of these effects.
Collapse
Affiliation(s)
- Sofia Segal
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| |
Collapse
|
3
|
Segal S, Arbel-Ganon L, Mazgaoker S, Davoodi M, Yaniv Y. Increase in Ca2+-Activated cAMP/PKA Signaling Prevents Hydroxychloroquine-Induced Bradycardia of the Cardiac Pacemaker. Front Physiol 2022; 13:839140. [PMID: 35634151 PMCID: PMC9130770 DOI: 10.3389/fphys.2022.839140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Bradycardia or tachycardia are known side effects of drugs that limit their clinical use. The heart pacemaker function which control the heart rate under normal conditions is determined by coupled clock system. Thus, interfering with specific clock mechanism will affect other clock mechanisms through changes in interconnected signaling and can lead to rhythm disturbance. However, upregulation of a different clock components can compensate for this change. We focus here on hydroxychloroquine (HCQ), which has been shown effective in treating COVID-19 patients, however its bradycardic side effect limits its clinical use. We aim to decipher the mechanisms underlying the effect of HCQ on pacemaker automaticity, to identify a potential drug that will eliminate the bradycardia. We used isolated rabbit sinoatrial node (SAN) cells, human-induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) and mouse SAN cells residing in SAN tissue. Further, we employed SAN cell computational model to suggest mechanistic insights of the effect of HCQ on pacemaker function. HCQ increased mean spontaneous beat interval and variability in all three models in parallel to slower intracellular kinetics. The computational model suggested that HCQ affects the pacemaker (funny) current (If), L-type Ca2+ current (ICa,L), transient outward potassium (Ito) and due to changes in Ca2+ kinetics, the sodium-calcium exchanger current (INCX). Co-application of 3’-isobutylmethylxanthine (IBMX) and HCQ prevented the increase in beat interval and variability in all three experimental models. The HCQ-induced increase in rabbit and mice SAN cell and hiPSC-CM spontaneous beat interval, can be prevented by a phosphodiester inhibitor that restores automaticity due to slower intracellular Ca2+ kinetics.
Collapse
|
4
|
Reddy GR, Ren L, Thai PN, Caldwell JL, Zaccolo M, Bossuyt J, Ripplinger CM, Xiang YK, Nieves-Cintrón M, Chiamvimonvat N, Navedo MF. Deciphering cellular signals in adult mouse sinoatrial node cells. iScience 2022; 25:103693. [PMID: 35036877 PMCID: PMC8749457 DOI: 10.1016/j.isci.2021.103693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/27/2023] Open
Abstract
Sinoatrial node (SAN) cells are the pacemakers of the heart. This study describes a method for culturing and infection of adult mouse SAN cells with FRET-based biosensors that can be exploited to examine signaling events. SAN cells cultured in media with blebbistatin or (S)-nitro-blebbistatin retain their morphology, protein distribution, action potential (AP) waveform, and cAMP dynamics for at least 40 h. SAN cells expressing targeted cAMP sensors show distinct β-adrenergic-mediated cAMP pools. Cyclic GMP, protein kinase A, Ca2+/CaM kinase II, and protein kinase D in SAN cells also show unique dynamics to different stimuli. Heart failure SAN cells show a decrease in cAMP and cGMP levels. In summary, a reliable method for maintaining adult mouse SAN cells in culture is presented, which facilitates studies of signaling networks and regulatory mechanisms during physiological and pathological conditions.
Collapse
Affiliation(s)
- Gopireddy R. Reddy
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Jessica L. Caldwell
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Crystal M. Ripplinger
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| |
Collapse
|
5
|
Swift LM, Kay MW, Ripplinger CM, Posnack NG. Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac research. Am J Physiol Heart Circ Physiol 2021; 321:H1005-H1013. [PMID: 34623183 DOI: 10.1152/ajpheart.00477.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optical mapping is an imaging technique that is extensively used in cardiovascular research, wherein parameter-sensitive fluorescent indicators are used to study the electrophysiology and excitation-contraction coupling of cardiac tissues. Despite many benefits of optical mapping, eliminating motion artifacts within the optical signals is a major challenge, as myocardial contraction interferes with the faithful acquisition of action potentials and intracellular calcium transients. As such, excitation-contraction uncoupling agents are frequently used to reduce signal distortion by suppressing contraction. When compared with other uncoupling agents, blebbistatin is the most frequently used, as it offers increased potency with minimal direct effects on cardiac electrophysiology. Nevertheless, blebbistatin may exert secondary effects on electrical activity, metabolism, and coronary flow, and the incorrect administration of blebbistatin to cardiac tissue can prove detrimental, resulting in erroneous interpretation of optical mapping results. In this "Getting It Right" perspective, we briefly review the literature regarding the use of blebbistatin in cardiac optical mapping experiments, highlight potential secondary effects of blebbistatin on cardiac electrical activity and metabolic demand, and conclude with the consensus of the authors on best practices for effectively using blebbistatin in optical mapping studies of cardiac tissue.
Collapse
Affiliation(s)
- Luther M Swift
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | | | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia.,Department of Pediatrics, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
6
|
Kirschner Peretz N, Segal S, Yaniv Y. May the Force Not Be With You During Culture: Eliminating Mechano-Associated Feedback During Culture Preserves Cultured Atrial and Pacemaker Cell Functions. Front Physiol 2020; 11:163. [PMID: 32265724 PMCID: PMC7100534 DOI: 10.3389/fphys.2020.00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/12/2020] [Indexed: 01/24/2023] Open
Abstract
Cultured cardiomyocytes have been shown to possess significant potential as a model for characterization of mechano-Ca2+, mechano-electric, and mechano-metabolic feedbacks in the heart. However, the majority of cultured cardiomyocytes exhibit impaired electrical, mechanical, biochemical, and metabolic functions. More specifically, the cells do not beat spontaneously (pacemaker cells) or beat at a rate far lower than their physiological counterparts and self-oscillate (atrial and ventricular cells) in culture. Thus, efforts are being invested in ensuring that cultured cardiomyocytes maintain the shape and function of freshly isolated cells. Elimination of contraction during culture has been shown to preserve the mechano-Ca2+, mechano-electric, and mechano-metabolic feedback loops of cultured cells. This review focuses on pacemaker cells, which reside in the sinoatrial node (SAN) and generate regular heartbeat through the initiation of the heart’s electrical, metabolic, and biochemical activities. In parallel, it places emphasis on atrial cells, which are responsible for bridging the electrical conductance from the SAN to the ventricle. The review provides a summary of the main mechanisms responsible for mechano-electrical, Ca2+, and metabolic feedback in pacemaker and atrial cells and of culture methods existing for both cell types. The work concludes with an explanation of how the elimination of mechano-electrical, mechano-Ca2+, and mechano-metabolic feedbacks during culture results in sustained cultured cell function.
Collapse
Affiliation(s)
- Noa Kirschner Peretz
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| | - Sofia Segal
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|