1
|
Ni B, Ye L, Zhang Y, Hu S, Lei W. Advances in humanoid organoid-based research on inter-organ communications during cardiac organogenesis and cardiovascular diseases. J Transl Med 2025; 23:380. [PMID: 40156006 PMCID: PMC11951738 DOI: 10.1186/s12967-025-06381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
The intimate correlation between cardiovascular diseases and other organ pathologies, such as metabolic and kidney diseases, underscores the intricate interactions among these organs. Understanding inter-organ communications is crucial for developing more precise drugs and effective treatments for systemic diseases. While animal models have traditionally been pivotal in studying these interactions, human-induced pluripotent stem cells (hiPSCs) offer distinct advantages when constructing in vitro models. Beyond the conventional two-dimensional co-culture model, hiPSC-derived humanoid organoids have emerged as a substantial advancement, capable of replicating essential structural and functional attributes of internal organs in vitro. This breakthrough has spurred the development of multilineage organoids, assembloids, and organoids-on-a-chip technologies, which allow for enhanced physiological relevance. These technologies have shown great potential for mimicking coordinated organogenesis, exploring disease pathogenesis, and facilitating drug discovery. As the central organ of the cardiovascular system, the heart serves as the focal point of an extensively studied network of interactions. This review focuses on the advancements and challenges of hiPSC-derived humanoid organoids in studying interactions between the heart and other organs, presenting a comprehensive exploration of this cutting-edge approach in systemic disease research.
Collapse
Affiliation(s)
- Baoqiang Ni
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Lingqun Ye
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yan Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Wei Lei
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Lara-López A, Gonzalez-Imaz K, Rodríguez-Hidalgo M, Sarasola-Gastesi M, Escudero-Arrarás L, Milla-Navarro S, de la Villa P, Sagartzazu-Aizpurua M, Miranda JI, Aizpurua JM, de Munain AL, Vallejo-Illarramendi A, Ruiz-Ederra J. Topical Administration of Novel FKBP12 Ligand MP-004 Improves Retinal Function and Structure in Retinitis Pigmentosa Models. Invest Ophthalmol Vis Sci 2025; 66:56. [PMID: 40136284 PMCID: PMC11951062 DOI: 10.1167/iovs.66.3.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Purpose This study evaluates the therapeutic potential of MP-004, a novel FKBP12 ligand, in the treatment of inherited retinal dystrophies (IRDs). MP-004 targets the FKBP12/RyR interaction, which is disrupted in several neurologic disorders with underlying oxidative stress. Methods The toxicity and efficacy of MP-004 were examined in vitro in 661W cells. Efficacy was evaluated in phototoxic and H2O2-induced damage using impedance assays, calcium imaging, and in situ PLA. In vivo, MP-004 efficacy was evaluated in the rd10 mouse model of retinitis pigmentosa (RP) by topical ocular instillation. Retinal function was assessed by electroretinography (ERG), visual acuity was measured using a water maze test, and retinal structure was analyzed morphometrically. Results MP-004 exhibited low toxicity (LD50: 1.22 mM) and effectively protected 661W cells from phototoxicity (EC50: 30.6 nM). Under oxidative stress conditions, MP-004 preserved the FKBP12.6/RyR2 interaction, restored cytosolic and endoplasmic reticulum calcium levels, and prevented cell death. In vivo, MP-004 significantly preserved retinal function in rd10 mice, with ERG wave amplitude increases of up to 50% in scotopic and 71% in photopic conditions, corresponding to rod and cone functions, respectively. Additionally, MP-004 improved visual acuity for low spatial frequency patterns and preserved retinal structure, with a 23% increase in outer nuclear layer thickness and preservation in the number of rods and cones and their segment length. Conclusions MP-004 shows promise as a therapeutic agent for RP, preserving retinal structure and function, likely through modulation of the FKBP12.6/RyR2 interaction. Further studies are needed to explore its pharmacokinetics and efficacy in other IRD models.
Collapse
Affiliation(s)
- Araceli Lara-López
- Miramoon Pharma, S.L., Donostia-San Sebastian, Spain
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Klaudia Gonzalez-Imaz
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - María Rodríguez-Hidalgo
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
| | - Miren Sarasola-Gastesi
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- Department of Dermatology, Ophthalmology and ORL, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Leire Escudero-Arrarás
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
| | - Santiago Milla-Navarro
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
- Visual Neurophysiology Group, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pedro de la Villa
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
- Visual Neurophysiology Group, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Maialen Sagartzazu-Aizpurua
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - José Ignacio Miranda
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Jesús María Aizpurua
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Adolfo López de Munain
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, OSAKIDETZA, Donostia-San Sebastián, Spain
| | - Ainara Vallejo-Illarramendi
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Javier Ruiz-Ederra
- Miramoon Pharma, S.L., Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- Department of Dermatology, Ophthalmology and ORL, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
3
|
Chan JA, Munro ML. Time-dependent effect of FKBP12 loss in the development of dilated cardiomyopathy. J Gen Physiol 2025; 157:e202413673. [PMID: 39665747 PMCID: PMC11636550 DOI: 10.1085/jgp.202413673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Hanna et al. reveal that early, but not late, developmental cardiac FKBP12 deficiency leads to dilated cardiomyopathy in the adult heart.
Collapse
Affiliation(s)
- Joan A. Chan
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Michelle L. Munro
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Shi G, Jiang C, Wang J, Cui P, Shan W. Mechanical stimulation promotes the maturation of cardiomyocyte-like cells from P19 cells and the function in a mouse model of myocardial infarction. Cell Tissue Res 2024:10.1007/s00441-024-03922-6. [PMID: 39395051 DOI: 10.1007/s00441-024-03922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
In this study, we aimed to promote the maturation of cardiomyocytes-like cells by mechanical stimulation, and evaluate their therapeutic potential against myocardial infarction. The cyclic tensile strain was used to induce the maturation of cardsiomyocyte-like cells from P19 cells in vitro. Western blot and qPCR assays were performed to examine protein and gene expression, respectively. High-resolution respirometry was used to assay cell function. The induced cells were then evaluated for their therapeutic effect. In vitro, we observed cyclic tensile strain induced P19 cell differentiation into cardiomyocyte-like cells, as indicated by the increased expression of cardiomyocyte maturation-related genes such as Myh6, Myl2, and Gja1. Furthermore, cyclic tensile strain increased the antioxidant capacity of cardiomyocytes by upregulating the expression Sirt1, a gene important for P19 maturation into cardiomyocyte-like cells. High-resolution respirometry analysis of P19 cells following cyclic tensile strain showed enhanced metabolic function. In vivo, stimulated P19 cells enhanced cardiac function in a mouse model of myocardial infarction, and these mice showed decreased infarction-related biomarkers. The current study demonstrates a simple yet effective mean to induce the maturation of P19 cells into cardiomyocyte-like cells, with a promising therapeutic potential for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Guiliang Shi
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Chaopeng Jiang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China.
| | - Jiwei Wang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Ping Cui
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Weixin Shan
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| |
Collapse
|
5
|
Qian Y, Zuo D, Xiong J, Yin Y, Qi R, Ma X, Yan A, Yang Y, Liu P, Zhang J, Tang K, Peng W, Xu Y, Liu Z. Arrhythmogenic mechanism of a novel ryanodine receptor mutation underlying sudden cardiac death. Europace 2023; 25:euad220. [PMID: 37466361 PMCID: PMC10374982 DOI: 10.1093/europace/euad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
AIMS The ryanodine receptor 2 (RyR2) is essential for cardiac muscle excitation-contraction coupling; dysfunctional RyR2 participates in the development of inherited arrhythmogenic cardiac disease. In this study, a novel RyR2 mutation A690E is identified from a patient with family inheritance of sudden cardiac death, and we aimed to investigate the pathogenic basis of the mutation. METHODS AND RESULTS We generated a mouse model that carried the A690E mutation. Mice were characterized by adrenergic-induced ventricular arrhythmias similar to clinical manifestation of the patient. Optical mapping studies revealed that isolated A690E hearts were prone to arrhythmogenesis and displayed frequency-dependence calcium transient alternans. Upon β-adrenoceptor challenge, the concordant alternans was shifted towards discordant alternans that favour triggering ectopic beats and Ca2+ re-entry; similar phenomenon was also found in the A690E cardiomyocytes. In addition, we found that A690E cardiomyocytes manifested abnormal Ca2+ release and electrophysiological disorders, including an increased sensitivity to cytosolic Ca2+, an elevated diastolic RyR2-mediated Ca2+ leak, and an imbalance between Ca2+ leak and reuptake. Structural analyses reveal that the mutation directly impacts RyR2-FK506 binding protein interaction. CONCLUSION In this study, we have identified a novel mutation in RyR2 that is associated with sudden cardiac death. By characterizing the function defects of mutant RyR2 in animal, whole heat, and cardiomyocytes, we demonstrated the pathogenic basis of the disease-causing mutation and provided a deeper mechanistic understanding of a life-threatening cardiac arrhythmia.
Collapse
Affiliation(s)
- Yunyun Qian
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Dongchuan Zuo
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, 1 Xianglin Road, Longmatan District, Luzhou 646000, China
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou 646000, China
| | - Jing Xiong
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Yihen Yin
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Ruxi Qi
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Xiaomin Ma
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - An Yan
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| | - Yawen Yang
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, 1 Xianglin Road, Longmatan District, Luzhou 646000, China
| | - Ping Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou 646000, China
| | - Jingying Zhang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Jingan District, Shanghai 200072, China
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, 36 Yunxin Road, Jingan District, Shanghai 200435, China
- Cryo-electron Microscopy Center, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
6
|
Pourtavakoli A, Ghafouri-Fard S. Calcium signaling in neurodevelopment and pathophysiology of autism spectrum disorders. Mol Biol Rep 2022; 49:10811-10823. [PMID: 35857176 DOI: 10.1007/s11033-022-07775-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) covers a group of neurodevelopmental disorders with complex genetic background. Several genetic mutations, epigenetic alterations, copy number variations and single nucleotide polymorphisms have been reported that cause ASD or modify its phenotype. Among signaling pathways that influence pathogenesis of ASD, calcium signaling has a prominent effect. METHODS We searched PubMed and Google Scholar databases with key words "Calcium signaling" and "Autism spectrum disorder". CONCLUSION This type of signaling has essential roles in the cell physiology. Endoplasmic reticulum and mitochondria are the key organelles involved in this signaling. It is vastly accepted that organellar disorders intensely influence the central nervous system (CNS). Several lines of evidence indicate alterations in the function of calcium channels in polygenic disorders affecting CNS. In the current review, we describe the role of calcium signaling in normal function of CNS and pathophysiology of ASD.
Collapse
Affiliation(s)
- Ashkan Pourtavakoli
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
8
|
Junho CVC, González-Lafuente L, Navarro-García JA, Rodríguez-Sánchez E, Carneiro-Ramos MS, Ruiz-Hurtado G. Unilateral Acute Renal Ischemia-Reperfusion Injury Induces Cardiac Dysfunction through Intracellular Calcium Mishandling. Int J Mol Sci 2022; 23:ijms23042266. [PMID: 35216382 PMCID: PMC8879526 DOI: 10.3390/ijms23042266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Acute renal failure (ARF) following renal ischemia-reperfusion (I/R) injury is considered a relevant risk factor for cardiac damage, but the underlying mechanisms, particularly those triggered at cardiomyocyte level, are unknown. Methods: We examined intracellular Ca2+ dynamics in adult ventricular cardiomyocytes isolated from C57BL/6 mice 7 or 15 days following unilateral renal I/R. Results: After 7 days of I/R, the cell contraction was significantly lower in cardiomyocytes compared to sham-treated mice. It was accompanied by a significant decrease in both systolic Ca2+ transients and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) activity measured as Ca2+ transients decay. Moreover, the incidence of pro-arrhythmic events, measured as the number of Ca2+ sparks, waves or automatic Ca2+ transients, was greater in cardiomyocytes from mice 7 days after I/R than from sham-treated mice. Ca2+ mishandling related to systolic Ca2+ transients and contraction were recovered to sham values 15 days after I/R, but Ca2+ sparks frequency and arrhythmic events remained elevated. Conclusions: Renal I/R injury causes a cardiomyocyte Ca2+ cycle dysfunction at medium (contraction-relaxation dysfunction) and long term (Ca2+ leak), after 7 and 15 days of renal reperfusion, respectively.
Collapse
Affiliation(s)
- Carolina Victoria Cruz Junho
- Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, SP, Brazil;
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, Community of Madrid, 28041 Madrid, Spain; (L.G.-L.); (J.A.N.-G.); (E.R.-S.)
| | - Laura González-Lafuente
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, Community of Madrid, 28041 Madrid, Spain; (L.G.-L.); (J.A.N.-G.); (E.R.-S.)
| | - José Alberto Navarro-García
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, Community of Madrid, 28041 Madrid, Spain; (L.G.-L.); (J.A.N.-G.); (E.R.-S.)
| | - Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, Community of Madrid, 28041 Madrid, Spain; (L.G.-L.); (J.A.N.-G.); (E.R.-S.)
| | - Marcela Sorelli Carneiro-Ramos
- Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, SP, Brazil;
- Correspondence: (M.S.C.-R.); (G.R.-H.); Tel.: +34-913908001 (G.R.-H.)
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, Community of Madrid, 28041 Madrid, Spain; (L.G.-L.); (J.A.N.-G.); (E.R.-S.)
- CIBER-CV, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Correspondence: (M.S.C.-R.); (G.R.-H.); Tel.: +34-913908001 (G.R.-H.)
| |
Collapse
|
9
|
Yamaguchi N, Zhang XH, Morad M. CRISPR/Cas9 Gene Editing of RYR2 in Human iPSC-Derived Cardiomyocytes to Probe Ca 2+ Signaling Aberrancies of CPVT Arrhythmogenesis. Methods Mol Biol 2022; 2573:41-52. [PMID: 36040585 DOI: 10.1007/978-1-0716-2707-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) provide a powerful platform to study biophysical and molecular mechanisms underlying the pathophysiology of genetic mutations associated with cardiac arrhythmia. Human iPSCs can be generated by reprograming of dermal fibroblasts of normal or diseased individuals and be differentiated into cardiac myocytes. Obtaining biopsies from patients afflicted with point mutations causing arrhythmia is often a cumbersome process even when patients are available. Recent development of CRISPR/Cas9 gene editing system makes it, however, possible to introduce arrhythmia-associated point mutations at the desired loci of the wild-type hiPSCs in relatively short times. This platform was used by us to compare the Ca2+ signaling phenotypes of cardiomyocytes harboring point mutations in cardiac Ca2+ release channel, type-2 ryanodine receptor (RyR2), since over 200 missense mutations in RYR2 gene appear to be associated with catecholaminergic polymorphic ventricular tachycardia (CPVT1). We have created cardiac myocytes harboring mutations in different domains of RyR2, to study not only their Ca2+ signaling consequences but also their drug and domain specificity as related to CPVT1 pathology. In this chapter, we describe our procedures to establish CRISPR/Cas9 gene-edited hiPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Naohiro Yamaguchi
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, SC, USA.
- Department of Cell Biology and Anatomy, University of South Carolina, Charleston, SC, USA.
| | - Xiao-Hua Zhang
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, SC, USA
- Department of Cell Biology and Anatomy, University of South Carolina, Charleston, SC, USA
| | - Martin Morad
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, SC, USA.
- Department of Cell Biology and Anatomy, University of South Carolina, Charleston, SC, USA.
| |
Collapse
|